/* * TCP CUBIC: Binary Increase Congestion control for TCP v2.3 * Home page: * http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC * This is from the implementation of CUBIC TCP in * Sangtae Ha, Injong Rhee and Lisong Xu, * "CUBIC: A New TCP-Friendly High-Speed TCP Variant" * in ACM SIGOPS Operating System Review, July 2008. * Available from: * http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf * * CUBIC integrates a new slow start algorithm, called HyStart. * The details of HyStart are presented in * Sangtae Ha and Injong Rhee, * "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008. * Available from: * http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf * * All testing results are available from: * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing * * Unless CUBIC is enabled and congestion window is large * this behaves the same as the original Reno. */ #include #include #include #include #define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation * max_cwnd = snd_cwnd * beta */ #define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */ /* Two methods of hybrid slow start */ #define HYSTART_ACK_TRAIN 0x1 #define HYSTART_DELAY 0x2 /* Number of delay samples for detecting the increase of delay */ #define HYSTART_MIN_SAMPLES 8 #define HYSTART_DELAY_MIN (2U<<3) #define HYSTART_DELAY_MAX (16U<<3) #define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX) static int fast_convergence __read_mostly = 1; static int beta __read_mostly = 717; /* = 717/1024 (BICTCP_BETA_SCALE) */ static int initial_ssthresh __read_mostly; static int bic_scale __read_mostly = 41; static int tcp_friendliness __read_mostly = 1; static int hystart __read_mostly = 1; static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY; static int hystart_low_window __read_mostly = 16; static u32 cube_rtt_scale __read_mostly; static u32 beta_scale __read_mostly; static u64 cube_factor __read_mostly; /* Note parameters that are used for precomputing scale factors are read-only */ module_param(fast_convergence, int, 0644); MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence"); module_param(beta, int, 0644); MODULE_PARM_DESC(beta, "beta for multiplicative increase"); module_param(initial_ssthresh, int, 0644); MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold"); module_param(bic_scale, int, 0444); MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)"); module_param(tcp_friendliness, int, 0644); MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness"); module_param(hystart, int, 0644); MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm"); module_param(hystart_detect, int, 0644); MODULE_PARM_DESC(hystart_detect, "hyrbrid slow start detection mechanisms" " 1: packet-train 2: delay 3: both packet-train and delay"); module_param(hystart_low_window, int, 0644); MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start"); /* BIC TCP Parameters */ struct bictcp { u32 cnt; /* increase cwnd by 1 after ACKs */ u32 last_max_cwnd; /* last maximum snd_cwnd */ u32 loss_cwnd; /* congestion window at last loss */ u32 last_cwnd; /* the last snd_cwnd */ u32 last_time; /* time when updated last_cwnd */ u32 bic_origin_point;/* origin point of bic function */ u32 bic_K; /* time to origin point from the beginning of the current epoch */ u32 delay_min; /* min delay */ u32 epoch_start; /* beginning of an epoch */ u32 ack_cnt; /* number of acks */ u32 tcp_cwnd; /* estimated tcp cwnd */ #define ACK_RATIO_SHIFT 4 #define ACK_RATIO_LIMIT (32u << ACK_RATIO_SHIFT) u16 delayed_ack; /* estimate the ratio of Packets/ACKs << 4 */ u8 sample_cnt; /* number of samples to decide curr_rtt */ u8 found; /* the exit point is found? */ u32 round_start; /* beginning of each round */ u32 end_seq; /* end_seq of the round */ u32 last_jiffies; /* last time when the ACK spacing is close */ u32 curr_rtt; /* the minimum rtt of current round */ }; static inline void bictcp_reset(struct bictcp *ca) { ca->cnt = 0; ca->last_max_cwnd = 0; ca->loss_cwnd = 0; ca->last_cwnd = 0; ca->last_time = 0; ca->bic_origin_point = 0; ca->bic_K = 0; ca->delay_min = 0; ca->epoch_start = 0; ca->delayed_ack = 2 << ACK_RATIO_SHIFT; ca->ack_cnt = 0; ca->tcp_cwnd = 0; ca->found = 0; } static inline void bictcp_hystart_reset(struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); struct bictcp *ca = inet_csk_ca(sk); ca->round_start = ca->last_jiffies = jiffies; ca->end_seq = tp->snd_nxt; ca->curr_rtt = 0; ca->sample_cnt = 0; } static void bictcp_init(struct sock *sk) { bictcp_reset(inet_csk_ca(sk)); if (hystart) bictcp_hystart_reset(sk); if (!hystart && initial_ssthresh) tcp_sk(sk)->snd_ssthresh = initial_ssthresh; } /* calculate the cubic root of x using a table lookup followed by one * Newton-Raphson iteration. * Avg err ~= 0.195% */ static u32 cubic_root(u64 a) { u32 x, b, shift; /* * cbrt(x) MSB values for x MSB values in [0..63]. * Precomputed then refined by hand - Willy Tarreau * * For x in [0..63], * v = cbrt(x << 18) - 1 * cbrt(x) = (v[x] + 10) >> 6 */ static const u8 v[] = { /* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118, /* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156, /* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179, /* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199, /* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215, /* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229, /* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242, /* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254, }; b = fls64(a); if (b < 7) { /* a in [0..63] */ return ((u32)v[(u32)a] + 35) >> 6; } b = ((b * 84) >> 8) - 1; shift = (a >> (b * 3)); x = ((u32)(((u32)v[shift] + 10) << b)) >> 6; /* * Newton-Raphson iteration * 2 * x = ( 2 * x + a / x ) / 3 * k+1 k k */ x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1))); x = ((x * 341) >> 10); return x; } /* * Compute congestion window to use. */ static inline void bictcp_update(struct bictcp *ca, u32 cwnd) { u64 offs; u32 delta, t, bic_target, max_cnt; ca->ack_cnt++; /* count the number of ACKs */ if (ca->last_cwnd == cwnd && (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32) return; ca->last_cwnd = cwnd; ca->last_time = tcp_time_stamp; if (ca->epoch_start == 0) { ca->epoch_start = tcp_time_stamp; /* record the beginning of an epoch */ ca->ack_cnt = 1; /* start counting */ ca->tcp_cwnd = cwnd; /* syn with cubic */ if (ca->last_max_cwnd <= cwnd) { ca->bic_K = 0; ca->bic_origin_point = cwnd; } else { /* Compute new K based on * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ) */ ca->bic_K = cubic_root(cube_factor * (ca->last_max_cwnd - cwnd)); ca->bic_origin_point = ca->last_max_cwnd; } } /* cubic function - calc*/ /* calculate c * time^3 / rtt, * while considering overflow in calculation of time^3 * (so time^3 is done by using 64 bit) * and without the support of division of 64bit numbers * (so all divisions are done by using 32 bit) * also NOTE the unit of those veriables * time = (t - K) / 2^bictcp_HZ * c = bic_scale >> 10 * rtt = (srtt >> 3) / HZ * !!! The following code does not have overflow problems, * if the cwnd < 1 million packets !!! */ /* change the unit from HZ to bictcp_HZ */ t = ((tcp_time_stamp + (ca->delay_min>>3) - ca->epoch_start) << BICTCP_HZ) / HZ; if (t < ca->bic_K) /* t - K */ offs = ca->bic_K - t; else offs = t - ca->bic_K; /* c/rtt * (t-K)^3 */ delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ); if (t < ca->bic_K) /* below origin*/ bic_target = ca->bic_origin_point - delta; else /* above origin*/ bic_target = ca->bic_origin_point + delta; /* cubic function - calc bictcp_cnt*/ if (bic_target > cwnd) { ca->cnt = cwnd / (bic_target - cwnd); } else { ca->cnt = 100 * cwnd; /* very small increment*/ } /* TCP Friendly */ if (tcp_friendliness) { u32 scale = beta_scale; delta = (cwnd * scale) >> 3; while (ca->ack_cnt > delta) { /* update tcp cwnd */ ca->ack_cnt -= delta; ca->tcp_cwnd++; } if (ca->tcp_cwnd > cwnd){ /* if bic is slower than tcp */ delta = ca->tcp_cwnd - cwnd; max_cnt = cwnd / delta; if (ca->cnt > max_cnt) ca->cnt = max_cnt; } } ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack; if (ca->cnt == 0) /* cannot be zero */ ca->cnt = 1; } static void bictcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) { struct tcp_sock *tp = tcp_sk(sk); struct bictcp *ca = inet_csk_ca(sk); if (!tcp_is_cwnd_limited(sk, in_flight)) return; if (tp->snd_cwnd <= tp->snd_ssthresh) { if (hystart && after(ack, ca->end_seq)) bictcp_hystart_reset(sk); tcp_slow_start(tp); } else { bictcp_update(ca, tp->snd_cwnd); tcp_cong_avoid_ai(tp, ca->cnt); } } static u32 bictcp_recalc_ssthresh(struct sock *sk) { const struct tcp_sock *tp = tcp_sk(sk); struct bictcp *ca = inet_csk_ca(sk); ca->epoch_start = 0; /* end of epoch */ /* Wmax and fast convergence */ if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence) ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta)) / (2 * BICTCP_BETA_SCALE); else ca->last_max_cwnd = tp->snd_cwnd; ca->loss_cwnd = tp->snd_cwnd; return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U); } static u32 bictcp_undo_cwnd(struct sock *sk) { struct bictcp *ca = inet_csk_ca(sk); return max(tcp_sk(sk)->snd_cwnd, ca->last_max_cwnd); } static void bictcp_state(struct sock *sk, u8 new_state) { if (new_state == TCP_CA_Loss) { bictcp_reset(inet_csk_ca(sk)); bictcp_hystart_reset(sk); } } static void hystart_update(struct sock *sk, u32 delay) { struct tcp_sock *tp = tcp_sk(sk); struct bictcp *ca = inet_csk_ca(sk); if (!(ca->found & hystart_detect)) { u32 curr_jiffies = jiffies; /* first detection parameter - ack-train detection */ if (curr_jiffies - ca->last_jiffies <= msecs_to_jiffies(2)) { ca->last_jiffies = curr_jiffies; if (curr_jiffies - ca->round_start >= ca->delay_min>>4) ca->found |= HYSTART_ACK_TRAIN; } /* obtain the minimum delay of more than sampling packets */ if (ca->sample_cnt < HYSTART_MIN_SAMPLES) { if (ca->curr_rtt == 0 || ca->curr_rtt > delay) ca->curr_rtt = delay; ca->sample_cnt++; } else { if (ca->curr_rtt > ca->delay_min + HYSTART_DELAY_THRESH(ca->delay_min>>4)) ca->found |= HYSTART_DELAY; } /* * Either one of two conditions are met, * we exit from slow start immediately. */ if (ca->found & hystart_detect) tp->snd_ssthresh = tp->snd_cwnd; } } /* Track delayed acknowledgment ratio using sliding window * ratio = (15*ratio + sample) / 16 */ static void bictcp_acked(struct sock *sk, u32 cnt, s32 rtt_us) { const struct inet_connection_sock *icsk = inet_csk(sk); const struct tcp_sock *tp = tcp_sk(sk); struct bictcp *ca = inet_csk_ca(sk); u32 delay; if (icsk->icsk_ca_state == TCP_CA_Open) { u32 ratio = ca->delayed_ack; ratio -= ca->delayed_ack >> ACK_RATIO_SHIFT; ratio += cnt; ca->delayed_ack = clamp(ratio, 1U, ACK_RATIO_LIMIT); } /* Some calls are for duplicates without timetamps */ if (rtt_us < 0) return; /* Discard delay samples right after fast recovery */ if (ca->epoch_start && (s32)(tcp_time_stamp - ca->epoch_start) < HZ) return; delay = usecs_to_jiffies(rtt_us) << 3; if (delay == 0) delay = 1; /* first time call or link delay decreases */ if (ca->delay_min == 0 || ca->delay_min > delay) ca->delay_min = delay; /* hystart triggers when cwnd is larger than some threshold */ if (hystart && tp->snd_cwnd <= tp->snd_ssthresh && tp->snd_cwnd >= hystart_low_window) hystart_update(sk, delay); } static struct tcp_congestion_ops cubictcp = { .init = bictcp_init, .ssthresh = bictcp_recalc_ssthresh, .cong_avoid = bictcp_cong_avoid, .set_state = bictcp_state, .undo_cwnd = bictcp_undo_cwnd, .pkts_acked = bictcp_acked, .owner = THIS_MODULE, .name = "cubic", }; static int __init cubictcp_register(void) { BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE); /* Precompute a bunch of the scaling factors that are used per-packet * based on SRTT of 100ms */ beta_scale = 8*(BICTCP_BETA_SCALE+beta)/ 3 / (BICTCP_BETA_SCALE - beta); cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */ /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3 * so K = cubic_root( (wmax-cwnd)*rtt/c ) * the unit of K is bictcp_HZ=2^10, not HZ * * c = bic_scale >> 10 * rtt = 100ms * * the following code has been designed and tested for * cwnd < 1 million packets * RTT < 100 seconds * HZ < 1,000,00 (corresponding to 10 nano-second) */ /* 1/c * 2^2*bictcp_HZ * srtt */ cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */ /* divide by bic_scale and by constant Srtt (100ms) */ do_div(cube_factor, bic_scale * 10); return tcp_register_congestion_control(&cubictcp); } static void __exit cubictcp_unregister(void) { tcp_unregister_congestion_control(&cubictcp); } module_init(cubictcp_register); module_exit(cubictcp_unregister); MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("CUBIC TCP"); MODULE_VERSION("2.3");