/* * Linux NET3: GRE over IP protocol decoder. * * Authors: Alexey Kuznetsov (kuznet@ms2.inr.ac.ru) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_IPV6 #include #include #include #endif /* Problems & solutions -------------------- 1. The most important issue is detecting local dead loops. They would cause complete host lockup in transmit, which would be "resolved" by stack overflow or, if queueing is enabled, with infinite looping in net_bh. We cannot track such dead loops during route installation, it is infeasible task. The most general solutions would be to keep skb->encapsulation counter (sort of local ttl), and silently drop packet when it expires. It is the best solution, but it supposes maintaing new variable in ALL skb, even if no tunneling is used. Current solution: HARD_TX_LOCK lock breaks dead loops. 2. Networking dead loops would not kill routers, but would really kill network. IP hop limit plays role of "t->recursion" in this case, if we copy it from packet being encapsulated to upper header. It is very good solution, but it introduces two problems: - Routing protocols, using packets with ttl=1 (OSPF, RIP2), do not work over tunnels. - traceroute does not work. I planned to relay ICMP from tunnel, so that this problem would be solved and traceroute output would even more informative. This idea appeared to be wrong: only Linux complies to rfc1812 now (yes, guys, Linux is the only true router now :-)), all routers (at least, in neighbourhood of mine) return only 8 bytes of payload. It is the end. Hence, if we want that OSPF worked or traceroute said something reasonable, we should search for another solution. One of them is to parse packet trying to detect inner encapsulation made by our node. It is difficult or even impossible, especially, taking into account fragmentation. TO be short, tt is not solution at all. Current solution: The solution was UNEXPECTEDLY SIMPLE. We force DF flag on tunnels with preconfigured hop limit, that is ALL. :-) Well, it does not remove the problem completely, but exponential growth of network traffic is changed to linear (branches, that exceed pmtu are pruned) and tunnel mtu fastly degrades to value <68, where looping stops. Yes, it is not good if there exists a router in the loop, which does not force DF, even when encapsulating packets have DF set. But it is not our problem! Nobody could accuse us, we made all that we could make. Even if it is your gated who injected fatal route to network, even if it were you who configured fatal static route: you are innocent. :-) 3. Really, ipv4/ipip.c, ipv4/ip_gre.c and ipv6/sit.c contain practically identical code. It would be good to glue them together, but it is not very evident, how to make them modular. sit is integral part of IPv6, ipip and gre are naturally modular. We could extract common parts (hash table, ioctl etc) to a separate module (ip_tunnel.c). Alexey Kuznetsov. */ static struct rtnl_link_ops ipgre_link_ops __read_mostly; static int ipgre_tunnel_init(struct net_device *dev); static void ipgre_tunnel_setup(struct net_device *dev); static int ipgre_tunnel_bind_dev(struct net_device *dev); /* Fallback tunnel: no source, no destination, no key, no options */ #define HASH_SIZE 16 static int ipgre_net_id __read_mostly; struct ipgre_net { struct ip_tunnel *tunnels[4][HASH_SIZE]; struct net_device *fb_tunnel_dev; }; /* Tunnel hash table */ /* 4 hash tables: 3: (remote,local) 2: (remote,*) 1: (*,local) 0: (*,*) We require exact key match i.e. if a key is present in packet it will match only tunnel with the same key; if it is not present, it will match only keyless tunnel. All keysless packets, if not matched configured keyless tunnels will match fallback tunnel. */ #define HASH(addr) (((__force u32)addr^((__force u32)addr>>4))&0xF) #define tunnels_r_l tunnels[3] #define tunnels_r tunnels[2] #define tunnels_l tunnels[1] #define tunnels_wc tunnels[0] /* * Locking : hash tables are protected by RCU and a spinlock */ static DEFINE_SPINLOCK(ipgre_lock); #define for_each_ip_tunnel_rcu(start) \ for (t = rcu_dereference(start); t; t = rcu_dereference(t->next)) /* Given src, dst and key, find appropriate for input tunnel. */ static struct ip_tunnel * ipgre_tunnel_lookup(struct net_device *dev, __be32 remote, __be32 local, __be32 key, __be16 gre_proto) { struct net *net = dev_net(dev); int link = dev->ifindex; unsigned h0 = HASH(remote); unsigned h1 = HASH(key); struct ip_tunnel *t, *cand = NULL; struct ipgre_net *ign = net_generic(net, ipgre_net_id); int dev_type = (gre_proto == htons(ETH_P_TEB)) ? ARPHRD_ETHER : ARPHRD_IPGRE; int score, cand_score = 4; for_each_ip_tunnel_rcu(ign->tunnels_r_l[h0 ^ h1]) { if (local != t->parms.iph.saddr || remote != t->parms.iph.daddr || key != t->parms.i_key || !(t->dev->flags & IFF_UP)) continue; if (t->dev->type != ARPHRD_IPGRE && t->dev->type != dev_type) continue; score = 0; if (t->parms.link != link) score |= 1; if (t->dev->type != dev_type) score |= 2; if (score == 0) return t; if (score < cand_score) { cand = t; cand_score = score; } } for_each_ip_tunnel_rcu(ign->tunnels_r[h0 ^ h1]) { if (remote != t->parms.iph.daddr || key != t->parms.i_key || !(t->dev->flags & IFF_UP)) continue; if (t->dev->type != ARPHRD_IPGRE && t->dev->type != dev_type) continue; score = 0; if (t->parms.link != link) score |= 1; if (t->dev->type != dev_type) score |= 2; if (score == 0) return t; if (score < cand_score) { cand = t; cand_score = score; } } for_each_ip_tunnel_rcu(ign->tunnels_l[h1]) { if ((local != t->parms.iph.saddr && (local != t->parms.iph.daddr || !ipv4_is_multicast(local))) || key != t->parms.i_key || !(t->dev->flags & IFF_UP)) continue; if (t->dev->type != ARPHRD_IPGRE && t->dev->type != dev_type) continue; score = 0; if (t->parms.link != link) score |= 1; if (t->dev->type != dev_type) score |= 2; if (score == 0) return t; if (score < cand_score) { cand = t; cand_score = score; } } for_each_ip_tunnel_rcu(ign->tunnels_wc[h1]) { if (t->parms.i_key != key || !(t->dev->flags & IFF_UP)) continue; if (t->dev->type != ARPHRD_IPGRE && t->dev->type != dev_type) continue; score = 0; if (t->parms.link != link) score |= 1; if (t->dev->type != dev_type) score |= 2; if (score == 0) return t; if (score < cand_score) { cand = t; cand_score = score; } } if (cand != NULL) return cand; dev = ign->fb_tunnel_dev; if (dev->flags & IFF_UP) return netdev_priv(dev); return NULL; } static struct ip_tunnel **__ipgre_bucket(struct ipgre_net *ign, struct ip_tunnel_parm *parms) { __be32 remote = parms->iph.daddr; __be32 local = parms->iph.saddr; __be32 key = parms->i_key; unsigned h = HASH(key); int prio = 0; if (local) prio |= 1; if (remote && !ipv4_is_multicast(remote)) { prio |= 2; h ^= HASH(remote); } return &ign->tunnels[prio][h]; } static inline struct ip_tunnel **ipgre_bucket(struct ipgre_net *ign, struct ip_tunnel *t) { return __ipgre_bucket(ign, &t->parms); } static void ipgre_tunnel_link(struct ipgre_net *ign, struct ip_tunnel *t) { struct ip_tunnel **tp = ipgre_bucket(ign, t); spin_lock_bh(&ipgre_lock); t->next = *tp; rcu_assign_pointer(*tp, t); spin_unlock_bh(&ipgre_lock); } static void ipgre_tunnel_unlink(struct ipgre_net *ign, struct ip_tunnel *t) { struct ip_tunnel **tp; for (tp = ipgre_bucket(ign, t); *tp; tp = &(*tp)->next) { if (t == *tp) { spin_lock_bh(&ipgre_lock); *tp = t->next; spin_unlock_bh(&ipgre_lock); break; } } } static struct ip_tunnel *ipgre_tunnel_find(struct net *net, struct ip_tunnel_parm *parms, int type) { __be32 remote = parms->iph.daddr; __be32 local = parms->iph.saddr; __be32 key = parms->i_key; int link = parms->link; struct ip_tunnel *t, **tp; struct ipgre_net *ign = net_generic(net, ipgre_net_id); for (tp = __ipgre_bucket(ign, parms); (t = *tp) != NULL; tp = &t->next) if (local == t->parms.iph.saddr && remote == t->parms.iph.daddr && key == t->parms.i_key && link == t->parms.link && type == t->dev->type) break; return t; } static struct ip_tunnel * ipgre_tunnel_locate(struct net *net, struct ip_tunnel_parm *parms, int create) { struct ip_tunnel *t, *nt; struct net_device *dev; char name[IFNAMSIZ]; struct ipgre_net *ign = net_generic(net, ipgre_net_id); t = ipgre_tunnel_find(net, parms, ARPHRD_IPGRE); if (t || !create) return t; if (parms->name[0]) strlcpy(name, parms->name, IFNAMSIZ); else sprintf(name, "gre%%d"); dev = alloc_netdev(sizeof(*t), name, ipgre_tunnel_setup); if (!dev) return NULL; dev_net_set(dev, net); if (strchr(name, '%')) { if (dev_alloc_name(dev, name) < 0) goto failed_free; } nt = netdev_priv(dev); nt->parms = *parms; dev->rtnl_link_ops = &ipgre_link_ops; dev->mtu = ipgre_tunnel_bind_dev(dev); if (register_netdevice(dev) < 0) goto failed_free; dev_hold(dev); ipgre_tunnel_link(ign, nt); return nt; failed_free: free_netdev(dev); return NULL; } static void ipgre_tunnel_uninit(struct net_device *dev) { struct net *net = dev_net(dev); struct ipgre_net *ign = net_generic(net, ipgre_net_id); ipgre_tunnel_unlink(ign, netdev_priv(dev)); dev_put(dev); } static void ipgre_err(struct sk_buff *skb, u32 info) { /* All the routers (except for Linux) return only 8 bytes of packet payload. It means, that precise relaying of ICMP in the real Internet is absolutely infeasible. Moreover, Cisco "wise men" put GRE key to the third word in GRE header. It makes impossible maintaining even soft state for keyed GRE tunnels with enabled checksum. Tell them "thank you". Well, I wonder, rfc1812 was written by Cisco employee, what the hell these idiots break standrads established by themself??? */ struct iphdr *iph = (struct iphdr *)skb->data; __be16 *p = (__be16*)(skb->data+(iph->ihl<<2)); int grehlen = (iph->ihl<<2) + 4; const int type = icmp_hdr(skb)->type; const int code = icmp_hdr(skb)->code; struct ip_tunnel *t; __be16 flags; flags = p[0]; if (flags&(GRE_CSUM|GRE_KEY|GRE_SEQ|GRE_ROUTING|GRE_VERSION)) { if (flags&(GRE_VERSION|GRE_ROUTING)) return; if (flags&GRE_KEY) { grehlen += 4; if (flags&GRE_CSUM) grehlen += 4; } } /* If only 8 bytes returned, keyed message will be dropped here */ if (skb_headlen(skb) < grehlen) return; switch (type) { default: case ICMP_PARAMETERPROB: return; case ICMP_DEST_UNREACH: switch (code) { case ICMP_SR_FAILED: case ICMP_PORT_UNREACH: /* Impossible event. */ return; case ICMP_FRAG_NEEDED: /* Soft state for pmtu is maintained by IP core. */ return; default: /* All others are translated to HOST_UNREACH. rfc2003 contains "deep thoughts" about NET_UNREACH, I believe they are just ether pollution. --ANK */ break; } break; case ICMP_TIME_EXCEEDED: if (code != ICMP_EXC_TTL) return; break; } rcu_read_lock(); t = ipgre_tunnel_lookup(skb->dev, iph->daddr, iph->saddr, flags & GRE_KEY ? *(((__be32 *)p) + (grehlen / 4) - 1) : 0, p[1]); if (t == NULL || t->parms.iph.daddr == 0 || ipv4_is_multicast(t->parms.iph.daddr)) goto out; if (t->parms.iph.ttl == 0 && type == ICMP_TIME_EXCEEDED) goto out; if (time_before(jiffies, t->err_time + IPTUNNEL_ERR_TIMEO)) t->err_count++; else t->err_count = 1; t->err_time = jiffies; out: rcu_read_unlock(); return; } static inline void ipgre_ecn_decapsulate(struct iphdr *iph, struct sk_buff *skb) { if (INET_ECN_is_ce(iph->tos)) { if (skb->protocol == htons(ETH_P_IP)) { IP_ECN_set_ce(ip_hdr(skb)); } else if (skb->protocol == htons(ETH_P_IPV6)) { IP6_ECN_set_ce(ipv6_hdr(skb)); } } } static inline u8 ipgre_ecn_encapsulate(u8 tos, struct iphdr *old_iph, struct sk_buff *skb) { u8 inner = 0; if (skb->protocol == htons(ETH_P_IP)) inner = old_iph->tos; else if (skb->protocol == htons(ETH_P_IPV6)) inner = ipv6_get_dsfield((struct ipv6hdr *)old_iph); return INET_ECN_encapsulate(tos, inner); } static int ipgre_rcv(struct sk_buff *skb) { struct iphdr *iph; u8 *h; __be16 flags; __sum16 csum = 0; __be32 key = 0; u32 seqno = 0; struct ip_tunnel *tunnel; int offset = 4; __be16 gre_proto; if (!pskb_may_pull(skb, 16)) goto drop_nolock; iph = ip_hdr(skb); h = skb->data; flags = *(__be16*)h; if (flags&(GRE_CSUM|GRE_KEY|GRE_ROUTING|GRE_SEQ|GRE_VERSION)) { /* - Version must be 0. - We do not support routing headers. */ if (flags&(GRE_VERSION|GRE_ROUTING)) goto drop_nolock; if (flags&GRE_CSUM) { switch (skb->ip_summed) { case CHECKSUM_COMPLETE: csum = csum_fold(skb->csum); if (!csum) break; /* fall through */ case CHECKSUM_NONE: skb->csum = 0; csum = __skb_checksum_complete(skb); skb->ip_summed = CHECKSUM_COMPLETE; } offset += 4; } if (flags&GRE_KEY) { key = *(__be32*)(h + offset); offset += 4; } if (flags&GRE_SEQ) { seqno = ntohl(*(__be32*)(h + offset)); offset += 4; } } gre_proto = *(__be16 *)(h + 2); rcu_read_lock(); if ((tunnel = ipgre_tunnel_lookup(skb->dev, iph->saddr, iph->daddr, key, gre_proto))) { struct net_device_stats *stats = &tunnel->dev->stats; secpath_reset(skb); skb->protocol = gre_proto; /* WCCP version 1 and 2 protocol decoding. * - Change protocol to IP * - When dealing with WCCPv2, Skip extra 4 bytes in GRE header */ if (flags == 0 && gre_proto == htons(ETH_P_WCCP)) { skb->protocol = htons(ETH_P_IP); if ((*(h + offset) & 0xF0) != 0x40) offset += 4; } skb->mac_header = skb->network_header; __pskb_pull(skb, offset); skb_postpull_rcsum(skb, skb_transport_header(skb), offset); skb->pkt_type = PACKET_HOST; #ifdef CONFIG_NET_IPGRE_BROADCAST if (ipv4_is_multicast(iph->daddr)) { /* Looped back packet, drop it! */ if (skb_rtable(skb)->fl.iif == 0) goto drop; stats->multicast++; skb->pkt_type = PACKET_BROADCAST; } #endif if (((flags&GRE_CSUM) && csum) || (!(flags&GRE_CSUM) && tunnel->parms.i_flags&GRE_CSUM)) { stats->rx_crc_errors++; stats->rx_errors++; goto drop; } if (tunnel->parms.i_flags&GRE_SEQ) { if (!(flags&GRE_SEQ) || (tunnel->i_seqno && (s32)(seqno - tunnel->i_seqno) < 0)) { stats->rx_fifo_errors++; stats->rx_errors++; goto drop; } tunnel->i_seqno = seqno + 1; } /* Warning: All skb pointers will be invalidated! */ if (tunnel->dev->type == ARPHRD_ETHER) { if (!pskb_may_pull(skb, ETH_HLEN)) { stats->rx_length_errors++; stats->rx_errors++; goto drop; } iph = ip_hdr(skb); skb->protocol = eth_type_trans(skb, tunnel->dev); skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); } skb_tunnel_rx(skb, tunnel->dev); skb_reset_network_header(skb); ipgre_ecn_decapsulate(iph, skb); netif_rx(skb); rcu_read_unlock(); return(0); } icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); drop: rcu_read_unlock(); drop_nolock: kfree_skb(skb); return(0); } static netdev_tx_t ipgre_tunnel_xmit(struct sk_buff *skb, struct net_device *dev) { struct ip_tunnel *tunnel = netdev_priv(dev); struct net_device_stats *stats = &dev->stats; struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); struct iphdr *old_iph = ip_hdr(skb); struct iphdr *tiph; u8 tos; __be16 df; struct rtable *rt; /* Route to the other host */ struct net_device *tdev; /* Device to other host */ struct iphdr *iph; /* Our new IP header */ unsigned int max_headroom; /* The extra header space needed */ int gre_hlen; __be32 dst; int mtu; if (dev->type == ARPHRD_ETHER) IPCB(skb)->flags = 0; if (dev->header_ops && dev->type == ARPHRD_IPGRE) { gre_hlen = 0; tiph = (struct iphdr *)skb->data; } else { gre_hlen = tunnel->hlen; tiph = &tunnel->parms.iph; } if ((dst = tiph->daddr) == 0) { /* NBMA tunnel */ if (skb_dst(skb) == NULL) { stats->tx_fifo_errors++; goto tx_error; } if (skb->protocol == htons(ETH_P_IP)) { rt = skb_rtable(skb); if ((dst = rt->rt_gateway) == 0) goto tx_error_icmp; } #ifdef CONFIG_IPV6 else if (skb->protocol == htons(ETH_P_IPV6)) { struct in6_addr *addr6; int addr_type; struct neighbour *neigh = skb_dst(skb)->neighbour; if (neigh == NULL) goto tx_error; addr6 = (struct in6_addr *)&neigh->primary_key; addr_type = ipv6_addr_type(addr6); if (addr_type == IPV6_ADDR_ANY) { addr6 = &ipv6_hdr(skb)->daddr; addr_type = ipv6_addr_type(addr6); } if ((addr_type & IPV6_ADDR_COMPATv4) == 0) goto tx_error_icmp; dst = addr6->s6_addr32[3]; } #endif else goto tx_error; } tos = tiph->tos; if (tos == 1) { tos = 0; if (skb->protocol == htons(ETH_P_IP)) tos = old_iph->tos; } { struct flowi fl = { .oif = tunnel->parms.link, .nl_u = { .ip4_u = { .daddr = dst, .saddr = tiph->saddr, .tos = RT_TOS(tos) } }, .proto = IPPROTO_GRE }; if (ip_route_output_key(dev_net(dev), &rt, &fl)) { stats->tx_carrier_errors++; goto tx_error; } } tdev = rt->u.dst.dev; if (tdev == dev) { ip_rt_put(rt); stats->collisions++; goto tx_error; } df = tiph->frag_off; if (df) mtu = dst_mtu(&rt->u.dst) - dev->hard_header_len - tunnel->hlen; else mtu = skb_dst(skb) ? dst_mtu(skb_dst(skb)) : dev->mtu; if (skb_dst(skb)) skb_dst(skb)->ops->update_pmtu(skb_dst(skb), mtu); if (skb->protocol == htons(ETH_P_IP)) { df |= (old_iph->frag_off&htons(IP_DF)); if ((old_iph->frag_off&htons(IP_DF)) && mtu < ntohs(old_iph->tot_len)) { icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, htonl(mtu)); ip_rt_put(rt); goto tx_error; } } #ifdef CONFIG_IPV6 else if (skb->protocol == htons(ETH_P_IPV6)) { struct rt6_info *rt6 = (struct rt6_info *)skb_dst(skb); if (rt6 && mtu < dst_mtu(skb_dst(skb)) && mtu >= IPV6_MIN_MTU) { if ((tunnel->parms.iph.daddr && !ipv4_is_multicast(tunnel->parms.iph.daddr)) || rt6->rt6i_dst.plen == 128) { rt6->rt6i_flags |= RTF_MODIFIED; skb_dst(skb)->metrics[RTAX_MTU-1] = mtu; } } if (mtu >= IPV6_MIN_MTU && mtu < skb->len - tunnel->hlen + gre_hlen) { icmpv6_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu); ip_rt_put(rt); goto tx_error; } } #endif if (tunnel->err_count > 0) { if (time_before(jiffies, tunnel->err_time + IPTUNNEL_ERR_TIMEO)) { tunnel->err_count--; dst_link_failure(skb); } else tunnel->err_count = 0; } max_headroom = LL_RESERVED_SPACE(tdev) + gre_hlen + rt->u.dst.header_len; if (skb_headroom(skb) < max_headroom || skb_shared(skb)|| (skb_cloned(skb) && !skb_clone_writable(skb, 0))) { struct sk_buff *new_skb = skb_realloc_headroom(skb, max_headroom); if (max_headroom > dev->needed_headroom) dev->needed_headroom = max_headroom; if (!new_skb) { ip_rt_put(rt); txq->tx_dropped++; dev_kfree_skb(skb); return NETDEV_TX_OK; } if (skb->sk) skb_set_owner_w(new_skb, skb->sk); dev_kfree_skb(skb); skb = new_skb; old_iph = ip_hdr(skb); } skb_reset_transport_header(skb); skb_push(skb, gre_hlen); skb_reset_network_header(skb); memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); IPCB(skb)->flags &= ~(IPSKB_XFRM_TUNNEL_SIZE | IPSKB_XFRM_TRANSFORMED | IPSKB_REROUTED); skb_dst_drop(skb); skb_dst_set(skb, &rt->u.dst); /* * Push down and install the IPIP header. */ iph = ip_hdr(skb); iph->version = 4; iph->ihl = sizeof(struct iphdr) >> 2; iph->frag_off = df; iph->protocol = IPPROTO_GRE; iph->tos = ipgre_ecn_encapsulate(tos, old_iph, skb); iph->daddr = rt->rt_dst; iph->saddr = rt->rt_src; if ((iph->ttl = tiph->ttl) == 0) { if (skb->protocol == htons(ETH_P_IP)) iph->ttl = old_iph->ttl; #ifdef CONFIG_IPV6 else if (skb->protocol == htons(ETH_P_IPV6)) iph->ttl = ((struct ipv6hdr *)old_iph)->hop_limit; #endif else iph->ttl = dst_metric(&rt->u.dst, RTAX_HOPLIMIT); } ((__be16 *)(iph + 1))[0] = tunnel->parms.o_flags; ((__be16 *)(iph + 1))[1] = (dev->type == ARPHRD_ETHER) ? htons(ETH_P_TEB) : skb->protocol; if (tunnel->parms.o_flags&(GRE_KEY|GRE_CSUM|GRE_SEQ)) { __be32 *ptr = (__be32*)(((u8*)iph) + tunnel->hlen - 4); if (tunnel->parms.o_flags&GRE_SEQ) { ++tunnel->o_seqno; *ptr = htonl(tunnel->o_seqno); ptr--; } if (tunnel->parms.o_flags&GRE_KEY) { *ptr = tunnel->parms.o_key; ptr--; } if (tunnel->parms.o_flags&GRE_CSUM) { *ptr = 0; *(__sum16*)ptr = ip_compute_csum((void*)(iph+1), skb->len - sizeof(struct iphdr)); } } nf_reset(skb); IPTUNNEL_XMIT(); return NETDEV_TX_OK; tx_error_icmp: dst_link_failure(skb); tx_error: stats->tx_errors++; dev_kfree_skb(skb); return NETDEV_TX_OK; } static int ipgre_tunnel_bind_dev(struct net_device *dev) { struct net_device *tdev = NULL; struct ip_tunnel *tunnel; struct iphdr *iph; int hlen = LL_MAX_HEADER; int mtu = ETH_DATA_LEN; int addend = sizeof(struct iphdr) + 4; tunnel = netdev_priv(dev); iph = &tunnel->parms.iph; /* Guess output device to choose reasonable mtu and needed_headroom */ if (iph->daddr) { struct flowi fl = { .oif = tunnel->parms.link, .nl_u = { .ip4_u = { .daddr = iph->daddr, .saddr = iph->saddr, .tos = RT_TOS(iph->tos) } }, .proto = IPPROTO_GRE }; struct rtable *rt; if (!ip_route_output_key(dev_net(dev), &rt, &fl)) { tdev = rt->u.dst.dev; ip_rt_put(rt); } if (dev->type != ARPHRD_ETHER) dev->flags |= IFF_POINTOPOINT; } if (!tdev && tunnel->parms.link) tdev = __dev_get_by_index(dev_net(dev), tunnel->parms.link); if (tdev) { hlen = tdev->hard_header_len + tdev->needed_headroom; mtu = tdev->mtu; } dev->iflink = tunnel->parms.link; /* Precalculate GRE options length */ if (tunnel->parms.o_flags&(GRE_CSUM|GRE_KEY|GRE_SEQ)) { if (tunnel->parms.o_flags&GRE_CSUM) addend += 4; if (tunnel->parms.o_flags&GRE_KEY) addend += 4; if (tunnel->parms.o_flags&GRE_SEQ) addend += 4; } dev->needed_headroom = addend + hlen; mtu -= dev->hard_header_len + addend; if (mtu < 68) mtu = 68; tunnel->hlen = addend; return mtu; } static int ipgre_tunnel_ioctl (struct net_device *dev, struct ifreq *ifr, int cmd) { int err = 0; struct ip_tunnel_parm p; struct ip_tunnel *t; struct net *net = dev_net(dev); struct ipgre_net *ign = net_generic(net, ipgre_net_id); switch (cmd) { case SIOCGETTUNNEL: t = NULL; if (dev == ign->fb_tunnel_dev) { if (copy_from_user(&p, ifr->ifr_ifru.ifru_data, sizeof(p))) { err = -EFAULT; break; } t = ipgre_tunnel_locate(net, &p, 0); } if (t == NULL) t = netdev_priv(dev); memcpy(&p, &t->parms, sizeof(p)); if (copy_to_user(ifr->ifr_ifru.ifru_data, &p, sizeof(p))) err = -EFAULT; break; case SIOCADDTUNNEL: case SIOCCHGTUNNEL: err = -EPERM; if (!capable(CAP_NET_ADMIN)) goto done; err = -EFAULT; if (copy_from_user(&p, ifr->ifr_ifru.ifru_data, sizeof(p))) goto done; err = -EINVAL; if (p.iph.version != 4 || p.iph.protocol != IPPROTO_GRE || p.iph.ihl != 5 || (p.iph.frag_off&htons(~IP_DF)) || ((p.i_flags|p.o_flags)&(GRE_VERSION|GRE_ROUTING))) goto done; if (p.iph.ttl) p.iph.frag_off |= htons(IP_DF); if (!(p.i_flags&GRE_KEY)) p.i_key = 0; if (!(p.o_flags&GRE_KEY)) p.o_key = 0; t = ipgre_tunnel_locate(net, &p, cmd == SIOCADDTUNNEL); if (dev != ign->fb_tunnel_dev && cmd == SIOCCHGTUNNEL) { if (t != NULL) { if (t->dev != dev) { err = -EEXIST; break; } } else { unsigned nflags = 0; t = netdev_priv(dev); if (ipv4_is_multicast(p.iph.daddr)) nflags = IFF_BROADCAST; else if (p.iph.daddr) nflags = IFF_POINTOPOINT; if ((dev->flags^nflags)&(IFF_POINTOPOINT|IFF_BROADCAST)) { err = -EINVAL; break; } ipgre_tunnel_unlink(ign, t); t->parms.iph.saddr = p.iph.saddr; t->parms.iph.daddr = p.iph.daddr; t->parms.i_key = p.i_key; t->parms.o_key = p.o_key; memcpy(dev->dev_addr, &p.iph.saddr, 4); memcpy(dev->broadcast, &p.iph.daddr, 4); ipgre_tunnel_link(ign, t); netdev_state_change(dev); } } if (t) { err = 0; if (cmd == SIOCCHGTUNNEL) { t->parms.iph.ttl = p.iph.ttl; t->parms.iph.tos = p.iph.tos; t->parms.iph.frag_off = p.iph.frag_off; if (t->parms.link != p.link) { t->parms.link = p.link; dev->mtu = ipgre_tunnel_bind_dev(dev); netdev_state_change(dev); } } if (copy_to_user(ifr->ifr_ifru.ifru_data, &t->parms, sizeof(p))) err = -EFAULT; } else err = (cmd == SIOCADDTUNNEL ? -ENOBUFS : -ENOENT); break; case SIOCDELTUNNEL: err = -EPERM; if (!capable(CAP_NET_ADMIN)) goto done; if (dev == ign->fb_tunnel_dev) { err = -EFAULT; if (copy_from_user(&p, ifr->ifr_ifru.ifru_data, sizeof(p))) goto done; err = -ENOENT; if ((t = ipgre_tunnel_locate(net, &p, 0)) == NULL) goto done; err = -EPERM; if (t == netdev_priv(ign->fb_tunnel_dev)) goto done; dev = t->dev; } unregister_netdevice(dev); err = 0; break; default: err = -EINVAL; } done: return err; } static int ipgre_tunnel_change_mtu(struct net_device *dev, int new_mtu) { struct ip_tunnel *tunnel = netdev_priv(dev); if (new_mtu < 68 || new_mtu > 0xFFF8 - dev->hard_header_len - tunnel->hlen) return -EINVAL; dev->mtu = new_mtu; return 0; } /* Nice toy. Unfortunately, useless in real life :-) It allows to construct virtual multiprotocol broadcast "LAN" over the Internet, provided multicast routing is tuned. I have no idea was this bicycle invented before me, so that I had to set ARPHRD_IPGRE to a random value. I have an impression, that Cisco could make something similar, but this feature is apparently missing in IOS<=11.2(8). I set up 10.66.66/24 and fec0:6666:6666::0/96 as virtual networks with broadcast 224.66.66.66. If you have access to mbone, play with me :-) ping -t 255 224.66.66.66 If nobody answers, mbone does not work. ip tunnel add Universe mode gre remote 224.66.66.66 local ttl 255 ip addr add 10.66.66./24 dev Universe ifconfig Universe up ifconfig Universe add fe80::/10 ifconfig Universe add fec0:6666:6666::/96 ftp 10.66.66.66 ... ftp fec0:6666:6666::193.233.7.65 ... */ static int ipgre_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned len) { struct ip_tunnel *t = netdev_priv(dev); struct iphdr *iph = (struct iphdr *)skb_push(skb, t->hlen); __be16 *p = (__be16*)(iph+1); memcpy(iph, &t->parms.iph, sizeof(struct iphdr)); p[0] = t->parms.o_flags; p[1] = htons(type); /* * Set the source hardware address. */ if (saddr) memcpy(&iph->saddr, saddr, 4); if (daddr) memcpy(&iph->daddr, daddr, 4); if (iph->daddr) return t->hlen; return -t->hlen; } static int ipgre_header_parse(const struct sk_buff *skb, unsigned char *haddr) { struct iphdr *iph = (struct iphdr *) skb_mac_header(skb); memcpy(haddr, &iph->saddr, 4); return 4; } static const struct header_ops ipgre_header_ops = { .create = ipgre_header, .parse = ipgre_header_parse, }; #ifdef CONFIG_NET_IPGRE_BROADCAST static int ipgre_open(struct net_device *dev) { struct ip_tunnel *t = netdev_priv(dev); if (ipv4_is_multicast(t->parms.iph.daddr)) { struct flowi fl = { .oif = t->parms.link, .nl_u = { .ip4_u = { .daddr = t->parms.iph.daddr, .saddr = t->parms.iph.saddr, .tos = RT_TOS(t->parms.iph.tos) } }, .proto = IPPROTO_GRE }; struct rtable *rt; if (ip_route_output_key(dev_net(dev), &rt, &fl)) return -EADDRNOTAVAIL; dev = rt->u.dst.dev; ip_rt_put(rt); if (__in_dev_get_rtnl(dev) == NULL) return -EADDRNOTAVAIL; t->mlink = dev->ifindex; ip_mc_inc_group(__in_dev_get_rtnl(dev), t->parms.iph.daddr); } return 0; } static int ipgre_close(struct net_device *dev) { struct ip_tunnel *t = netdev_priv(dev); if (ipv4_is_multicast(t->parms.iph.daddr) && t->mlink) { struct in_device *in_dev; in_dev = inetdev_by_index(dev_net(dev), t->mlink); if (in_dev) { ip_mc_dec_group(in_dev, t->parms.iph.daddr); in_dev_put(in_dev); } } return 0; } #endif static const struct net_device_ops ipgre_netdev_ops = { .ndo_init = ipgre_tunnel_init, .ndo_uninit = ipgre_tunnel_uninit, #ifdef CONFIG_NET_IPGRE_BROADCAST .ndo_open = ipgre_open, .ndo_stop = ipgre_close, #endif .ndo_start_xmit = ipgre_tunnel_xmit, .ndo_do_ioctl = ipgre_tunnel_ioctl, .ndo_change_mtu = ipgre_tunnel_change_mtu, }; static void ipgre_tunnel_setup(struct net_device *dev) { dev->netdev_ops = &ipgre_netdev_ops; dev->destructor = free_netdev; dev->type = ARPHRD_IPGRE; dev->needed_headroom = LL_MAX_HEADER + sizeof(struct iphdr) + 4; dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 4; dev->flags = IFF_NOARP; dev->iflink = 0; dev->addr_len = 4; dev->features |= NETIF_F_NETNS_LOCAL; dev->priv_flags &= ~IFF_XMIT_DST_RELEASE; } static int ipgre_tunnel_init(struct net_device *dev) { struct ip_tunnel *tunnel; struct iphdr *iph; tunnel = netdev_priv(dev); iph = &tunnel->parms.iph; tunnel->dev = dev; strcpy(tunnel->parms.name, dev->name); memcpy(dev->dev_addr, &tunnel->parms.iph.saddr, 4); memcpy(dev->broadcast, &tunnel->parms.iph.daddr, 4); if (iph->daddr) { #ifdef CONFIG_NET_IPGRE_BROADCAST if (ipv4_is_multicast(iph->daddr)) { if (!iph->saddr) return -EINVAL; dev->flags = IFF_BROADCAST; dev->header_ops = &ipgre_header_ops; } #endif } else dev->header_ops = &ipgre_header_ops; return 0; } static void ipgre_fb_tunnel_init(struct net_device *dev) { struct ip_tunnel *tunnel = netdev_priv(dev); struct iphdr *iph = &tunnel->parms.iph; struct ipgre_net *ign = net_generic(dev_net(dev), ipgre_net_id); tunnel->dev = dev; strcpy(tunnel->parms.name, dev->name); iph->version = 4; iph->protocol = IPPROTO_GRE; iph->ihl = 5; tunnel->hlen = sizeof(struct iphdr) + 4; dev_hold(dev); ign->tunnels_wc[0] = tunnel; } static const struct net_protocol ipgre_protocol = { .handler = ipgre_rcv, .err_handler = ipgre_err, .netns_ok = 1, }; static void ipgre_destroy_tunnels(struct ipgre_net *ign, struct list_head *head) { int prio; for (prio = 0; prio < 4; prio++) { int h; for (h = 0; h < HASH_SIZE; h++) { struct ip_tunnel *t = ign->tunnels[prio][h]; while (t != NULL) { unregister_netdevice_queue(t->dev, head); t = t->next; } } } } static int __net_init ipgre_init_net(struct net *net) { struct ipgre_net *ign = net_generic(net, ipgre_net_id); int err; ign->fb_tunnel_dev = alloc_netdev(sizeof(struct ip_tunnel), "gre0", ipgre_tunnel_setup); if (!ign->fb_tunnel_dev) { err = -ENOMEM; goto err_alloc_dev; } dev_net_set(ign->fb_tunnel_dev, net); ipgre_fb_tunnel_init(ign->fb_tunnel_dev); ign->fb_tunnel_dev->rtnl_link_ops = &ipgre_link_ops; if ((err = register_netdev(ign->fb_tunnel_dev))) goto err_reg_dev; return 0; err_reg_dev: free_netdev(ign->fb_tunnel_dev); err_alloc_dev: return err; } static void __net_exit ipgre_exit_net(struct net *net) { struct ipgre_net *ign; LIST_HEAD(list); ign = net_generic(net, ipgre_net_id); rtnl_lock(); ipgre_destroy_tunnels(ign, &list); unregister_netdevice_many(&list); rtnl_unlock(); } static struct pernet_operations ipgre_net_ops = { .init = ipgre_init_net, .exit = ipgre_exit_net, .id = &ipgre_net_id, .size = sizeof(struct ipgre_net), }; static int ipgre_tunnel_validate(struct nlattr *tb[], struct nlattr *data[]) { __be16 flags; if (!data) return 0; flags = 0; if (data[IFLA_GRE_IFLAGS]) flags |= nla_get_be16(data[IFLA_GRE_IFLAGS]); if (data[IFLA_GRE_OFLAGS]) flags |= nla_get_be16(data[IFLA_GRE_OFLAGS]); if (flags & (GRE_VERSION|GRE_ROUTING)) return -EINVAL; return 0; } static int ipgre_tap_validate(struct nlattr *tb[], struct nlattr *data[]) { __be32 daddr; if (tb[IFLA_ADDRESS]) { if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) return -EINVAL; if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) return -EADDRNOTAVAIL; } if (!data) goto out; if (data[IFLA_GRE_REMOTE]) { memcpy(&daddr, nla_data(data[IFLA_GRE_REMOTE]), 4); if (!daddr) return -EINVAL; } out: return ipgre_tunnel_validate(tb, data); } static void ipgre_netlink_parms(struct nlattr *data[], struct ip_tunnel_parm *parms) { memset(parms, 0, sizeof(*parms)); parms->iph.protocol = IPPROTO_GRE; if (!data) return; if (data[IFLA_GRE_LINK]) parms->link = nla_get_u32(data[IFLA_GRE_LINK]); if (data[IFLA_GRE_IFLAGS]) parms->i_flags = nla_get_be16(data[IFLA_GRE_IFLAGS]); if (data[IFLA_GRE_OFLAGS]) parms->o_flags = nla_get_be16(data[IFLA_GRE_OFLAGS]); if (data[IFLA_GRE_IKEY]) parms->i_key = nla_get_be32(data[IFLA_GRE_IKEY]); if (data[IFLA_GRE_OKEY]) parms->o_key = nla_get_be32(data[IFLA_GRE_OKEY]); if (data[IFLA_GRE_LOCAL]) parms->iph.saddr = nla_get_be32(data[IFLA_GRE_LOCAL]); if (data[IFLA_GRE_REMOTE]) parms->iph.daddr = nla_get_be32(data[IFLA_GRE_REMOTE]); if (data[IFLA_GRE_TTL]) parms->iph.ttl = nla_get_u8(data[IFLA_GRE_TTL]); if (data[IFLA_GRE_TOS]) parms->iph.tos = nla_get_u8(data[IFLA_GRE_TOS]); if (!data[IFLA_GRE_PMTUDISC] || nla_get_u8(data[IFLA_GRE_PMTUDISC])) parms->iph.frag_off = htons(IP_DF); } static int ipgre_tap_init(struct net_device *dev) { struct ip_tunnel *tunnel; tunnel = netdev_priv(dev); tunnel->dev = dev; strcpy(tunnel->parms.name, dev->name); ipgre_tunnel_bind_dev(dev); return 0; } static const struct net_device_ops ipgre_tap_netdev_ops = { .ndo_init = ipgre_tap_init, .ndo_uninit = ipgre_tunnel_uninit, .ndo_start_xmit = ipgre_tunnel_xmit, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, .ndo_change_mtu = ipgre_tunnel_change_mtu, }; static void ipgre_tap_setup(struct net_device *dev) { ether_setup(dev); dev->netdev_ops = &ipgre_tap_netdev_ops; dev->destructor = free_netdev; dev->iflink = 0; dev->features |= NETIF_F_NETNS_LOCAL; } static int ipgre_newlink(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[]) { struct ip_tunnel *nt; struct net *net = dev_net(dev); struct ipgre_net *ign = net_generic(net, ipgre_net_id); int mtu; int err; nt = netdev_priv(dev); ipgre_netlink_parms(data, &nt->parms); if (ipgre_tunnel_find(net, &nt->parms, dev->type)) return -EEXIST; if (dev->type == ARPHRD_ETHER && !tb[IFLA_ADDRESS]) random_ether_addr(dev->dev_addr); mtu = ipgre_tunnel_bind_dev(dev); if (!tb[IFLA_MTU]) dev->mtu = mtu; err = register_netdevice(dev); if (err) goto out; dev_hold(dev); ipgre_tunnel_link(ign, nt); out: return err; } static int ipgre_changelink(struct net_device *dev, struct nlattr *tb[], struct nlattr *data[]) { struct ip_tunnel *t, *nt; struct net *net = dev_net(dev); struct ipgre_net *ign = net_generic(net, ipgre_net_id); struct ip_tunnel_parm p; int mtu; if (dev == ign->fb_tunnel_dev) return -EINVAL; nt = netdev_priv(dev); ipgre_netlink_parms(data, &p); t = ipgre_tunnel_locate(net, &p, 0); if (t) { if (t->dev != dev) return -EEXIST; } else { t = nt; if (dev->type != ARPHRD_ETHER) { unsigned nflags = 0; if (ipv4_is_multicast(p.iph.daddr)) nflags = IFF_BROADCAST; else if (p.iph.daddr) nflags = IFF_POINTOPOINT; if ((dev->flags ^ nflags) & (IFF_POINTOPOINT | IFF_BROADCAST)) return -EINVAL; } ipgre_tunnel_unlink(ign, t); t->parms.iph.saddr = p.iph.saddr; t->parms.iph.daddr = p.iph.daddr; t->parms.i_key = p.i_key; if (dev->type != ARPHRD_ETHER) { memcpy(dev->dev_addr, &p.iph.saddr, 4); memcpy(dev->broadcast, &p.iph.daddr, 4); } ipgre_tunnel_link(ign, t); netdev_state_change(dev); } t->parms.o_key = p.o_key; t->parms.iph.ttl = p.iph.ttl; t->parms.iph.tos = p.iph.tos; t->parms.iph.frag_off = p.iph.frag_off; if (t->parms.link != p.link) { t->parms.link = p.link; mtu = ipgre_tunnel_bind_dev(dev); if (!tb[IFLA_MTU]) dev->mtu = mtu; netdev_state_change(dev); } return 0; } static size_t ipgre_get_size(const struct net_device *dev) { return /* IFLA_GRE_LINK */ nla_total_size(4) + /* IFLA_GRE_IFLAGS */ nla_total_size(2) + /* IFLA_GRE_OFLAGS */ nla_total_size(2) + /* IFLA_GRE_IKEY */ nla_total_size(4) + /* IFLA_GRE_OKEY */ nla_total_size(4) + /* IFLA_GRE_LOCAL */ nla_total_size(4) + /* IFLA_GRE_REMOTE */ nla_total_size(4) + /* IFLA_GRE_TTL */ nla_total_size(1) + /* IFLA_GRE_TOS */ nla_total_size(1) + /* IFLA_GRE_PMTUDISC */ nla_total_size(1) + 0; } static int ipgre_fill_info(struct sk_buff *skb, const struct net_device *dev) { struct ip_tunnel *t = netdev_priv(dev); struct ip_tunnel_parm *p = &t->parms; NLA_PUT_U32(skb, IFLA_GRE_LINK, p->link); NLA_PUT_BE16(skb, IFLA_GRE_IFLAGS, p->i_flags); NLA_PUT_BE16(skb, IFLA_GRE_OFLAGS, p->o_flags); NLA_PUT_BE32(skb, IFLA_GRE_IKEY, p->i_key); NLA_PUT_BE32(skb, IFLA_GRE_OKEY, p->o_key); NLA_PUT_BE32(skb, IFLA_GRE_LOCAL, p->iph.saddr); NLA_PUT_BE32(skb, IFLA_GRE_REMOTE, p->iph.daddr); NLA_PUT_U8(skb, IFLA_GRE_TTL, p->iph.ttl); NLA_PUT_U8(skb, IFLA_GRE_TOS, p->iph.tos); NLA_PUT_U8(skb, IFLA_GRE_PMTUDISC, !!(p->iph.frag_off & htons(IP_DF))); return 0; nla_put_failure: return -EMSGSIZE; } static const struct nla_policy ipgre_policy[IFLA_GRE_MAX + 1] = { [IFLA_GRE_LINK] = { .type = NLA_U32 }, [IFLA_GRE_IFLAGS] = { .type = NLA_U16 }, [IFLA_GRE_OFLAGS] = { .type = NLA_U16 }, [IFLA_GRE_IKEY] = { .type = NLA_U32 }, [IFLA_GRE_OKEY] = { .type = NLA_U32 }, [IFLA_GRE_LOCAL] = { .len = FIELD_SIZEOF(struct iphdr, saddr) }, [IFLA_GRE_REMOTE] = { .len = FIELD_SIZEOF(struct iphdr, daddr) }, [IFLA_GRE_TTL] = { .type = NLA_U8 }, [IFLA_GRE_TOS] = { .type = NLA_U8 }, [IFLA_GRE_PMTUDISC] = { .type = NLA_U8 }, }; static struct rtnl_link_ops ipgre_link_ops __read_mostly = { .kind = "gre", .maxtype = IFLA_GRE_MAX, .policy = ipgre_policy, .priv_size = sizeof(struct ip_tunnel), .setup = ipgre_tunnel_setup, .validate = ipgre_tunnel_validate, .newlink = ipgre_newlink, .changelink = ipgre_changelink, .get_size = ipgre_get_size, .fill_info = ipgre_fill_info, }; static struct rtnl_link_ops ipgre_tap_ops __read_mostly = { .kind = "gretap", .maxtype = IFLA_GRE_MAX, .policy = ipgre_policy, .priv_size = sizeof(struct ip_tunnel), .setup = ipgre_tap_setup, .validate = ipgre_tap_validate, .newlink = ipgre_newlink, .changelink = ipgre_changelink, .get_size = ipgre_get_size, .fill_info = ipgre_fill_info, }; /* * And now the modules code and kernel interface. */ static int __init ipgre_init(void) { int err; printk(KERN_INFO "GRE over IPv4 tunneling driver\n"); err = register_pernet_device(&ipgre_net_ops); if (err < 0) return err; err = inet_add_protocol(&ipgre_protocol, IPPROTO_GRE); if (err < 0) { printk(KERN_INFO "ipgre init: can't add protocol\n"); goto add_proto_failed; } err = rtnl_link_register(&ipgre_link_ops); if (err < 0) goto rtnl_link_failed; err = rtnl_link_register(&ipgre_tap_ops); if (err < 0) goto tap_ops_failed; out: return err; tap_ops_failed: rtnl_link_unregister(&ipgre_link_ops); rtnl_link_failed: inet_del_protocol(&ipgre_protocol, IPPROTO_GRE); add_proto_failed: unregister_pernet_device(&ipgre_net_ops); goto out; } static void __exit ipgre_fini(void) { rtnl_link_unregister(&ipgre_tap_ops); rtnl_link_unregister(&ipgre_link_ops); if (inet_del_protocol(&ipgre_protocol, IPPROTO_GRE) < 0) printk(KERN_INFO "ipgre close: can't remove protocol\n"); unregister_pernet_device(&ipgre_net_ops); } module_init(ipgre_init); module_exit(ipgre_fini); MODULE_LICENSE("GPL"); MODULE_ALIAS_RTNL_LINK("gre"); MODULE_ALIAS_RTNL_LINK("gretap");