/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) 2007 Alan Stern * Copyright (C) IBM Corporation, 2009 * Copyright (C) 2009, Frederic Weisbecker * * Thanks to Ingo Molnar for his many suggestions. * * Authors: Alan Stern * K.Prasad * Frederic Weisbecker */ /* * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility, * using the CPU's debug registers. * This file contains the arch-independent routines. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Constraints data */ /* Number of pinned cpu breakpoints in a cpu */ static DEFINE_PER_CPU(unsigned int, nr_cpu_bp_pinned[TYPE_MAX]); /* Number of pinned task breakpoints in a cpu */ static DEFINE_PER_CPU(unsigned int *, nr_task_bp_pinned[TYPE_MAX]); /* Number of non-pinned cpu/task breakpoints in a cpu */ static DEFINE_PER_CPU(unsigned int, nr_bp_flexible[TYPE_MAX]); static int nr_slots[TYPE_MAX]; /* Keep track of the breakpoints attached to tasks */ static LIST_HEAD(bp_task_head); static int constraints_initialized; /* Gather the number of total pinned and un-pinned bp in a cpuset */ struct bp_busy_slots { unsigned int pinned; unsigned int flexible; }; /* Serialize accesses to the above constraints */ static DEFINE_MUTEX(nr_bp_mutex); __weak int hw_breakpoint_weight(struct perf_event *bp) { return 1; } static inline enum bp_type_idx find_slot_idx(struct perf_event *bp) { if (bp->attr.bp_type & HW_BREAKPOINT_RW) return TYPE_DATA; return TYPE_INST; } /* * Report the maximum number of pinned breakpoints a task * have in this cpu */ static unsigned int max_task_bp_pinned(int cpu, enum bp_type_idx type) { int i; unsigned int *tsk_pinned = per_cpu(nr_task_bp_pinned[type], cpu); for (i = nr_slots[type] - 1; i >= 0; i--) { if (tsk_pinned[i] > 0) return i + 1; } return 0; } /* * Count the number of breakpoints of the same type and same task. * The given event must be not on the list. */ static int task_bp_pinned(struct perf_event *bp, enum bp_type_idx type) { struct perf_event_context *ctx = bp->ctx; struct perf_event *iter; int count = 0; list_for_each_entry(iter, &bp_task_head, hw.bp_list) { if (iter->ctx == ctx && find_slot_idx(iter) == type) count += hw_breakpoint_weight(iter); } return count; } /* * Report the number of pinned/un-pinned breakpoints we have in * a given cpu (cpu > -1) or in all of them (cpu = -1). */ static void fetch_bp_busy_slots(struct bp_busy_slots *slots, struct perf_event *bp, enum bp_type_idx type) { int cpu = bp->cpu; struct task_struct *tsk = bp->ctx->task; if (cpu >= 0) { slots->pinned = per_cpu(nr_cpu_bp_pinned[type], cpu); if (!tsk) slots->pinned += max_task_bp_pinned(cpu, type); else slots->pinned += task_bp_pinned(bp, type); slots->flexible = per_cpu(nr_bp_flexible[type], cpu); return; } for_each_online_cpu(cpu) { unsigned int nr; nr = per_cpu(nr_cpu_bp_pinned[type], cpu); if (!tsk) nr += max_task_bp_pinned(cpu, type); else nr += task_bp_pinned(bp, type); if (nr > slots->pinned) slots->pinned = nr; nr = per_cpu(nr_bp_flexible[type], cpu); if (nr > slots->flexible) slots->flexible = nr; } } /* * For now, continue to consider flexible as pinned, until we can * ensure no flexible event can ever be scheduled before a pinned event * in a same cpu. */ static void fetch_this_slot(struct bp_busy_slots *slots, int weight) { slots->pinned += weight; } /* * Add a pinned breakpoint for the given task in our constraint table */ static void toggle_bp_task_slot(struct perf_event *bp, int cpu, bool enable, enum bp_type_idx type, int weight) { unsigned int *tsk_pinned; int old_count = 0; int old_idx = 0; int idx = 0; old_count = task_bp_pinned(bp, type); old_idx = old_count - 1; idx = old_idx + weight; /* tsk_pinned[n] is the number of tasks having n breakpoints */ tsk_pinned = per_cpu(nr_task_bp_pinned[type], cpu); if (enable) { tsk_pinned[idx]++; if (old_count > 0) tsk_pinned[old_idx]--; } else { tsk_pinned[idx]--; if (old_count > 0) tsk_pinned[old_idx]++; } } /* * Add/remove the given breakpoint in our constraint table */ static void toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type, int weight) { int cpu = bp->cpu; struct task_struct *tsk = bp->ctx->task; /* Pinned counter cpu profiling */ if (!tsk) { if (enable) per_cpu(nr_cpu_bp_pinned[type], bp->cpu) += weight; else per_cpu(nr_cpu_bp_pinned[type], bp->cpu) -= weight; return; } /* Pinned counter task profiling */ if (!enable) list_del(&bp->hw.bp_list); if (cpu >= 0) { toggle_bp_task_slot(bp, cpu, enable, type, weight); } else { for_each_online_cpu(cpu) toggle_bp_task_slot(bp, cpu, enable, type, weight); } if (enable) list_add_tail(&bp->hw.bp_list, &bp_task_head); } /* * Function to perform processor-specific cleanup during unregistration */ __weak void arch_unregister_hw_breakpoint(struct perf_event *bp) { /* * A weak stub function here for those archs that don't define * it inside arch/.../kernel/hw_breakpoint.c */ } /* * Contraints to check before allowing this new breakpoint counter: * * == Non-pinned counter == (Considered as pinned for now) * * - If attached to a single cpu, check: * * (per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu) * + max(per_cpu(nr_task_bp_pinned, cpu)))) < HBP_NUM * * -> If there are already non-pinned counters in this cpu, it means * there is already a free slot for them. * Otherwise, we check that the maximum number of per task * breakpoints (for this cpu) plus the number of per cpu breakpoint * (for this cpu) doesn't cover every registers. * * - If attached to every cpus, check: * * (per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *)) * + max(per_cpu(nr_task_bp_pinned, *)))) < HBP_NUM * * -> This is roughly the same, except we check the number of per cpu * bp for every cpu and we keep the max one. Same for the per tasks * breakpoints. * * * == Pinned counter == * * - If attached to a single cpu, check: * * ((per_cpu(nr_bp_flexible, cpu) > 1) + per_cpu(nr_cpu_bp_pinned, cpu) * + max(per_cpu(nr_task_bp_pinned, cpu))) < HBP_NUM * * -> Same checks as before. But now the nr_bp_flexible, if any, must keep * one register at least (or they will never be fed). * * - If attached to every cpus, check: * * ((per_cpu(nr_bp_flexible, *) > 1) + max(per_cpu(nr_cpu_bp_pinned, *)) * + max(per_cpu(nr_task_bp_pinned, *))) < HBP_NUM */ static int __reserve_bp_slot(struct perf_event *bp) { struct bp_busy_slots slots = {0}; enum bp_type_idx type; int weight; /* We couldn't initialize breakpoint constraints on boot */ if (!constraints_initialized) return -ENOMEM; /* Basic checks */ if (bp->attr.bp_type == HW_BREAKPOINT_EMPTY || bp->attr.bp_type == HW_BREAKPOINT_INVALID) return -EINVAL; type = find_slot_idx(bp); weight = hw_breakpoint_weight(bp); fetch_bp_busy_slots(&slots, bp, type); /* * Simulate the addition of this breakpoint to the constraints * and see the result. */ fetch_this_slot(&slots, weight); /* Flexible counters need to keep at least one slot */ if (slots.pinned + (!!slots.flexible) > nr_slots[type]) return -ENOSPC; toggle_bp_slot(bp, true, type, weight); return 0; } int reserve_bp_slot(struct perf_event *bp) { int ret; mutex_lock(&nr_bp_mutex); ret = __reserve_bp_slot(bp); mutex_unlock(&nr_bp_mutex); return ret; } static void __release_bp_slot(struct perf_event *bp) { enum bp_type_idx type; int weight; type = find_slot_idx(bp); weight = hw_breakpoint_weight(bp); toggle_bp_slot(bp, false, type, weight); } void release_bp_slot(struct perf_event *bp) { mutex_lock(&nr_bp_mutex); arch_unregister_hw_breakpoint(bp); __release_bp_slot(bp); mutex_unlock(&nr_bp_mutex); } /* * Allow the kernel debugger to reserve breakpoint slots without * taking a lock using the dbg_* variant of for the reserve and * release breakpoint slots. */ int dbg_reserve_bp_slot(struct perf_event *bp) { if (mutex_is_locked(&nr_bp_mutex)) return -1; return __reserve_bp_slot(bp); } int dbg_release_bp_slot(struct perf_event *bp) { if (mutex_is_locked(&nr_bp_mutex)) return -1; __release_bp_slot(bp); return 0; } static int validate_hw_breakpoint(struct perf_event *bp) { int ret; ret = arch_validate_hwbkpt_settings(bp); if (ret) return ret; if (arch_check_bp_in_kernelspace(bp)) { if (bp->attr.exclude_kernel) return -EINVAL; /* * Don't let unprivileged users set a breakpoint in the trap * path to avoid trap recursion attacks. */ if (!capable(CAP_SYS_ADMIN)) return -EPERM; } return 0; } int register_perf_hw_breakpoint(struct perf_event *bp) { int ret; ret = reserve_bp_slot(bp); if (ret) return ret; ret = validate_hw_breakpoint(bp); /* if arch_validate_hwbkpt_settings() fails then release bp slot */ if (ret) release_bp_slot(bp); return ret; } /** * register_user_hw_breakpoint - register a hardware breakpoint for user space * @attr: breakpoint attributes * @triggered: callback to trigger when we hit the breakpoint * @tsk: pointer to 'task_struct' of the process to which the address belongs */ struct perf_event * register_user_hw_breakpoint(struct perf_event_attr *attr, perf_overflow_handler_t triggered, struct task_struct *tsk) { return perf_event_create_kernel_counter(attr, -1, tsk->pid, triggered); } EXPORT_SYMBOL_GPL(register_user_hw_breakpoint); /** * modify_user_hw_breakpoint - modify a user-space hardware breakpoint * @bp: the breakpoint structure to modify * @attr: new breakpoint attributes * @triggered: callback to trigger when we hit the breakpoint * @tsk: pointer to 'task_struct' of the process to which the address belongs */ int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr) { u64 old_addr = bp->attr.bp_addr; u64 old_len = bp->attr.bp_len; int old_type = bp->attr.bp_type; int err = 0; perf_event_disable(bp); bp->attr.bp_addr = attr->bp_addr; bp->attr.bp_type = attr->bp_type; bp->attr.bp_len = attr->bp_len; if (attr->disabled) goto end; err = validate_hw_breakpoint(bp); if (!err) perf_event_enable(bp); if (err) { bp->attr.bp_addr = old_addr; bp->attr.bp_type = old_type; bp->attr.bp_len = old_len; if (!bp->attr.disabled) perf_event_enable(bp); return err; } end: bp->attr.disabled = attr->disabled; return 0; } EXPORT_SYMBOL_GPL(modify_user_hw_breakpoint); /** * unregister_hw_breakpoint - unregister a user-space hardware breakpoint * @bp: the breakpoint structure to unregister */ void unregister_hw_breakpoint(struct perf_event *bp) { if (!bp) return; perf_event_release_kernel(bp); } EXPORT_SYMBOL_GPL(unregister_hw_breakpoint); /** * register_wide_hw_breakpoint - register a wide breakpoint in the kernel * @attr: breakpoint attributes * @triggered: callback to trigger when we hit the breakpoint * * @return a set of per_cpu pointers to perf events */ struct perf_event * __percpu * register_wide_hw_breakpoint(struct perf_event_attr *attr, perf_overflow_handler_t triggered) { struct perf_event * __percpu *cpu_events, **pevent, *bp; long err; int cpu; cpu_events = alloc_percpu(typeof(*cpu_events)); if (!cpu_events) return (void __percpu __force *)ERR_PTR(-ENOMEM); get_online_cpus(); for_each_online_cpu(cpu) { pevent = per_cpu_ptr(cpu_events, cpu); bp = perf_event_create_kernel_counter(attr, cpu, -1, triggered); *pevent = bp; if (IS_ERR(bp)) { err = PTR_ERR(bp); goto fail; } } put_online_cpus(); return cpu_events; fail: for_each_online_cpu(cpu) { pevent = per_cpu_ptr(cpu_events, cpu); if (IS_ERR(*pevent)) break; unregister_hw_breakpoint(*pevent); } put_online_cpus(); free_percpu(cpu_events); return (void __percpu __force *)ERR_PTR(err); } EXPORT_SYMBOL_GPL(register_wide_hw_breakpoint); /** * unregister_wide_hw_breakpoint - unregister a wide breakpoint in the kernel * @cpu_events: the per cpu set of events to unregister */ void unregister_wide_hw_breakpoint(struct perf_event * __percpu *cpu_events) { int cpu; struct perf_event **pevent; for_each_possible_cpu(cpu) { pevent = per_cpu_ptr(cpu_events, cpu); unregister_hw_breakpoint(*pevent); } free_percpu(cpu_events); } EXPORT_SYMBOL_GPL(unregister_wide_hw_breakpoint); static struct notifier_block hw_breakpoint_exceptions_nb = { .notifier_call = hw_breakpoint_exceptions_notify, /* we need to be notified first */ .priority = 0x7fffffff }; static void bp_perf_event_destroy(struct perf_event *event) { release_bp_slot(event); } static int hw_breakpoint_event_init(struct perf_event *bp) { int err; if (bp->attr.type != PERF_TYPE_BREAKPOINT) return -ENOENT; err = register_perf_hw_breakpoint(bp); if (err) return err; bp->destroy = bp_perf_event_destroy; return 0; } static struct pmu perf_breakpoint = { .event_init = hw_breakpoint_event_init, .enable = arch_install_hw_breakpoint, .disable = arch_uninstall_hw_breakpoint, .read = hw_breakpoint_pmu_read, }; static int __init init_hw_breakpoint(void) { unsigned int **task_bp_pinned; int cpu, err_cpu; int i; for (i = 0; i < TYPE_MAX; i++) nr_slots[i] = hw_breakpoint_slots(i); for_each_possible_cpu(cpu) { for (i = 0; i < TYPE_MAX; i++) { task_bp_pinned = &per_cpu(nr_task_bp_pinned[i], cpu); *task_bp_pinned = kzalloc(sizeof(int) * nr_slots[i], GFP_KERNEL); if (!*task_bp_pinned) goto err_alloc; } } constraints_initialized = 1; perf_pmu_register(&perf_breakpoint); return register_die_notifier(&hw_breakpoint_exceptions_nb); err_alloc: for_each_possible_cpu(err_cpu) { if (err_cpu == cpu) break; for (i = 0; i < TYPE_MAX; i++) kfree(per_cpu(nr_task_bp_pinned[i], cpu)); } return -ENOMEM; } core_initcall(init_hw_breakpoint);