/* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Implementation of the Transmission Control Protocol(TCP). * * Authors: Ross Biro * Fred N. van Kempen, * Mark Evans, * Corey Minyard * Florian La Roche, * Charles Hedrick, * Linus Torvalds, * Alan Cox, * Matthew Dillon, * Arnt Gulbrandsen, * Jorge Cwik, * * Fixes: * Alan Cox : Numerous verify_area() calls * Alan Cox : Set the ACK bit on a reset * Alan Cox : Stopped it crashing if it closed while * sk->inuse=1 and was trying to connect * (tcp_err()). * Alan Cox : All icmp error handling was broken * pointers passed where wrong and the * socket was looked up backwards. Nobody * tested any icmp error code obviously. * Alan Cox : tcp_err() now handled properly. It * wakes people on errors. poll * behaves and the icmp error race * has gone by moving it into sock.c * Alan Cox : tcp_send_reset() fixed to work for * everything not just packets for * unknown sockets. * Alan Cox : tcp option processing. * Alan Cox : Reset tweaked (still not 100%) [Had * syn rule wrong] * Herp Rosmanith : More reset fixes * Alan Cox : No longer acks invalid rst frames. * Acking any kind of RST is right out. * Alan Cox : Sets an ignore me flag on an rst * receive otherwise odd bits of prattle * escape still * Alan Cox : Fixed another acking RST frame bug. * Should stop LAN workplace lockups. * Alan Cox : Some tidyups using the new skb list * facilities * Alan Cox : sk->keepopen now seems to work * Alan Cox : Pulls options out correctly on accepts * Alan Cox : Fixed assorted sk->rqueue->next errors * Alan Cox : PSH doesn't end a TCP read. Switched a * bit to skb ops. * Alan Cox : Tidied tcp_data to avoid a potential * nasty. * Alan Cox : Added some better commenting, as the * tcp is hard to follow * Alan Cox : Removed incorrect check for 20 * psh * Michael O'Reilly : ack < copied bug fix. * Johannes Stille : Misc tcp fixes (not all in yet). * Alan Cox : FIN with no memory -> CRASH * Alan Cox : Added socket option proto entries. * Also added awareness of them to accept. * Alan Cox : Added TCP options (SOL_TCP) * Alan Cox : Switched wakeup calls to callbacks, * so the kernel can layer network * sockets. * Alan Cox : Use ip_tos/ip_ttl settings. * Alan Cox : Handle FIN (more) properly (we hope). * Alan Cox : RST frames sent on unsynchronised * state ack error. * Alan Cox : Put in missing check for SYN bit. * Alan Cox : Added tcp_select_window() aka NET2E * window non shrink trick. * Alan Cox : Added a couple of small NET2E timer * fixes * Charles Hedrick : TCP fixes * Toomas Tamm : TCP window fixes * Alan Cox : Small URG fix to rlogin ^C ack fight * Charles Hedrick : Rewrote most of it to actually work * Linus : Rewrote tcp_read() and URG handling * completely * Gerhard Koerting: Fixed some missing timer handling * Matthew Dillon : Reworked TCP machine states as per RFC * Gerhard Koerting: PC/TCP workarounds * Adam Caldwell : Assorted timer/timing errors * Matthew Dillon : Fixed another RST bug * Alan Cox : Move to kernel side addressing changes. * Alan Cox : Beginning work on TCP fastpathing * (not yet usable) * Arnt Gulbrandsen: Turbocharged tcp_check() routine. * Alan Cox : TCP fast path debugging * Alan Cox : Window clamping * Michael Riepe : Bug in tcp_check() * Matt Dillon : More TCP improvements and RST bug fixes * Matt Dillon : Yet more small nasties remove from the * TCP code (Be very nice to this man if * tcp finally works 100%) 8) * Alan Cox : BSD accept semantics. * Alan Cox : Reset on closedown bug. * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). * Michael Pall : Handle poll() after URG properly in * all cases. * Michael Pall : Undo the last fix in tcp_read_urg() * (multi URG PUSH broke rlogin). * Michael Pall : Fix the multi URG PUSH problem in * tcp_readable(), poll() after URG * works now. * Michael Pall : recv(...,MSG_OOB) never blocks in the * BSD api. * Alan Cox : Changed the semantics of sk->socket to * fix a race and a signal problem with * accept() and async I/O. * Alan Cox : Relaxed the rules on tcp_sendto(). * Yury Shevchuk : Really fixed accept() blocking problem. * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for * clients/servers which listen in on * fixed ports. * Alan Cox : Cleaned the above up and shrank it to * a sensible code size. * Alan Cox : Self connect lockup fix. * Alan Cox : No connect to multicast. * Ross Biro : Close unaccepted children on master * socket close. * Alan Cox : Reset tracing code. * Alan Cox : Spurious resets on shutdown. * Alan Cox : Giant 15 minute/60 second timer error * Alan Cox : Small whoops in polling before an * accept. * Alan Cox : Kept the state trace facility since * it's handy for debugging. * Alan Cox : More reset handler fixes. * Alan Cox : Started rewriting the code based on * the RFC's for other useful protocol * references see: Comer, KA9Q NOS, and * for a reference on the difference * between specifications and how BSD * works see the 4.4lite source. * A.N.Kuznetsov : Don't time wait on completion of tidy * close. * Linus Torvalds : Fin/Shutdown & copied_seq changes. * Linus Torvalds : Fixed BSD port reuse to work first syn * Alan Cox : Reimplemented timers as per the RFC * and using multiple timers for sanity. * Alan Cox : Small bug fixes, and a lot of new * comments. * Alan Cox : Fixed dual reader crash by locking * the buffers (much like datagram.c) * Alan Cox : Fixed stuck sockets in probe. A probe * now gets fed up of retrying without * (even a no space) answer. * Alan Cox : Extracted closing code better * Alan Cox : Fixed the closing state machine to * resemble the RFC. * Alan Cox : More 'per spec' fixes. * Jorge Cwik : Even faster checksumming. * Alan Cox : tcp_data() doesn't ack illegal PSH * only frames. At least one pc tcp stack * generates them. * Alan Cox : Cache last socket. * Alan Cox : Per route irtt. * Matt Day : poll()->select() match BSD precisely on error * Alan Cox : New buffers * Marc Tamsky : Various sk->prot->retransmits and * sk->retransmits misupdating fixed. * Fixed tcp_write_timeout: stuck close, * and TCP syn retries gets used now. * Mark Yarvis : In tcp_read_wakeup(), don't send an * ack if state is TCP_CLOSED. * Alan Cox : Look up device on a retransmit - routes may * change. Doesn't yet cope with MSS shrink right * but it's a start! * Marc Tamsky : Closing in closing fixes. * Mike Shaver : RFC1122 verifications. * Alan Cox : rcv_saddr errors. * Alan Cox : Block double connect(). * Alan Cox : Small hooks for enSKIP. * Alexey Kuznetsov: Path MTU discovery. * Alan Cox : Support soft errors. * Alan Cox : Fix MTU discovery pathological case * when the remote claims no mtu! * Marc Tamsky : TCP_CLOSE fix. * Colin (G3TNE) : Send a reset on syn ack replies in * window but wrong (fixes NT lpd problems) * Pedro Roque : Better TCP window handling, delayed ack. * Joerg Reuter : No modification of locked buffers in * tcp_do_retransmit() * Eric Schenk : Changed receiver side silly window * avoidance algorithm to BSD style * algorithm. This doubles throughput * against machines running Solaris, * and seems to result in general * improvement. * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD * Willy Konynenberg : Transparent proxying support. * Mike McLagan : Routing by source * Keith Owens : Do proper merging with partial SKB's in * tcp_do_sendmsg to avoid burstiness. * Eric Schenk : Fix fast close down bug with * shutdown() followed by close(). * Andi Kleen : Make poll agree with SIGIO * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and * lingertime == 0 (RFC 793 ABORT Call) * Hirokazu Takahashi : Use copy_from_user() instead of * csum_and_copy_from_user() if possible. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or(at your option) any later version. * * Description of States: * * TCP_SYN_SENT sent a connection request, waiting for ack * * TCP_SYN_RECV received a connection request, sent ack, * waiting for final ack in three-way handshake. * * TCP_ESTABLISHED connection established * * TCP_FIN_WAIT1 our side has shutdown, waiting to complete * transmission of remaining buffered data * * TCP_FIN_WAIT2 all buffered data sent, waiting for remote * to shutdown * * TCP_CLOSING both sides have shutdown but we still have * data we have to finish sending * * TCP_TIME_WAIT timeout to catch resent junk before entering * closed, can only be entered from FIN_WAIT2 * or CLOSING. Required because the other end * may not have gotten our last ACK causing it * to retransmit the data packet (which we ignore) * * TCP_CLOSE_WAIT remote side has shutdown and is waiting for * us to finish writing our data and to shutdown * (we have to close() to move on to LAST_ACK) * * TCP_LAST_ACK out side has shutdown after remote has * shutdown. There may still be data in our * buffer that we have to finish sending * * TCP_CLOSE socket is finished */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; struct percpu_counter tcp_orphan_count; EXPORT_SYMBOL_GPL(tcp_orphan_count); long sysctl_tcp_mem[3] __read_mostly; int sysctl_tcp_wmem[3] __read_mostly; int sysctl_tcp_rmem[3] __read_mostly; EXPORT_SYMBOL(sysctl_tcp_mem); EXPORT_SYMBOL(sysctl_tcp_rmem); EXPORT_SYMBOL(sysctl_tcp_wmem); atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ EXPORT_SYMBOL(tcp_memory_allocated); /* * Current number of TCP sockets. */ struct percpu_counter tcp_sockets_allocated; EXPORT_SYMBOL(tcp_sockets_allocated); /* * TCP splice context */ struct tcp_splice_state { struct pipe_inode_info *pipe; size_t len; unsigned int flags; }; /* * Pressure flag: try to collapse. * Technical note: it is used by multiple contexts non atomically. * All the __sk_mem_schedule() is of this nature: accounting * is strict, actions are advisory and have some latency. */ int tcp_memory_pressure __read_mostly; EXPORT_SYMBOL(tcp_memory_pressure); void tcp_enter_memory_pressure(struct sock *sk) { if (!tcp_memory_pressure) { NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); tcp_memory_pressure = 1; } } EXPORT_SYMBOL(tcp_enter_memory_pressure); /* Convert seconds to retransmits based on initial and max timeout */ static u8 secs_to_retrans(int seconds, int timeout, int rto_max) { u8 res = 0; if (seconds > 0) { int period = timeout; res = 1; while (seconds > period && res < 255) { res++; timeout <<= 1; if (timeout > rto_max) timeout = rto_max; period += timeout; } } return res; } /* Convert retransmits to seconds based on initial and max timeout */ static int retrans_to_secs(u8 retrans, int timeout, int rto_max) { int period = 0; if (retrans > 0) { period = timeout; while (--retrans) { timeout <<= 1; if (timeout > rto_max) timeout = rto_max; period += timeout; } } return period; } /* * Wait for a TCP event. * * Note that we don't need to lock the socket, as the upper poll layers * take care of normal races (between the test and the event) and we don't * go look at any of the socket buffers directly. */ unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) { unsigned int mask; struct sock *sk = sock->sk; const struct tcp_sock *tp = tcp_sk(sk); sock_poll_wait(file, sk_sleep(sk), wait); if (sk->sk_state == TCP_LISTEN) return inet_csk_listen_poll(sk); /* Socket is not locked. We are protected from async events * by poll logic and correct handling of state changes * made by other threads is impossible in any case. */ mask = 0; /* * POLLHUP is certainly not done right. But poll() doesn't * have a notion of HUP in just one direction, and for a * socket the read side is more interesting. * * Some poll() documentation says that POLLHUP is incompatible * with the POLLOUT/POLLWR flags, so somebody should check this * all. But careful, it tends to be safer to return too many * bits than too few, and you can easily break real applications * if you don't tell them that something has hung up! * * Check-me. * * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and * our fs/select.c). It means that after we received EOF, * poll always returns immediately, making impossible poll() on write() * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP * if and only if shutdown has been made in both directions. * Actually, it is interesting to look how Solaris and DUX * solve this dilemma. I would prefer, if POLLHUP were maskable, * then we could set it on SND_SHUTDOWN. BTW examples given * in Stevens' books assume exactly this behaviour, it explains * why POLLHUP is incompatible with POLLOUT. --ANK * * NOTE. Check for TCP_CLOSE is added. The goal is to prevent * blocking on fresh not-connected or disconnected socket. --ANK */ if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) mask |= POLLHUP; if (sk->sk_shutdown & RCV_SHUTDOWN) mask |= POLLIN | POLLRDNORM | POLLRDHUP; /* Connected? */ if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) { int target = sock_rcvlowat(sk, 0, INT_MAX); if (tp->urg_seq == tp->copied_seq && !sock_flag(sk, SOCK_URGINLINE) && tp->urg_data) target++; /* Potential race condition. If read of tp below will * escape above sk->sk_state, we can be illegally awaken * in SYN_* states. */ if (tp->rcv_nxt - tp->copied_seq >= target) mask |= POLLIN | POLLRDNORM; if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) { mask |= POLLOUT | POLLWRNORM; } else { /* send SIGIO later */ set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); /* Race breaker. If space is freed after * wspace test but before the flags are set, * IO signal will be lost. */ if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) mask |= POLLOUT | POLLWRNORM; } } else mask |= POLLOUT | POLLWRNORM; if (tp->urg_data & TCP_URG_VALID) mask |= POLLPRI; } /* This barrier is coupled with smp_wmb() in tcp_reset() */ smp_rmb(); if (sk->sk_err) mask |= POLLERR; return mask; } EXPORT_SYMBOL(tcp_poll); int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) { struct tcp_sock *tp = tcp_sk(sk); int answ; switch (cmd) { case SIOCINQ: if (sk->sk_state == TCP_LISTEN) return -EINVAL; lock_sock(sk); if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) answ = 0; else if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || before(tp->urg_seq, tp->copied_seq) || !before(tp->urg_seq, tp->rcv_nxt)) { answ = tp->rcv_nxt - tp->copied_seq; /* Subtract 1, if FIN was received */ if (answ && sock_flag(sk, SOCK_DONE)) answ--; } else answ = tp->urg_seq - tp->copied_seq; release_sock(sk); break; case SIOCATMARK: answ = tp->urg_data && tp->urg_seq == tp->copied_seq; break; case SIOCOUTQ: if (sk->sk_state == TCP_LISTEN) return -EINVAL; if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) answ = 0; else answ = tp->write_seq - tp->snd_una; break; case SIOCOUTQNSD: if (sk->sk_state == TCP_LISTEN) return -EINVAL; if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) answ = 0; else answ = tp->write_seq - tp->snd_nxt; break; default: return -ENOIOCTLCMD; } return put_user(answ, (int __user *)arg); } EXPORT_SYMBOL(tcp_ioctl); static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) { TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; tp->pushed_seq = tp->write_seq; } static inline int forced_push(const struct tcp_sock *tp) { return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); } static inline void skb_entail(struct sock *sk, struct sk_buff *skb) { struct tcp_sock *tp = tcp_sk(sk); struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); skb->csum = 0; tcb->seq = tcb->end_seq = tp->write_seq; tcb->tcp_flags = TCPHDR_ACK; tcb->sacked = 0; skb_header_release(skb); tcp_add_write_queue_tail(sk, skb); sk->sk_wmem_queued += skb->truesize; sk_mem_charge(sk, skb->truesize); if (tp->nonagle & TCP_NAGLE_PUSH) tp->nonagle &= ~TCP_NAGLE_PUSH; } static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) { if (flags & MSG_OOB) tp->snd_up = tp->write_seq; } static inline void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle) { if (tcp_send_head(sk)) { struct tcp_sock *tp = tcp_sk(sk); if (!(flags & MSG_MORE) || forced_push(tp)) tcp_mark_push(tp, tcp_write_queue_tail(sk)); tcp_mark_urg(tp, flags); __tcp_push_pending_frames(sk, mss_now, (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle); } } static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, unsigned int offset, size_t len) { struct tcp_splice_state *tss = rd_desc->arg.data; int ret; ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len), tss->flags); if (ret > 0) rd_desc->count -= ret; return ret; } static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) { /* Store TCP splice context information in read_descriptor_t. */ read_descriptor_t rd_desc = { .arg.data = tss, .count = tss->len, }; return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); } /** * tcp_splice_read - splice data from TCP socket to a pipe * @sock: socket to splice from * @ppos: position (not valid) * @pipe: pipe to splice to * @len: number of bytes to splice * @flags: splice modifier flags * * Description: * Will read pages from given socket and fill them into a pipe. * **/ ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags) { struct sock *sk = sock->sk; struct tcp_splice_state tss = { .pipe = pipe, .len = len, .flags = flags, }; long timeo; ssize_t spliced; int ret; sock_rps_record_flow(sk); /* * We can't seek on a socket input */ if (unlikely(*ppos)) return -ESPIPE; ret = spliced = 0; lock_sock(sk); timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); while (tss.len) { ret = __tcp_splice_read(sk, &tss); if (ret < 0) break; else if (!ret) { if (spliced) break; if (sock_flag(sk, SOCK_DONE)) break; if (sk->sk_err) { ret = sock_error(sk); break; } if (sk->sk_shutdown & RCV_SHUTDOWN) break; if (sk->sk_state == TCP_CLOSE) { /* * This occurs when user tries to read * from never connected socket. */ if (!sock_flag(sk, SOCK_DONE)) ret = -ENOTCONN; break; } if (!timeo) { ret = -EAGAIN; break; } sk_wait_data(sk, &timeo); if (signal_pending(current)) { ret = sock_intr_errno(timeo); break; } continue; } tss.len -= ret; spliced += ret; if (!timeo) break; release_sock(sk); lock_sock(sk); if (sk->sk_err || sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN) || signal_pending(current)) break; } release_sock(sk); if (spliced) return spliced; return ret; } EXPORT_SYMBOL(tcp_splice_read); struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp) { struct sk_buff *skb; /* The TCP header must be at least 32-bit aligned. */ size = ALIGN(size, 4); skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); if (skb) { if (sk_wmem_schedule(sk, skb->truesize)) { skb_reserve(skb, sk->sk_prot->max_header); /* * Make sure that we have exactly size bytes * available to the caller, no more, no less. */ skb->reserved_tailroom = skb->end - skb->tail - size; return skb; } __kfree_skb(skb); } else { sk->sk_prot->enter_memory_pressure(sk); sk_stream_moderate_sndbuf(sk); } return NULL; } static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, int large_allowed) { struct tcp_sock *tp = tcp_sk(sk); u32 xmit_size_goal, old_size_goal; xmit_size_goal = mss_now; if (large_allowed && sk_can_gso(sk)) { xmit_size_goal = ((sk->sk_gso_max_size - 1) - inet_csk(sk)->icsk_af_ops->net_header_len - inet_csk(sk)->icsk_ext_hdr_len - tp->tcp_header_len); xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal); /* We try hard to avoid divides here */ old_size_goal = tp->xmit_size_goal_segs * mss_now; if (likely(old_size_goal <= xmit_size_goal && old_size_goal + mss_now > xmit_size_goal)) { xmit_size_goal = old_size_goal; } else { tp->xmit_size_goal_segs = min_t(u16, xmit_size_goal / mss_now, sk->sk_gso_max_segs); xmit_size_goal = tp->xmit_size_goal_segs * mss_now; } } return max(xmit_size_goal, mss_now); } static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) { int mss_now; mss_now = tcp_current_mss(sk); *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); return mss_now; } static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset, size_t psize, int flags) { struct tcp_sock *tp = tcp_sk(sk); int mss_now, size_goal; int err; ssize_t copied; long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); /* Wait for a connection to finish. */ if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) goto out_err; clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); mss_now = tcp_send_mss(sk, &size_goal, flags); copied = 0; err = -EPIPE; if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) goto out_err; while (psize > 0) { struct sk_buff *skb = tcp_write_queue_tail(sk); struct page *page = pages[poffset / PAGE_SIZE]; int copy, i, can_coalesce; int offset = poffset % PAGE_SIZE; int size = min_t(size_t, psize, PAGE_SIZE - offset); if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { new_segment: if (!sk_stream_memory_free(sk)) goto wait_for_sndbuf; skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); if (!skb) goto wait_for_memory; skb_entail(sk, skb); copy = size_goal; } if (copy > size) copy = size; i = skb_shinfo(skb)->nr_frags; can_coalesce = skb_can_coalesce(skb, i, page, offset); if (!can_coalesce && i >= MAX_SKB_FRAGS) { tcp_mark_push(tp, skb); goto new_segment; } if (!sk_wmem_schedule(sk, copy)) goto wait_for_memory; if (can_coalesce) { skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); } else { get_page(page); skb_fill_page_desc(skb, i, page, offset, copy); } skb->len += copy; skb->data_len += copy; skb->truesize += copy; sk->sk_wmem_queued += copy; sk_mem_charge(sk, copy); skb->ip_summed = CHECKSUM_PARTIAL; tp->write_seq += copy; TCP_SKB_CB(skb)->end_seq += copy; skb_shinfo(skb)->gso_segs = 0; if (!copied) TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; copied += copy; poffset += copy; if (!(psize -= copy)) goto out; if (skb->len < size_goal || (flags & MSG_OOB)) continue; if (forced_push(tp)) { tcp_mark_push(tp, skb); __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); } else if (skb == tcp_send_head(sk)) tcp_push_one(sk, mss_now); continue; wait_for_sndbuf: set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); wait_for_memory: tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) goto do_error; mss_now = tcp_send_mss(sk, &size_goal, flags); } out: if (copied && !(flags & MSG_SENDPAGE_NOTLAST)) tcp_push(sk, flags, mss_now, tp->nonagle); return copied; do_error: if (copied) goto out; out_err: return sk_stream_error(sk, flags, err); } int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size, int flags) { ssize_t res; if (!(sk->sk_route_caps & NETIF_F_SG) || !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) return sock_no_sendpage(sk->sk_socket, page, offset, size, flags); lock_sock(sk); res = do_tcp_sendpages(sk, &page, offset, size, flags); release_sock(sk); return res; } EXPORT_SYMBOL(tcp_sendpage); #define TCP_PAGE(sk) (sk->sk_sndmsg_page) #define TCP_OFF(sk) (sk->sk_sndmsg_off) static inline int select_size(const struct sock *sk, int sg) { const struct tcp_sock *tp = tcp_sk(sk); int tmp = tp->mss_cache; if (sg) { if (sk_can_gso(sk)) tmp = 0; else { int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); if (tmp >= pgbreak && tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) tmp = pgbreak; } } return tmp; } int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, size_t size) { struct iovec *iov; struct tcp_sock *tp = tcp_sk(sk); struct sk_buff *skb; int iovlen, flags; int mss_now, size_goal; int sg, err, copied; long timeo; lock_sock(sk); flags = msg->msg_flags; timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); /* Wait for a connection to finish. */ if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) goto out_err; /* This should be in poll */ clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); mss_now = tcp_send_mss(sk, &size_goal, flags); /* Ok commence sending. */ iovlen = msg->msg_iovlen; iov = msg->msg_iov; copied = 0; err = -EPIPE; if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) goto out_err; sg = sk->sk_route_caps & NETIF_F_SG; while (--iovlen >= 0) { size_t seglen = iov->iov_len; unsigned char __user *from = iov->iov_base; iov++; while (seglen > 0) { int copy = 0; int max = size_goal; skb = tcp_write_queue_tail(sk); if (tcp_send_head(sk)) { if (skb->ip_summed == CHECKSUM_NONE) max = mss_now; copy = max - skb->len; } if (copy <= 0) { new_segment: /* Allocate new segment. If the interface is SG, * allocate skb fitting to single page. */ if (!sk_stream_memory_free(sk)) goto wait_for_sndbuf; skb = sk_stream_alloc_skb(sk, select_size(sk, sg), sk->sk_allocation); if (!skb) goto wait_for_memory; /* * Check whether we can use HW checksum. */ if (sk->sk_route_caps & NETIF_F_ALL_CSUM) skb->ip_summed = CHECKSUM_PARTIAL; skb_entail(sk, skb); copy = size_goal; max = size_goal; } /* Try to append data to the end of skb. */ if (copy > seglen) copy = seglen; /* Where to copy to? */ if (skb_availroom(skb) > 0) { /* We have some space in skb head. Superb! */ copy = min_t(int, copy, skb_availroom(skb)); err = skb_add_data_nocache(sk, skb, from, copy); if (err) goto do_fault; } else { int merge = 0; int i = skb_shinfo(skb)->nr_frags; struct page *page = TCP_PAGE(sk); int off = TCP_OFF(sk); if (skb_can_coalesce(skb, i, page, off) && off != PAGE_SIZE) { /* We can extend the last page * fragment. */ merge = 1; } else if (i == MAX_SKB_FRAGS || !sg) { /* Need to add new fragment and cannot * do this because interface is non-SG, * or because all the page slots are * busy. */ tcp_mark_push(tp, skb); goto new_segment; } else if (page) { if (off == PAGE_SIZE) { put_page(page); TCP_PAGE(sk) = page = NULL; off = 0; } } else off = 0; if (copy > PAGE_SIZE - off) copy = PAGE_SIZE - off; if (!sk_wmem_schedule(sk, copy)) goto wait_for_memory; if (!page) { /* Allocate new cache page. */ if (!(page = sk_stream_alloc_page(sk))) goto wait_for_memory; } /* Time to copy data. We are close to * the end! */ err = skb_copy_to_page_nocache(sk, from, skb, page, off, copy); if (err) { /* If this page was new, give it to the * socket so it does not get leaked. */ if (!TCP_PAGE(sk)) { TCP_PAGE(sk) = page; TCP_OFF(sk) = 0; } goto do_error; } /* Update the skb. */ if (merge) { skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); } else { skb_fill_page_desc(skb, i, page, off, copy); if (TCP_PAGE(sk)) { get_page(page); } else if (off + copy < PAGE_SIZE) { get_page(page); TCP_PAGE(sk) = page; } } TCP_OFF(sk) = off + copy; } if (!copied) TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; tp->write_seq += copy; TCP_SKB_CB(skb)->end_seq += copy; skb_shinfo(skb)->gso_segs = 0; from += copy; copied += copy; if ((seglen -= copy) == 0 && iovlen == 0) goto out; if (skb->len < max || (flags & MSG_OOB)) continue; if (forced_push(tp)) { tcp_mark_push(tp, skb); __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); } else if (skb == tcp_send_head(sk)) tcp_push_one(sk, mss_now); continue; wait_for_sndbuf: set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); wait_for_memory: if (copied) tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) goto do_error; mss_now = tcp_send_mss(sk, &size_goal, flags); } } out: if (copied) tcp_push(sk, flags, mss_now, tp->nonagle); release_sock(sk); return copied; do_fault: if (!skb->len) { tcp_unlink_write_queue(skb, sk); /* It is the one place in all of TCP, except connection * reset, where we can be unlinking the send_head. */ tcp_check_send_head(sk, skb); sk_wmem_free_skb(sk, skb); } do_error: if (copied) goto out; out_err: err = sk_stream_error(sk, flags, err); release_sock(sk); return err; } EXPORT_SYMBOL(tcp_sendmsg); /* * Handle reading urgent data. BSD has very simple semantics for * this, no blocking and very strange errors 8) */ static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) { struct tcp_sock *tp = tcp_sk(sk); /* No URG data to read. */ if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || tp->urg_data == TCP_URG_READ) return -EINVAL; /* Yes this is right ! */ if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) return -ENOTCONN; if (tp->urg_data & TCP_URG_VALID) { int err = 0; char c = tp->urg_data; if (!(flags & MSG_PEEK)) tp->urg_data = TCP_URG_READ; /* Read urgent data. */ msg->msg_flags |= MSG_OOB; if (len > 0) { if (!(flags & MSG_TRUNC)) err = memcpy_toiovec(msg->msg_iov, &c, 1); len = 1; } else msg->msg_flags |= MSG_TRUNC; return err ? -EFAULT : len; } if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) return 0; /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and * the available implementations agree in this case: * this call should never block, independent of the * blocking state of the socket. * Mike */ return -EAGAIN; } /* Clean up the receive buffer for full frames taken by the user, * then send an ACK if necessary. COPIED is the number of bytes * tcp_recvmsg has given to the user so far, it speeds up the * calculation of whether or not we must ACK for the sake of * a window update. */ void tcp_cleanup_rbuf(struct sock *sk, int copied) { struct tcp_sock *tp = tcp_sk(sk); int time_to_ack = 0; struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); if (inet_csk_ack_scheduled(sk)) { const struct inet_connection_sock *icsk = inet_csk(sk); /* Delayed ACKs frequently hit locked sockets during bulk * receive. */ if (icsk->icsk_ack.blocked || /* Once-per-two-segments ACK was not sent by tcp_input.c */ tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || /* * If this read emptied read buffer, we send ACK, if * connection is not bidirectional, user drained * receive buffer and there was a small segment * in queue. */ (copied > 0 && ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && !icsk->icsk_ack.pingpong)) && !atomic_read(&sk->sk_rmem_alloc))) time_to_ack = 1; } /* We send an ACK if we can now advertise a non-zero window * which has been raised "significantly". * * Even if window raised up to infinity, do not send window open ACK * in states, where we will not receive more. It is useless. */ if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { __u32 rcv_window_now = tcp_receive_window(tp); /* Optimize, __tcp_select_window() is not cheap. */ if (2*rcv_window_now <= tp->window_clamp) { __u32 new_window = __tcp_select_window(sk); /* Send ACK now, if this read freed lots of space * in our buffer. Certainly, new_window is new window. * We can advertise it now, if it is not less than current one. * "Lots" means "at least twice" here. */ if (new_window && new_window >= 2 * rcv_window_now) time_to_ack = 1; } } if (time_to_ack) tcp_send_ack(sk); } static void tcp_prequeue_process(struct sock *sk) { struct sk_buff *skb; struct tcp_sock *tp = tcp_sk(sk); NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); /* RX process wants to run with disabled BHs, though it is not * necessary */ local_bh_disable(); while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) sk_backlog_rcv(sk, skb); local_bh_enable(); /* Clear memory counter. */ tp->ucopy.memory = 0; } #ifdef CONFIG_NET_DMA static void tcp_service_net_dma(struct sock *sk, bool wait) { dma_cookie_t done, used; dma_cookie_t last_issued; struct tcp_sock *tp = tcp_sk(sk); if (!tp->ucopy.dma_chan) return; last_issued = tp->ucopy.dma_cookie; dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); do { if (dma_async_memcpy_complete(tp->ucopy.dma_chan, last_issued, &done, &used) == DMA_SUCCESS) { /* Safe to free early-copied skbs now */ __skb_queue_purge(&sk->sk_async_wait_queue); break; } else { struct sk_buff *skb; while ((skb = skb_peek(&sk->sk_async_wait_queue)) && (dma_async_is_complete(skb->dma_cookie, done, used) == DMA_SUCCESS)) { __skb_dequeue(&sk->sk_async_wait_queue); kfree_skb(skb); } } } while (wait); } #endif static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) { struct sk_buff *skb; u32 offset; skb_queue_walk(&sk->sk_receive_queue, skb) { offset = seq - TCP_SKB_CB(skb)->seq; if (tcp_hdr(skb)->syn) offset--; if (offset < skb->len || tcp_hdr(skb)->fin) { *off = offset; return skb; } } return NULL; } /* * This routine provides an alternative to tcp_recvmsg() for routines * that would like to handle copying from skbuffs directly in 'sendfile' * fashion. * Note: * - It is assumed that the socket was locked by the caller. * - The routine does not block. * - At present, there is no support for reading OOB data * or for 'peeking' the socket using this routine * (although both would be easy to implement). */ int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, sk_read_actor_t recv_actor) { struct sk_buff *skb; struct tcp_sock *tp = tcp_sk(sk); u32 seq = tp->copied_seq; u32 offset; int copied = 0; if (sk->sk_state == TCP_LISTEN) return -ENOTCONN; while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { if (offset < skb->len) { int used; size_t len; len = skb->len - offset; /* Stop reading if we hit a patch of urgent data */ if (tp->urg_data) { u32 urg_offset = tp->urg_seq - seq; if (urg_offset < len) len = urg_offset; if (!len) break; } used = recv_actor(desc, skb, offset, len); if (used < 0) { if (!copied) copied = used; break; } else if (used <= len) { seq += used; copied += used; offset += used; } /* * If recv_actor drops the lock (e.g. TCP splice * receive) the skb pointer might be invalid when * getting here: tcp_collapse might have deleted it * while aggregating skbs from the socket queue. */ skb = tcp_recv_skb(sk, seq-1, &offset); if (!skb || (offset+1 != skb->len)) break; } if (tcp_hdr(skb)->fin) { sk_eat_skb(sk, skb, 0); ++seq; break; } sk_eat_skb(sk, skb, 0); if (!desc->count) break; tp->copied_seq = seq; } tp->copied_seq = seq; tcp_rcv_space_adjust(sk); /* Clean up data we have read: This will do ACK frames. */ if (copied > 0) tcp_cleanup_rbuf(sk, copied); return copied; } EXPORT_SYMBOL(tcp_read_sock); /* * This routine copies from a sock struct into the user buffer. * * Technical note: in 2.3 we work on _locked_ socket, so that * tricks with *seq access order and skb->users are not required. * Probably, code can be easily improved even more. */ int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, size_t len, int nonblock, int flags, int *addr_len) { struct tcp_sock *tp = tcp_sk(sk); int copied = 0; u32 peek_seq; u32 *seq; unsigned long used; int err; int target; /* Read at least this many bytes */ long timeo; struct task_struct *user_recv = NULL; int copied_early = 0; struct sk_buff *skb; u32 urg_hole = 0; lock_sock(sk); err = -ENOTCONN; if (sk->sk_state == TCP_LISTEN) goto out; timeo = sock_rcvtimeo(sk, nonblock); /* Urgent data needs to be handled specially. */ if (flags & MSG_OOB) goto recv_urg; seq = &tp->copied_seq; if (flags & MSG_PEEK) { peek_seq = tp->copied_seq; seq = &peek_seq; } target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); #ifdef CONFIG_NET_DMA tp->ucopy.dma_chan = NULL; preempt_disable(); skb = skb_peek_tail(&sk->sk_receive_queue); { int available = 0; if (skb) available = TCP_SKB_CB(skb)->seq + skb->len - (*seq); if ((available < target) && (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) && !sysctl_tcp_low_latency && dma_find_channel(DMA_MEMCPY)) { preempt_enable_no_resched(); tp->ucopy.pinned_list = dma_pin_iovec_pages(msg->msg_iov, len); } else { preempt_enable_no_resched(); } } #endif do { u32 offset; /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ if (tp->urg_data && tp->urg_seq == *seq) { if (copied) break; if (signal_pending(current)) { copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; break; } } /* Next get a buffer. */ skb_queue_walk(&sk->sk_receive_queue, skb) { /* Now that we have two receive queues this * shouldn't happen. */ if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags)) break; offset = *seq - TCP_SKB_CB(skb)->seq; if (tcp_hdr(skb)->syn) offset--; if (offset < skb->len) goto found_ok_skb; if (tcp_hdr(skb)->fin) goto found_fin_ok; WARN(!(flags & MSG_PEEK), "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); } /* Well, if we have backlog, try to process it now yet. */ if (copied >= target && !sk->sk_backlog.tail) break; if (copied) { if (sk->sk_err || sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN) || !timeo || signal_pending(current)) break; } else { if (sock_flag(sk, SOCK_DONE)) break; if (sk->sk_err) { copied = sock_error(sk); break; } if (sk->sk_shutdown & RCV_SHUTDOWN) break; if (sk->sk_state == TCP_CLOSE) { if (!sock_flag(sk, SOCK_DONE)) { /* This occurs when user tries to read * from never connected socket. */ copied = -ENOTCONN; break; } break; } if (!timeo) { copied = -EAGAIN; break; } if (signal_pending(current)) { copied = sock_intr_errno(timeo); break; } } tcp_cleanup_rbuf(sk, copied); if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { /* Install new reader */ if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { user_recv = current; tp->ucopy.task = user_recv; tp->ucopy.iov = msg->msg_iov; } tp->ucopy.len = len; WARN_ON(tp->copied_seq != tp->rcv_nxt && !(flags & (MSG_PEEK | MSG_TRUNC))); /* Ugly... If prequeue is not empty, we have to * process it before releasing socket, otherwise * order will be broken at second iteration. * More elegant solution is required!!! * * Look: we have the following (pseudo)queues: * * 1. packets in flight * 2. backlog * 3. prequeue * 4. receive_queue * * Each queue can be processed only if the next ones * are empty. At this point we have empty receive_queue. * But prequeue _can_ be not empty after 2nd iteration, * when we jumped to start of loop because backlog * processing added something to receive_queue. * We cannot release_sock(), because backlog contains * packets arrived _after_ prequeued ones. * * Shortly, algorithm is clear --- to process all * the queues in order. We could make it more directly, * requeueing packets from backlog to prequeue, if * is not empty. It is more elegant, but eats cycles, * unfortunately. */ if (!skb_queue_empty(&tp->ucopy.prequeue)) goto do_prequeue; /* __ Set realtime policy in scheduler __ */ } #ifdef CONFIG_NET_DMA if (tp->ucopy.dma_chan) { if (tp->rcv_wnd == 0 && !skb_queue_empty(&sk->sk_async_wait_queue)) { tcp_service_net_dma(sk, true); tcp_cleanup_rbuf(sk, copied); } else dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); } #endif if (copied >= target) { /* Do not sleep, just process backlog. */ release_sock(sk); lock_sock(sk); } else sk_wait_data(sk, &timeo); #ifdef CONFIG_NET_DMA tcp_service_net_dma(sk, false); /* Don't block */ tp->ucopy.wakeup = 0; #endif if (user_recv) { int chunk; /* __ Restore normal policy in scheduler __ */ if ((chunk = len - tp->ucopy.len) != 0) { NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); len -= chunk; copied += chunk; } if (tp->rcv_nxt == tp->copied_seq && !skb_queue_empty(&tp->ucopy.prequeue)) { do_prequeue: tcp_prequeue_process(sk); if ((chunk = len - tp->ucopy.len) != 0) { NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); len -= chunk; copied += chunk; } } } if ((flags & MSG_PEEK) && (peek_seq - copied - urg_hole != tp->copied_seq)) { if (net_ratelimit()) printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n", current->comm, task_pid_nr(current)); peek_seq = tp->copied_seq; } continue; found_ok_skb: /* Ok so how much can we use? */ used = skb->len - offset; if (len < used) used = len; /* Do we have urgent data here? */ if (tp->urg_data) { u32 urg_offset = tp->urg_seq - *seq; if (urg_offset < used) { if (!urg_offset) { if (!sock_flag(sk, SOCK_URGINLINE)) { ++*seq; urg_hole++; offset++; used--; if (!used) goto skip_copy; } } else used = urg_offset; } } if (!(flags & MSG_TRUNC)) { #ifdef CONFIG_NET_DMA if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY); if (tp->ucopy.dma_chan) { tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec( tp->ucopy.dma_chan, skb, offset, msg->msg_iov, used, tp->ucopy.pinned_list); if (tp->ucopy.dma_cookie < 0) { printk(KERN_ALERT "dma_cookie < 0\n"); /* Exception. Bailout! */ if (!copied) copied = -EFAULT; break; } dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); if ((offset + used) == skb->len) copied_early = 1; } else #endif { err = skb_copy_datagram_iovec(skb, offset, msg->msg_iov, used); if (err) { /* Exception. Bailout! */ if (!copied) copied = -EFAULT; break; } } } *seq += used; copied += used; len -= used; tcp_rcv_space_adjust(sk); skip_copy: if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { tp->urg_data = 0; tcp_fast_path_check(sk); } if (used + offset < skb->len) continue; if (tcp_hdr(skb)->fin) goto found_fin_ok; if (!(flags & MSG_PEEK)) { sk_eat_skb(sk, skb, copied_early); copied_early = 0; } continue; found_fin_ok: /* Process the FIN. */ ++*seq; if (!(flags & MSG_PEEK)) { sk_eat_skb(sk, skb, copied_early); copied_early = 0; } break; } while (len > 0); if (user_recv) { if (!skb_queue_empty(&tp->ucopy.prequeue)) { int chunk; tp->ucopy.len = copied > 0 ? len : 0; tcp_prequeue_process(sk); if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); len -= chunk; copied += chunk; } } tp->ucopy.task = NULL; tp->ucopy.len = 0; } #ifdef CONFIG_NET_DMA tcp_service_net_dma(sk, true); /* Wait for queue to drain */ tp->ucopy.dma_chan = NULL; if (tp->ucopy.pinned_list) { dma_unpin_iovec_pages(tp->ucopy.pinned_list); tp->ucopy.pinned_list = NULL; } #endif /* According to UNIX98, msg_name/msg_namelen are ignored * on connected socket. I was just happy when found this 8) --ANK */ /* Clean up data we have read: This will do ACK frames. */ tcp_cleanup_rbuf(sk, copied); release_sock(sk); return copied; out: release_sock(sk); return err; recv_urg: err = tcp_recv_urg(sk, msg, len, flags); goto out; } EXPORT_SYMBOL(tcp_recvmsg); void tcp_set_state(struct sock *sk, int state) { int oldstate = sk->sk_state; switch (state) { case TCP_ESTABLISHED: if (oldstate != TCP_ESTABLISHED) TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); break; case TCP_CLOSE: if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); sk->sk_prot->unhash(sk); if (inet_csk(sk)->icsk_bind_hash && !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) inet_put_port(sk); /* fall through */ default: if (oldstate == TCP_ESTABLISHED) TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); } /* Change state AFTER socket is unhashed to avoid closed * socket sitting in hash tables. */ sk->sk_state = state; #ifdef STATE_TRACE SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); #endif } EXPORT_SYMBOL_GPL(tcp_set_state); /* * State processing on a close. This implements the state shift for * sending our FIN frame. Note that we only send a FIN for some * states. A shutdown() may have already sent the FIN, or we may be * closed. */ static const unsigned char new_state[16] = { /* current state: new state: action: */ /* (Invalid) */ TCP_CLOSE, /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, /* TCP_SYN_SENT */ TCP_CLOSE, /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1, /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2, /* TCP_TIME_WAIT */ TCP_CLOSE, /* TCP_CLOSE */ TCP_CLOSE, /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN, /* TCP_LAST_ACK */ TCP_LAST_ACK, /* TCP_LISTEN */ TCP_CLOSE, /* TCP_CLOSING */ TCP_CLOSING, }; static int tcp_close_state(struct sock *sk) { int next = (int)new_state[sk->sk_state]; int ns = next & TCP_STATE_MASK; tcp_set_state(sk, ns); return next & TCP_ACTION_FIN; } /* * Shutdown the sending side of a connection. Much like close except * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). */ void tcp_shutdown(struct sock *sk, int how) { /* We need to grab some memory, and put together a FIN, * and then put it into the queue to be sent. * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. */ if (!(how & SEND_SHUTDOWN)) return; /* If we've already sent a FIN, or it's a closed state, skip this. */ if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { /* Clear out any half completed packets. FIN if needed. */ if (tcp_close_state(sk)) tcp_send_fin(sk); } } EXPORT_SYMBOL(tcp_shutdown); void tcp_close(struct sock *sk, long timeout) { struct sk_buff *skb; int data_was_unread = 0; int state; lock_sock(sk); sk->sk_shutdown = SHUTDOWN_MASK; if (sk->sk_state == TCP_LISTEN) { tcp_set_state(sk, TCP_CLOSE); /* Special case. */ inet_csk_listen_stop(sk); goto adjudge_to_death; } /* We need to flush the recv. buffs. We do this only on the * descriptor close, not protocol-sourced closes, because the * reader process may not have drained the data yet! */ while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq - tcp_hdr(skb)->fin; data_was_unread += len; __kfree_skb(skb); } sk_mem_reclaim(sk); /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ if (sk->sk_state == TCP_CLOSE) goto adjudge_to_death; /* As outlined in RFC 2525, section 2.17, we send a RST here because * data was lost. To witness the awful effects of the old behavior of * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk * GET in an FTP client, suspend the process, wait for the client to * advertise a zero window, then kill -9 the FTP client, wheee... * Note: timeout is always zero in such a case. */ if (data_was_unread) { /* Unread data was tossed, zap the connection. */ NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); tcp_set_state(sk, TCP_CLOSE); tcp_send_active_reset(sk, sk->sk_allocation); } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { /* Check zero linger _after_ checking for unread data. */ sk->sk_prot->disconnect(sk, 0); NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); } else if (tcp_close_state(sk)) { /* We FIN if the application ate all the data before * zapping the connection. */ /* RED-PEN. Formally speaking, we have broken TCP state * machine. State transitions: * * TCP_ESTABLISHED -> TCP_FIN_WAIT1 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) * TCP_CLOSE_WAIT -> TCP_LAST_ACK * * are legal only when FIN has been sent (i.e. in window), * rather than queued out of window. Purists blame. * * F.e. "RFC state" is ESTABLISHED, * if Linux state is FIN-WAIT-1, but FIN is still not sent. * * The visible declinations are that sometimes * we enter time-wait state, when it is not required really * (harmless), do not send active resets, when they are * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when * they look as CLOSING or LAST_ACK for Linux) * Probably, I missed some more holelets. * --ANK */ tcp_send_fin(sk); } sk_stream_wait_close(sk, timeout); adjudge_to_death: state = sk->sk_state; sock_hold(sk); sock_orphan(sk); /* It is the last release_sock in its life. It will remove backlog. */ release_sock(sk); /* Now socket is owned by kernel and we acquire BH lock to finish close. No need to check for user refs. */ local_bh_disable(); bh_lock_sock(sk); WARN_ON(sock_owned_by_user(sk)); percpu_counter_inc(sk->sk_prot->orphan_count); /* Have we already been destroyed by a softirq or backlog? */ if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) goto out; /* This is a (useful) BSD violating of the RFC. There is a * problem with TCP as specified in that the other end could * keep a socket open forever with no application left this end. * We use a 3 minute timeout (about the same as BSD) then kill * our end. If they send after that then tough - BUT: long enough * that we won't make the old 4*rto = almost no time - whoops * reset mistake. * * Nope, it was not mistake. It is really desired behaviour * f.e. on http servers, when such sockets are useless, but * consume significant resources. Let's do it with special * linger2 option. --ANK */ if (sk->sk_state == TCP_FIN_WAIT2) { struct tcp_sock *tp = tcp_sk(sk); if (tp->linger2 < 0) { tcp_set_state(sk, TCP_CLOSE); tcp_send_active_reset(sk, GFP_ATOMIC); NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONLINGER); } else { const int tmo = tcp_fin_time(sk); if (tmo > TCP_TIMEWAIT_LEN) { inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); } else { tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); goto out; } } } if (sk->sk_state != TCP_CLOSE) { sk_mem_reclaim(sk); if (tcp_too_many_orphans(sk, 0)) { if (net_ratelimit()) printk(KERN_INFO "TCP: too many of orphaned " "sockets\n"); tcp_set_state(sk, TCP_CLOSE); tcp_send_active_reset(sk, GFP_ATOMIC); NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONMEMORY); } } if (sk->sk_state == TCP_CLOSE) inet_csk_destroy_sock(sk); /* Otherwise, socket is reprieved until protocol close. */ out: bh_unlock_sock(sk); local_bh_enable(); sock_put(sk); } EXPORT_SYMBOL(tcp_close); /* These states need RST on ABORT according to RFC793 */ static inline int tcp_need_reset(int state) { return (1 << state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_SYN_RECV); } int tcp_disconnect(struct sock *sk, int flags) { struct inet_sock *inet = inet_sk(sk); struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); int err = 0; int old_state = sk->sk_state; if (old_state != TCP_CLOSE) tcp_set_state(sk, TCP_CLOSE); /* ABORT function of RFC793 */ if (old_state == TCP_LISTEN) { inet_csk_listen_stop(sk); } else if (tcp_need_reset(old_state) || (tp->snd_nxt != tp->write_seq && (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { /* The last check adjusts for discrepancy of Linux wrt. RFC * states */ tcp_send_active_reset(sk, gfp_any()); sk->sk_err = ECONNRESET; } else if (old_state == TCP_SYN_SENT) sk->sk_err = ECONNRESET; tcp_clear_xmit_timers(sk); __skb_queue_purge(&sk->sk_receive_queue); tcp_write_queue_purge(sk); __skb_queue_purge(&tp->out_of_order_queue); #ifdef CONFIG_NET_DMA __skb_queue_purge(&sk->sk_async_wait_queue); #endif inet->inet_dport = 0; if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) inet_reset_saddr(sk); sk->sk_shutdown = 0; sock_reset_flag(sk, SOCK_DONE); tp->srtt = 0; if ((tp->write_seq += tp->max_window + 2) == 0) tp->write_seq = 1; icsk->icsk_backoff = 0; tp->snd_cwnd = 2; icsk->icsk_probes_out = 0; tp->packets_out = 0; tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; tp->snd_cwnd_cnt = 0; tp->bytes_acked = 0; tp->window_clamp = 0; tcp_set_ca_state(sk, TCP_CA_Open); tcp_clear_retrans(tp); inet_csk_delack_init(sk); tcp_init_send_head(sk); memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); __sk_dst_reset(sk); WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); sk->sk_error_report(sk); return err; } EXPORT_SYMBOL(tcp_disconnect); /* * Socket option code for TCP. */ static int do_tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, unsigned int optlen) { struct tcp_sock *tp = tcp_sk(sk); struct inet_connection_sock *icsk = inet_csk(sk); int val; int err = 0; /* These are data/string values, all the others are ints */ switch (optname) { case TCP_CONGESTION: { char name[TCP_CA_NAME_MAX]; if (optlen < 1) return -EINVAL; val = strncpy_from_user(name, optval, min_t(long, TCP_CA_NAME_MAX-1, optlen)); if (val < 0) return -EFAULT; name[val] = 0; lock_sock(sk); err = tcp_set_congestion_control(sk, name); release_sock(sk); return err; } case TCP_COOKIE_TRANSACTIONS: { struct tcp_cookie_transactions ctd; struct tcp_cookie_values *cvp = NULL; if (sizeof(ctd) > optlen) return -EINVAL; if (copy_from_user(&ctd, optval, sizeof(ctd))) return -EFAULT; if (ctd.tcpct_used > sizeof(ctd.tcpct_value) || ctd.tcpct_s_data_desired > TCP_MSS_DESIRED) return -EINVAL; if (ctd.tcpct_cookie_desired == 0) { /* default to global value */ } else if ((0x1 & ctd.tcpct_cookie_desired) || ctd.tcpct_cookie_desired > TCP_COOKIE_MAX || ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) { return -EINVAL; } if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) { /* Supercedes all other values */ lock_sock(sk); if (tp->cookie_values != NULL) { kref_put(&tp->cookie_values->kref, tcp_cookie_values_release); tp->cookie_values = NULL; } tp->rx_opt.cookie_in_always = 0; /* false */ tp->rx_opt.cookie_out_never = 1; /* true */ release_sock(sk); return err; } /* Allocate ancillary memory before locking. */ if (ctd.tcpct_used > 0 || (tp->cookie_values == NULL && (sysctl_tcp_cookie_size > 0 || ctd.tcpct_cookie_desired > 0 || ctd.tcpct_s_data_desired > 0))) { cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used, GFP_KERNEL); if (cvp == NULL) return -ENOMEM; kref_init(&cvp->kref); } lock_sock(sk); tp->rx_opt.cookie_in_always = (TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags); tp->rx_opt.cookie_out_never = 0; /* false */ if (tp->cookie_values != NULL) { if (cvp != NULL) { /* Changed values are recorded by a changed * pointer, ensuring the cookie will differ, * without separately hashing each value later. */ kref_put(&tp->cookie_values->kref, tcp_cookie_values_release); } else { cvp = tp->cookie_values; } } if (cvp != NULL) { cvp->cookie_desired = ctd.tcpct_cookie_desired; if (ctd.tcpct_used > 0) { memcpy(cvp->s_data_payload, ctd.tcpct_value, ctd.tcpct_used); cvp->s_data_desired = ctd.tcpct_used; cvp->s_data_constant = 1; /* true */ } else { /* No constant payload data. */ cvp->s_data_desired = ctd.tcpct_s_data_desired; cvp->s_data_constant = 0; /* false */ } tp->cookie_values = cvp; } release_sock(sk); return err; } default: /* fallthru */ break; } if (optlen < sizeof(int)) return -EINVAL; if (get_user(val, (int __user *)optval)) return -EFAULT; lock_sock(sk); switch (optname) { case TCP_MAXSEG: /* Values greater than interface MTU won't take effect. However * at the point when this call is done we typically don't yet * know which interface is going to be used */ if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { err = -EINVAL; break; } tp->rx_opt.user_mss = val; break; case TCP_NODELAY: if (val) { /* TCP_NODELAY is weaker than TCP_CORK, so that * this option on corked socket is remembered, but * it is not activated until cork is cleared. * * However, when TCP_NODELAY is set we make * an explicit push, which overrides even TCP_CORK * for currently queued segments. */ tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; tcp_push_pending_frames(sk); } else { tp->nonagle &= ~TCP_NAGLE_OFF; } break; case TCP_THIN_LINEAR_TIMEOUTS: if (val < 0 || val > 1) err = -EINVAL; else tp->thin_lto = val; break; case TCP_THIN_DUPACK: if (val < 0 || val > 1) err = -EINVAL; else tp->thin_dupack = val; break; case TCP_CORK: /* When set indicates to always queue non-full frames. * Later the user clears this option and we transmit * any pending partial frames in the queue. This is * meant to be used alongside sendfile() to get properly * filled frames when the user (for example) must write * out headers with a write() call first and then use * sendfile to send out the data parts. * * TCP_CORK can be set together with TCP_NODELAY and it is * stronger than TCP_NODELAY. */ if (val) { tp->nonagle |= TCP_NAGLE_CORK; } else { tp->nonagle &= ~TCP_NAGLE_CORK; if (tp->nonagle&TCP_NAGLE_OFF) tp->nonagle |= TCP_NAGLE_PUSH; tcp_push_pending_frames(sk); } break; case TCP_KEEPIDLE: if (val < 1 || val > MAX_TCP_KEEPIDLE) err = -EINVAL; else { tp->keepalive_time = val * HZ; if (sock_flag(sk, SOCK_KEEPOPEN) && !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { u32 elapsed = keepalive_time_elapsed(tp); if (tp->keepalive_time > elapsed) elapsed = tp->keepalive_time - elapsed; else elapsed = 0; inet_csk_reset_keepalive_timer(sk, elapsed); } } break; case TCP_KEEPINTVL: if (val < 1 || val > MAX_TCP_KEEPINTVL) err = -EINVAL; else tp->keepalive_intvl = val * HZ; break; case TCP_KEEPCNT: if (val < 1 || val > MAX_TCP_KEEPCNT) err = -EINVAL; else tp->keepalive_probes = val; break; case TCP_SYNCNT: if (val < 1 || val > MAX_TCP_SYNCNT) err = -EINVAL; else icsk->icsk_syn_retries = val; break; case TCP_LINGER2: if (val < 0) tp->linger2 = -1; else if (val > sysctl_tcp_fin_timeout / HZ) tp->linger2 = 0; else tp->linger2 = val * HZ; break; case TCP_DEFER_ACCEPT: /* Translate value in seconds to number of retransmits */ icsk->icsk_accept_queue.rskq_defer_accept = secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); break; case TCP_WINDOW_CLAMP: if (!val) { if (sk->sk_state != TCP_CLOSE) { err = -EINVAL; break; } tp->window_clamp = 0; } else tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? SOCK_MIN_RCVBUF / 2 : val; break; case TCP_QUICKACK: if (!val) { icsk->icsk_ack.pingpong = 1; } else { icsk->icsk_ack.pingpong = 0; if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && inet_csk_ack_scheduled(sk)) { icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; tcp_cleanup_rbuf(sk, 1); if (!(val & 1)) icsk->icsk_ack.pingpong = 1; } } break; #ifdef CONFIG_TCP_MD5SIG case TCP_MD5SIG: /* Read the IP->Key mappings from userspace */ err = tp->af_specific->md5_parse(sk, optval, optlen); break; #endif case TCP_USER_TIMEOUT: /* Cap the max timeout in ms TCP will retry/retrans * before giving up and aborting (ETIMEDOUT) a connection. */ if (val < 0) err = -EINVAL; else icsk->icsk_user_timeout = msecs_to_jiffies(val); break; default: err = -ENOPROTOOPT; break; } release_sock(sk); return err; } int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, unsigned int optlen) { const struct inet_connection_sock *icsk = inet_csk(sk); if (level != SOL_TCP) return icsk->icsk_af_ops->setsockopt(sk, level, optname, optval, optlen); return do_tcp_setsockopt(sk, level, optname, optval, optlen); } EXPORT_SYMBOL(tcp_setsockopt); #ifdef CONFIG_COMPAT int compat_tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, unsigned int optlen) { if (level != SOL_TCP) return inet_csk_compat_setsockopt(sk, level, optname, optval, optlen); return do_tcp_setsockopt(sk, level, optname, optval, optlen); } EXPORT_SYMBOL(compat_tcp_setsockopt); #endif /* Return information about state of tcp endpoint in API format. */ void tcp_get_info(const struct sock *sk, struct tcp_info *info) { const struct tcp_sock *tp = tcp_sk(sk); const struct inet_connection_sock *icsk = inet_csk(sk); u32 now = tcp_time_stamp; memset(info, 0, sizeof(*info)); info->tcpi_state = sk->sk_state; info->tcpi_ca_state = icsk->icsk_ca_state; info->tcpi_retransmits = icsk->icsk_retransmits; info->tcpi_probes = icsk->icsk_probes_out; info->tcpi_backoff = icsk->icsk_backoff; if (tp->rx_opt.tstamp_ok) info->tcpi_options |= TCPI_OPT_TIMESTAMPS; if (tcp_is_sack(tp)) info->tcpi_options |= TCPI_OPT_SACK; if (tp->rx_opt.wscale_ok) { info->tcpi_options |= TCPI_OPT_WSCALE; info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; } if (tp->ecn_flags & TCP_ECN_OK) info->tcpi_options |= TCPI_OPT_ECN; if (tp->ecn_flags & TCP_ECN_SEEN) info->tcpi_options |= TCPI_OPT_ECN_SEEN; info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); info->tcpi_snd_mss = tp->mss_cache; info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; if (sk->sk_state == TCP_LISTEN) { info->tcpi_unacked = sk->sk_ack_backlog; info->tcpi_sacked = sk->sk_max_ack_backlog; } else { info->tcpi_unacked = tp->packets_out; info->tcpi_sacked = tp->sacked_out; } info->tcpi_lost = tp->lost_out; info->tcpi_retrans = tp->retrans_out; info->tcpi_fackets = tp->fackets_out; info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); info->tcpi_pmtu = icsk->icsk_pmtu_cookie; info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3; info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2; info->tcpi_snd_ssthresh = tp->snd_ssthresh; info->tcpi_snd_cwnd = tp->snd_cwnd; info->tcpi_advmss = tp->advmss; info->tcpi_reordering = tp->reordering; info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; info->tcpi_rcv_space = tp->rcvq_space.space; info->tcpi_total_retrans = tp->total_retrans; } EXPORT_SYMBOL_GPL(tcp_get_info); static int do_tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); int val, len; if (get_user(len, optlen)) return -EFAULT; len = min_t(unsigned int, len, sizeof(int)); if (len < 0) return -EINVAL; switch (optname) { case TCP_MAXSEG: val = tp->mss_cache; if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) val = tp->rx_opt.user_mss; break; case TCP_NODELAY: val = !!(tp->nonagle&TCP_NAGLE_OFF); break; case TCP_CORK: val = !!(tp->nonagle&TCP_NAGLE_CORK); break; case TCP_KEEPIDLE: val = keepalive_time_when(tp) / HZ; break; case TCP_KEEPINTVL: val = keepalive_intvl_when(tp) / HZ; break; case TCP_KEEPCNT: val = keepalive_probes(tp); break; case TCP_SYNCNT: val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; break; case TCP_LINGER2: val = tp->linger2; if (val >= 0) val = (val ? : sysctl_tcp_fin_timeout) / HZ; break; case TCP_DEFER_ACCEPT: val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); break; case TCP_WINDOW_CLAMP: val = tp->window_clamp; break; case TCP_INFO: { struct tcp_info info; if (get_user(len, optlen)) return -EFAULT; tcp_get_info(sk, &info); len = min_t(unsigned int, len, sizeof(info)); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &info, len)) return -EFAULT; return 0; } case TCP_QUICKACK: val = !icsk->icsk_ack.pingpong; break; case TCP_CONGESTION: if (get_user(len, optlen)) return -EFAULT; len = min_t(unsigned int, len, TCP_CA_NAME_MAX); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) return -EFAULT; return 0; case TCP_COOKIE_TRANSACTIONS: { struct tcp_cookie_transactions ctd; struct tcp_cookie_values *cvp = tp->cookie_values; if (get_user(len, optlen)) return -EFAULT; if (len < sizeof(ctd)) return -EINVAL; memset(&ctd, 0, sizeof(ctd)); ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ? TCP_COOKIE_IN_ALWAYS : 0) | (tp->rx_opt.cookie_out_never ? TCP_COOKIE_OUT_NEVER : 0); if (cvp != NULL) { ctd.tcpct_flags |= (cvp->s_data_in ? TCP_S_DATA_IN : 0) | (cvp->s_data_out ? TCP_S_DATA_OUT : 0); ctd.tcpct_cookie_desired = cvp->cookie_desired; ctd.tcpct_s_data_desired = cvp->s_data_desired; memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0], cvp->cookie_pair_size); ctd.tcpct_used = cvp->cookie_pair_size; } if (put_user(sizeof(ctd), optlen)) return -EFAULT; if (copy_to_user(optval, &ctd, sizeof(ctd))) return -EFAULT; return 0; } case TCP_THIN_LINEAR_TIMEOUTS: val = tp->thin_lto; break; case TCP_THIN_DUPACK: val = tp->thin_dupack; break; case TCP_USER_TIMEOUT: val = jiffies_to_msecs(icsk->icsk_user_timeout); break; default: return -ENOPROTOOPT; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { struct inet_connection_sock *icsk = inet_csk(sk); if (level != SOL_TCP) return icsk->icsk_af_ops->getsockopt(sk, level, optname, optval, optlen); return do_tcp_getsockopt(sk, level, optname, optval, optlen); } EXPORT_SYMBOL(tcp_getsockopt); #ifdef CONFIG_COMPAT int compat_tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { if (level != SOL_TCP) return inet_csk_compat_getsockopt(sk, level, optname, optval, optlen); return do_tcp_getsockopt(sk, level, optname, optval, optlen); } EXPORT_SYMBOL(compat_tcp_getsockopt); #endif struct sk_buff *tcp_tso_segment(struct sk_buff *skb, u32 features) { struct sk_buff *segs = ERR_PTR(-EINVAL); struct tcphdr *th; unsigned thlen; unsigned int seq; __be32 delta; unsigned int oldlen; unsigned int mss; if (!pskb_may_pull(skb, sizeof(*th))) goto out; th = tcp_hdr(skb); thlen = th->doff * 4; if (thlen < sizeof(*th)) goto out; if (!pskb_may_pull(skb, thlen)) goto out; oldlen = (u16)~skb->len; __skb_pull(skb, thlen); mss = skb_shinfo(skb)->gso_size; if (unlikely(skb->len <= mss)) goto out; if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) { /* Packet is from an untrusted source, reset gso_segs. */ int type = skb_shinfo(skb)->gso_type; if (unlikely(type & ~(SKB_GSO_TCPV4 | SKB_GSO_DODGY | SKB_GSO_TCP_ECN | SKB_GSO_TCPV6 | 0) || !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))) goto out; skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss); segs = NULL; goto out; } segs = skb_segment(skb, features); if (IS_ERR(segs)) goto out; delta = htonl(oldlen + (thlen + mss)); skb = segs; th = tcp_hdr(skb); seq = ntohl(th->seq); do { th->fin = th->psh = 0; th->check = ~csum_fold((__force __wsum)((__force u32)th->check + (__force u32)delta)); if (skb->ip_summed != CHECKSUM_PARTIAL) th->check = csum_fold(csum_partial(skb_transport_header(skb), thlen, skb->csum)); seq += mss; skb = skb->next; th = tcp_hdr(skb); th->seq = htonl(seq); th->cwr = 0; } while (skb->next); delta = htonl(oldlen + (skb->tail - skb->transport_header) + skb->data_len); th->check = ~csum_fold((__force __wsum)((__force u32)th->check + (__force u32)delta)); if (skb->ip_summed != CHECKSUM_PARTIAL) th->check = csum_fold(csum_partial(skb_transport_header(skb), thlen, skb->csum)); out: return segs; } EXPORT_SYMBOL(tcp_tso_segment); struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb) { struct sk_buff **pp = NULL; struct sk_buff *p; struct tcphdr *th; struct tcphdr *th2; unsigned int len; unsigned int thlen; __be32 flags; unsigned int mss = 1; unsigned int hlen; unsigned int off; int flush = 1; int i; off = skb_gro_offset(skb); hlen = off + sizeof(*th); th = skb_gro_header_fast(skb, off); if (skb_gro_header_hard(skb, hlen)) { th = skb_gro_header_slow(skb, hlen, off); if (unlikely(!th)) goto out; } thlen = th->doff * 4; if (thlen < sizeof(*th)) goto out; hlen = off + thlen; if (skb_gro_header_hard(skb, hlen)) { th = skb_gro_header_slow(skb, hlen, off); if (unlikely(!th)) goto out; } skb_gro_pull(skb, thlen); len = skb_gro_len(skb); flags = tcp_flag_word(th); for (; (p = *head); head = &p->next) { if (!NAPI_GRO_CB(p)->same_flow) continue; th2 = tcp_hdr(p); if (*(u32 *)&th->source ^ *(u32 *)&th2->source) { NAPI_GRO_CB(p)->same_flow = 0; continue; } goto found; } goto out_check_final; found: flush = NAPI_GRO_CB(p)->flush; flush |= (__force int)(flags & TCP_FLAG_CWR); flush |= (__force int)((flags ^ tcp_flag_word(th2)) & ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH)); flush |= (__force int)(th->ack_seq ^ th2->ack_seq); for (i = sizeof(*th); i < thlen; i += 4) flush |= *(u32 *)((u8 *)th + i) ^ *(u32 *)((u8 *)th2 + i); mss = skb_shinfo(p)->gso_size; flush |= (len - 1) >= mss; flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq); if (flush || skb_gro_receive(head, skb)) { mss = 1; goto out_check_final; } p = *head; th2 = tcp_hdr(p); tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH); out_check_final: flush = len < mss; flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH | TCP_FLAG_RST | TCP_FLAG_SYN | TCP_FLAG_FIN)); if (p && (!NAPI_GRO_CB(skb)->same_flow || flush)) pp = head; out: NAPI_GRO_CB(skb)->flush |= flush; return pp; } EXPORT_SYMBOL(tcp_gro_receive); int tcp_gro_complete(struct sk_buff *skb) { struct tcphdr *th = tcp_hdr(skb); skb->csum_start = skb_transport_header(skb) - skb->head; skb->csum_offset = offsetof(struct tcphdr, check); skb->ip_summed = CHECKSUM_PARTIAL; skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; if (th->cwr) skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; return 0; } EXPORT_SYMBOL(tcp_gro_complete); #ifdef CONFIG_TCP_MD5SIG static unsigned long tcp_md5sig_users; static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool; static DEFINE_SPINLOCK(tcp_md5sig_pool_lock); static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool) { int cpu; for_each_possible_cpu(cpu) { struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu); if (p->md5_desc.tfm) crypto_free_hash(p->md5_desc.tfm); } free_percpu(pool); } void tcp_free_md5sig_pool(void) { struct tcp_md5sig_pool __percpu *pool = NULL; spin_lock_bh(&tcp_md5sig_pool_lock); if (--tcp_md5sig_users == 0) { pool = tcp_md5sig_pool; tcp_md5sig_pool = NULL; } spin_unlock_bh(&tcp_md5sig_pool_lock); if (pool) __tcp_free_md5sig_pool(pool); } EXPORT_SYMBOL(tcp_free_md5sig_pool); static struct tcp_md5sig_pool __percpu * __tcp_alloc_md5sig_pool(struct sock *sk) { int cpu; struct tcp_md5sig_pool __percpu *pool; pool = alloc_percpu(struct tcp_md5sig_pool); if (!pool) return NULL; for_each_possible_cpu(cpu) { struct crypto_hash *hash; hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); if (!hash || IS_ERR(hash)) goto out_free; per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash; } return pool; out_free: __tcp_free_md5sig_pool(pool); return NULL; } struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk) { struct tcp_md5sig_pool __percpu *pool; int alloc = 0; retry: spin_lock_bh(&tcp_md5sig_pool_lock); pool = tcp_md5sig_pool; if (tcp_md5sig_users++ == 0) { alloc = 1; spin_unlock_bh(&tcp_md5sig_pool_lock); } else if (!pool) { tcp_md5sig_users--; spin_unlock_bh(&tcp_md5sig_pool_lock); cpu_relax(); goto retry; } else spin_unlock_bh(&tcp_md5sig_pool_lock); if (alloc) { /* we cannot hold spinlock here because this may sleep. */ struct tcp_md5sig_pool __percpu *p; p = __tcp_alloc_md5sig_pool(sk); spin_lock_bh(&tcp_md5sig_pool_lock); if (!p) { tcp_md5sig_users--; spin_unlock_bh(&tcp_md5sig_pool_lock); return NULL; } pool = tcp_md5sig_pool; if (pool) { /* oops, it has already been assigned. */ spin_unlock_bh(&tcp_md5sig_pool_lock); __tcp_free_md5sig_pool(p); } else { tcp_md5sig_pool = pool = p; spin_unlock_bh(&tcp_md5sig_pool_lock); } } return pool; } EXPORT_SYMBOL(tcp_alloc_md5sig_pool); /** * tcp_get_md5sig_pool - get md5sig_pool for this user * * We use percpu structure, so if we succeed, we exit with preemption * and BH disabled, to make sure another thread or softirq handling * wont try to get same context. */ struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) { struct tcp_md5sig_pool __percpu *p; local_bh_disable(); spin_lock(&tcp_md5sig_pool_lock); p = tcp_md5sig_pool; if (p) tcp_md5sig_users++; spin_unlock(&tcp_md5sig_pool_lock); if (p) return this_cpu_ptr(p); local_bh_enable(); return NULL; } EXPORT_SYMBOL(tcp_get_md5sig_pool); void tcp_put_md5sig_pool(void) { local_bh_enable(); tcp_free_md5sig_pool(); } EXPORT_SYMBOL(tcp_put_md5sig_pool); int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, const struct tcphdr *th) { struct scatterlist sg; struct tcphdr hdr; int err; /* We are not allowed to change tcphdr, make a local copy */ memcpy(&hdr, th, sizeof(hdr)); hdr.check = 0; /* options aren't included in the hash */ sg_init_one(&sg, &hdr, sizeof(hdr)); err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr)); return err; } EXPORT_SYMBOL(tcp_md5_hash_header); int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, const struct sk_buff *skb, unsigned int header_len) { struct scatterlist sg; const struct tcphdr *tp = tcp_hdr(skb); struct hash_desc *desc = &hp->md5_desc; unsigned i; const unsigned head_data_len = skb_headlen(skb) > header_len ? skb_headlen(skb) - header_len : 0; const struct skb_shared_info *shi = skb_shinfo(skb); struct sk_buff *frag_iter; sg_init_table(&sg, 1); sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); if (crypto_hash_update(desc, &sg, head_data_len)) return 1; for (i = 0; i < shi->nr_frags; ++i) { const struct skb_frag_struct *f = &shi->frags[i]; struct page *page = skb_frag_page(f); sg_set_page(&sg, page, skb_frag_size(f), f->page_offset); if (crypto_hash_update(desc, &sg, skb_frag_size(f))) return 1; } skb_walk_frags(skb, frag_iter) if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) return 1; return 0; } EXPORT_SYMBOL(tcp_md5_hash_skb_data); int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) { struct scatterlist sg; sg_init_one(&sg, key->key, key->keylen); return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); } EXPORT_SYMBOL(tcp_md5_hash_key); #endif /** * Each Responder maintains up to two secret values concurrently for * efficient secret rollover. Each secret value has 4 states: * * Generating. (tcp_secret_generating != tcp_secret_primary) * Generates new Responder-Cookies, but not yet used for primary * verification. This is a short-term state, typically lasting only * one round trip time (RTT). * * Primary. (tcp_secret_generating == tcp_secret_primary) * Used both for generation and primary verification. * * Retiring. (tcp_secret_retiring != tcp_secret_secondary) * Used for verification, until the first failure that can be * verified by the newer Generating secret. At that time, this * cookie's state is changed to Secondary, and the Generating * cookie's state is changed to Primary. This is a short-term state, * typically lasting only one round trip time (RTT). * * Secondary. (tcp_secret_retiring == tcp_secret_secondary) * Used for secondary verification, after primary verification * failures. This state lasts no more than twice the Maximum Segment * Lifetime (2MSL). Then, the secret is discarded. */ struct tcp_cookie_secret { /* The secret is divided into two parts. The digest part is the * equivalent of previously hashing a secret and saving the state, * and serves as an initialization vector (IV). The message part * serves as the trailing secret. */ u32 secrets[COOKIE_WORKSPACE_WORDS]; unsigned long expires; }; #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL) #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2) #define TCP_SECRET_LIFE (HZ * 600) static struct tcp_cookie_secret tcp_secret_one; static struct tcp_cookie_secret tcp_secret_two; /* Essentially a circular list, without dynamic allocation. */ static struct tcp_cookie_secret *tcp_secret_generating; static struct tcp_cookie_secret *tcp_secret_primary; static struct tcp_cookie_secret *tcp_secret_retiring; static struct tcp_cookie_secret *tcp_secret_secondary; static DEFINE_SPINLOCK(tcp_secret_locker); /* Select a pseudo-random word in the cookie workspace. */ static inline u32 tcp_cookie_work(const u32 *ws, const int n) { return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])]; } /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed. * Called in softirq context. * Returns: 0 for success. */ int tcp_cookie_generator(u32 *bakery) { unsigned long jiffy = jiffies; if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) { spin_lock_bh(&tcp_secret_locker); if (!time_after_eq(jiffy, tcp_secret_generating->expires)) { /* refreshed by another */ memcpy(bakery, &tcp_secret_generating->secrets[0], COOKIE_WORKSPACE_WORDS); } else { /* still needs refreshing */ get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS); /* The first time, paranoia assumes that the * randomization function isn't as strong. But, * this secret initialization is delayed until * the last possible moment (packet arrival). * Although that time is observable, it is * unpredictably variable. Mash in the most * volatile clock bits available, and expire the * secret extra quickly. */ if (unlikely(tcp_secret_primary->expires == tcp_secret_secondary->expires)) { struct timespec tv; getnstimeofday(&tv); bakery[COOKIE_DIGEST_WORDS+0] ^= (u32)tv.tv_nsec; tcp_secret_secondary->expires = jiffy + TCP_SECRET_1MSL + (0x0f & tcp_cookie_work(bakery, 0)); } else { tcp_secret_secondary->expires = jiffy + TCP_SECRET_LIFE + (0xff & tcp_cookie_work(bakery, 1)); tcp_secret_primary->expires = jiffy + TCP_SECRET_2MSL + (0x1f & tcp_cookie_work(bakery, 2)); } memcpy(&tcp_secret_secondary->secrets[0], bakery, COOKIE_WORKSPACE_WORDS); rcu_assign_pointer(tcp_secret_generating, tcp_secret_secondary); rcu_assign_pointer(tcp_secret_retiring, tcp_secret_primary); /* * Neither call_rcu() nor synchronize_rcu() needed. * Retiring data is not freed. It is replaced after * further (locked) pointer updates, and a quiet time * (minimum 1MSL, maximum LIFE - 2MSL). */ } spin_unlock_bh(&tcp_secret_locker); } else { rcu_read_lock_bh(); memcpy(bakery, &rcu_dereference(tcp_secret_generating)->secrets[0], COOKIE_WORKSPACE_WORDS); rcu_read_unlock_bh(); } return 0; } EXPORT_SYMBOL(tcp_cookie_generator); void tcp_done(struct sock *sk) { if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); tcp_set_state(sk, TCP_CLOSE); tcp_clear_xmit_timers(sk); sk->sk_shutdown = SHUTDOWN_MASK; if (!sock_flag(sk, SOCK_DEAD)) sk->sk_state_change(sk); else inet_csk_destroy_sock(sk); } EXPORT_SYMBOL_GPL(tcp_done); extern struct tcp_congestion_ops tcp_reno; static __initdata unsigned long thash_entries; static int __init set_thash_entries(char *str) { if (!str) return 0; thash_entries = simple_strtoul(str, &str, 0); return 1; } __setup("thash_entries=", set_thash_entries); void __init tcp_init(void) { struct sk_buff *skb = NULL; unsigned long limit; int i, max_rshare, max_wshare, cnt; unsigned long jiffy = jiffies; BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb)); percpu_counter_init(&tcp_sockets_allocated, 0); percpu_counter_init(&tcp_orphan_count, 0); tcp_hashinfo.bind_bucket_cachep = kmem_cache_create("tcp_bind_bucket", sizeof(struct inet_bind_bucket), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); /* Size and allocate the main established and bind bucket * hash tables. * * The methodology is similar to that of the buffer cache. */ tcp_hashinfo.ehash = alloc_large_system_hash("TCP established", sizeof(struct inet_ehash_bucket), thash_entries, (totalram_pages >= 128 * 1024) ? 13 : 15, 0, NULL, &tcp_hashinfo.ehash_mask, thash_entries ? 0 : 512 * 1024); for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) { INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i); } if (inet_ehash_locks_alloc(&tcp_hashinfo)) panic("TCP: failed to alloc ehash_locks"); tcp_hashinfo.bhash = alloc_large_system_hash("TCP bind", sizeof(struct inet_bind_hashbucket), tcp_hashinfo.ehash_mask + 1, (totalram_pages >= 128 * 1024) ? 13 : 15, 0, &tcp_hashinfo.bhash_size, NULL, 64 * 1024); tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size; for (i = 0; i < tcp_hashinfo.bhash_size; i++) { spin_lock_init(&tcp_hashinfo.bhash[i].lock); INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); } cnt = tcp_hashinfo.ehash_mask + 1; tcp_death_row.sysctl_max_tw_buckets = cnt / 2; sysctl_tcp_max_orphans = cnt / 2; sysctl_max_syn_backlog = max(128, cnt / 256); limit = nr_free_buffer_pages() / 8; limit = max(limit, 128UL); sysctl_tcp_mem[0] = limit / 4 * 3; sysctl_tcp_mem[1] = limit; sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* Set per-socket limits to no more than 1/128 the pressure threshold */ limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7); max_wshare = min(4UL*1024*1024, limit); max_rshare = min(6UL*1024*1024, limit); sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; sysctl_tcp_wmem[1] = 16*1024; sysctl_tcp_wmem[2] = max(64*1024, max_wshare); sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; sysctl_tcp_rmem[1] = 87380; sysctl_tcp_rmem[2] = max(87380, max_rshare); printk(KERN_INFO "TCP: Hash tables configured " "(established %u bind %u)\n", tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); tcp_register_congestion_control(&tcp_reno); memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets)); memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets)); tcp_secret_one.expires = jiffy; /* past due */ tcp_secret_two.expires = jiffy; /* past due */ tcp_secret_generating = &tcp_secret_one; tcp_secret_primary = &tcp_secret_one; tcp_secret_retiring = &tcp_secret_two; tcp_secret_secondary = &tcp_secret_two; }