/* * linux/sound/arm/aaci.c - ARM PrimeCell AACI PL041 driver * * Copyright (C) 2003 Deep Blue Solutions Ltd, All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Documentation: ARM DDI 0173B */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "aaci.h" #define DRIVER_NAME "aaci-pl041" #define FRAME_PERIOD_US 21 /* * PM support is not complete. Turn it off. */ #undef CONFIG_PM static void aaci_ac97_select_codec(struct aaci *aaci, struct snd_ac97 *ac97) { u32 v, maincr = aaci->maincr | MAINCR_SCRA(ac97->num); /* * Ensure that the slot 1/2 RX registers are empty. */ v = readl(aaci->base + AACI_SLFR); if (v & SLFR_2RXV) readl(aaci->base + AACI_SL2RX); if (v & SLFR_1RXV) readl(aaci->base + AACI_SL1RX); writel(maincr, aaci->base + AACI_MAINCR); } /* * P29: * The recommended use of programming the external codec through slot 1 * and slot 2 data is to use the channels during setup routines and the * slot register at any other time. The data written into slot 1, slot 2 * and slot 12 registers is transmitted only when their corresponding * SI1TxEn, SI2TxEn and SI12TxEn bits are set in the AACI_MAINCR * register. */ static void aaci_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short val) { struct aaci *aaci = ac97->private_data; int timeout; u32 v; if (ac97->num >= 4) return; mutex_lock(&aaci->ac97_sem); aaci_ac97_select_codec(aaci, ac97); /* * P54: You must ensure that AACI_SL2TX is always written * to, if required, before data is written to AACI_SL1TX. */ writel(val << 4, aaci->base + AACI_SL2TX); writel(reg << 12, aaci->base + AACI_SL1TX); /* Initially, wait one frame period */ udelay(FRAME_PERIOD_US); /* And then wait an additional eight frame periods for it to be sent */ timeout = FRAME_PERIOD_US * 8; do { udelay(1); v = readl(aaci->base + AACI_SLFR); } while ((v & (SLFR_1TXB|SLFR_2TXB)) && --timeout); if (v & (SLFR_1TXB|SLFR_2TXB)) dev_err(&aaci->dev->dev, "timeout waiting for write to complete\n"); mutex_unlock(&aaci->ac97_sem); } /* * Read an AC'97 register. */ static unsigned short aaci_ac97_read(struct snd_ac97 *ac97, unsigned short reg) { struct aaci *aaci = ac97->private_data; int timeout, retries = 10; u32 v; if (ac97->num >= 4) return ~0; mutex_lock(&aaci->ac97_sem); aaci_ac97_select_codec(aaci, ac97); /* * Write the register address to slot 1. */ writel((reg << 12) | (1 << 19), aaci->base + AACI_SL1TX); /* Initially, wait one frame period */ udelay(FRAME_PERIOD_US); /* And then wait an additional eight frame periods for it to be sent */ timeout = FRAME_PERIOD_US * 8; do { udelay(1); v = readl(aaci->base + AACI_SLFR); } while ((v & SLFR_1TXB) && --timeout); if (v & SLFR_1TXB) { dev_err(&aaci->dev->dev, "timeout on slot 1 TX busy\n"); v = ~0; goto out; } /* Now wait for the response frame */ udelay(FRAME_PERIOD_US); /* And then wait an additional eight frame periods for data */ timeout = FRAME_PERIOD_US * 8; do { udelay(1); cond_resched(); v = readl(aaci->base + AACI_SLFR) & (SLFR_1RXV|SLFR_2RXV); } while ((v != (SLFR_1RXV|SLFR_2RXV)) && --timeout); if (v != (SLFR_1RXV|SLFR_2RXV)) { dev_err(&aaci->dev->dev, "timeout on RX valid\n"); v = ~0; goto out; } do { v = readl(aaci->base + AACI_SL1RX) >> 12; if (v == reg) { v = readl(aaci->base + AACI_SL2RX) >> 4; break; } else if (--retries) { dev_warn(&aaci->dev->dev, "ac97 read back fail. retry\n"); continue; } else { dev_warn(&aaci->dev->dev, "wrong ac97 register read back (%x != %x)\n", v, reg); v = ~0; } } while (retries); out: mutex_unlock(&aaci->ac97_sem); return v; } static inline void aaci_chan_wait_ready(struct aaci_runtime *aacirun, unsigned long mask) { u32 val; int timeout = 5000; do { udelay(1); val = readl(aacirun->base + AACI_SR); } while (val & mask && timeout--); } /* * Interrupt support. */ static void aaci_fifo_irq(struct aaci *aaci, int channel, u32 mask) { if (mask & ISR_ORINTR) { dev_warn(&aaci->dev->dev, "RX overrun on chan %d\n", channel); writel(ICLR_RXOEC1 << channel, aaci->base + AACI_INTCLR); } if (mask & ISR_RXTOINTR) { dev_warn(&aaci->dev->dev, "RX timeout on chan %d\n", channel); writel(ICLR_RXTOFEC1 << channel, aaci->base + AACI_INTCLR); } if (mask & ISR_RXINTR) { struct aaci_runtime *aacirun = &aaci->capture; bool period_elapsed = false; void *ptr; if (!aacirun->substream || !aacirun->start) { dev_warn(&aaci->dev->dev, "RX interrupt???\n"); writel(0, aacirun->base + AACI_IE); return; } spin_lock(&aacirun->lock); ptr = aacirun->ptr; do { unsigned int len = aacirun->fifo_bytes; u32 val; if (aacirun->bytes <= 0) { aacirun->bytes += aacirun->period; period_elapsed = true; } if (!(aacirun->cr & CR_EN)) break; val = readl(aacirun->base + AACI_SR); if (!(val & SR_RXHF)) break; if (!(val & SR_RXFF)) len >>= 1; aacirun->bytes -= len; /* reading 16 bytes at a time */ for( ; len > 0; len -= 16) { asm( "ldmia %1, {r0, r1, r2, r3}\n\t" "stmia %0!, {r0, r1, r2, r3}" : "+r" (ptr) : "r" (aacirun->fifo) : "r0", "r1", "r2", "r3", "cc"); if (ptr >= aacirun->end) ptr = aacirun->start; } } while(1); aacirun->ptr = ptr; spin_unlock(&aacirun->lock); if (period_elapsed) snd_pcm_period_elapsed(aacirun->substream); } if (mask & ISR_URINTR) { dev_dbg(&aaci->dev->dev, "TX underrun on chan %d\n", channel); writel(ICLR_TXUEC1 << channel, aaci->base + AACI_INTCLR); } if (mask & ISR_TXINTR) { struct aaci_runtime *aacirun = &aaci->playback; bool period_elapsed = false; void *ptr; if (!aacirun->substream || !aacirun->start) { dev_warn(&aaci->dev->dev, "TX interrupt???\n"); writel(0, aacirun->base + AACI_IE); return; } spin_lock(&aacirun->lock); ptr = aacirun->ptr; do { unsigned int len = aacirun->fifo_bytes; u32 val; if (aacirun->bytes <= 0) { aacirun->bytes += aacirun->period; period_elapsed = true; } if (!(aacirun->cr & CR_EN)) break; val = readl(aacirun->base + AACI_SR); if (!(val & SR_TXHE)) break; if (!(val & SR_TXFE)) len >>= 1; aacirun->bytes -= len; /* writing 16 bytes at a time */ for ( ; len > 0; len -= 16) { asm( "ldmia %0!, {r0, r1, r2, r3}\n\t" "stmia %1, {r0, r1, r2, r3}" : "+r" (ptr) : "r" (aacirun->fifo) : "r0", "r1", "r2", "r3", "cc"); if (ptr >= aacirun->end) ptr = aacirun->start; } } while (1); aacirun->ptr = ptr; spin_unlock(&aacirun->lock); if (period_elapsed) snd_pcm_period_elapsed(aacirun->substream); } } static irqreturn_t aaci_irq(int irq, void *devid) { struct aaci *aaci = devid; u32 mask; int i; mask = readl(aaci->base + AACI_ALLINTS); if (mask) { u32 m = mask; for (i = 0; i < 4; i++, m >>= 7) { if (m & 0x7f) { aaci_fifo_irq(aaci, i, m); } } } return mask ? IRQ_HANDLED : IRQ_NONE; } /* * ALSA support. */ static struct snd_pcm_hardware aaci_hw_info = { .info = SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_RESUME, /* * ALSA doesn't support 18-bit or 20-bit packed into 32-bit * words. It also doesn't support 12-bit at all. */ .formats = SNDRV_PCM_FMTBIT_S16_LE, /* rates are setup from the AC'97 codec */ .channels_min = 2, .channels_max = 2, .buffer_bytes_max = 64 * 1024, .period_bytes_min = 256, .period_bytes_max = PAGE_SIZE, .periods_min = 4, .periods_max = PAGE_SIZE / 16, }; /* * We can support two and four channel audio. Unfortunately * six channel audio requires a non-standard channel ordering: * 2 -> FL(3), FR(4) * 4 -> FL(3), FR(4), SL(7), SR(8) * 6 -> FL(3), FR(4), SL(7), SR(8), C(6), LFE(9) (required) * FL(3), FR(4), C(6), SL(7), SR(8), LFE(9) (actual) * This requires an ALSA configuration file to correct. */ static int aaci_rule_channels(struct snd_pcm_hw_params *p, struct snd_pcm_hw_rule *rule) { static unsigned int channel_list[] = { 2, 4, 6 }; struct aaci *aaci = rule->private; unsigned int mask = 1 << 0, slots; /* pcms[0] is the our 5.1 PCM instance. */ slots = aaci->ac97_bus->pcms[0].r[0].slots; if (slots & (1 << AC97_SLOT_PCM_SLEFT)) { mask |= 1 << 1; if (slots & (1 << AC97_SLOT_LFE)) mask |= 1 << 2; } return snd_interval_list(hw_param_interval(p, rule->var), ARRAY_SIZE(channel_list), channel_list, mask); } static int aaci_pcm_open(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct aaci *aaci = substream->private_data; struct aaci_runtime *aacirun; int ret = 0; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { aacirun = &aaci->playback; } else { aacirun = &aaci->capture; } aacirun->substream = substream; runtime->private_data = aacirun; runtime->hw = aaci_hw_info; runtime->hw.rates = aacirun->pcm->rates; snd_pcm_limit_hw_rates(runtime); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { runtime->hw.channels_max = 6; /* Add rule describing channel dependency. */ ret = snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, aaci_rule_channels, aaci, SNDRV_PCM_HW_PARAM_CHANNELS, -1); if (ret) return ret; if (aacirun->pcm->r[1].slots) snd_ac97_pcm_double_rate_rules(runtime); } /* * ALSA wants the byte-size of the FIFOs. As we only support * 16-bit samples, this is twice the FIFO depth irrespective * of whether it's in compact mode or not. */ runtime->hw.fifo_size = aaci->fifo_depth * 2; mutex_lock(&aaci->irq_lock); if (!aaci->users++) { ret = request_irq(aaci->dev->irq[0], aaci_irq, IRQF_SHARED | IRQF_DISABLED, DRIVER_NAME, aaci); if (ret != 0) aaci->users--; } mutex_unlock(&aaci->irq_lock); return ret; } /* * Common ALSA stuff */ static int aaci_pcm_close(struct snd_pcm_substream *substream) { struct aaci *aaci = substream->private_data; struct aaci_runtime *aacirun = substream->runtime->private_data; WARN_ON(aacirun->cr & CR_EN); aacirun->substream = NULL; mutex_lock(&aaci->irq_lock); if (!--aaci->users) free_irq(aaci->dev->irq[0], aaci); mutex_unlock(&aaci->irq_lock); return 0; } static int aaci_pcm_hw_free(struct snd_pcm_substream *substream) { struct aaci_runtime *aacirun = substream->runtime->private_data; /* * This must not be called with the device enabled. */ WARN_ON(aacirun->cr & CR_EN); if (aacirun->pcm_open) snd_ac97_pcm_close(aacirun->pcm); aacirun->pcm_open = 0; /* * Clear out the DMA and any allocated buffers. */ snd_pcm_lib_free_pages(substream); return 0; } /* Channel to slot mask */ static const u32 channels_to_slotmask[] = { [2] = CR_SL3 | CR_SL4, [4] = CR_SL3 | CR_SL4 | CR_SL7 | CR_SL8, [6] = CR_SL3 | CR_SL4 | CR_SL7 | CR_SL8 | CR_SL6 | CR_SL9, }; static int aaci_pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct aaci_runtime *aacirun = substream->runtime->private_data; unsigned int channels = params_channels(params); unsigned int rate = params_rate(params); int dbl = rate > 48000; int err; aaci_pcm_hw_free(substream); if (aacirun->pcm_open) { snd_ac97_pcm_close(aacirun->pcm); aacirun->pcm_open = 0; } /* channels is already limited to 2, 4, or 6 by aaci_rule_channels */ if (dbl && channels != 2) return -EINVAL; err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params)); if (err >= 0) { struct aaci *aaci = substream->private_data; err = snd_ac97_pcm_open(aacirun->pcm, rate, channels, aacirun->pcm->r[dbl].slots); aacirun->pcm_open = err == 0; aacirun->cr = CR_FEN | CR_COMPACT | CR_SZ16; aacirun->cr |= channels_to_slotmask[channels + dbl * 2]; /* * fifo_bytes is the number of bytes we transfer to/from * the FIFO, including padding. So that's x4. As we're * in compact mode, the FIFO is half the size. */ aacirun->fifo_bytes = aaci->fifo_depth * 4 / 2; } return err; } static int aaci_pcm_prepare(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct aaci_runtime *aacirun = runtime->private_data; aacirun->period = snd_pcm_lib_period_bytes(substream); aacirun->start = runtime->dma_area; aacirun->end = aacirun->start + snd_pcm_lib_buffer_bytes(substream); aacirun->ptr = aacirun->start; aacirun->bytes = aacirun->period; return 0; } static snd_pcm_uframes_t aaci_pcm_pointer(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct aaci_runtime *aacirun = runtime->private_data; ssize_t bytes = aacirun->ptr - aacirun->start; return bytes_to_frames(runtime, bytes); } /* * Playback specific ALSA stuff */ static void aaci_pcm_playback_stop(struct aaci_runtime *aacirun) { u32 ie; ie = readl(aacirun->base + AACI_IE); ie &= ~(IE_URIE|IE_TXIE); writel(ie, aacirun->base + AACI_IE); aacirun->cr &= ~CR_EN; aaci_chan_wait_ready(aacirun, SR_TXB); writel(aacirun->cr, aacirun->base + AACI_TXCR); } static void aaci_pcm_playback_start(struct aaci_runtime *aacirun) { u32 ie; aaci_chan_wait_ready(aacirun, SR_TXB); aacirun->cr |= CR_EN; ie = readl(aacirun->base + AACI_IE); ie |= IE_URIE | IE_TXIE; writel(ie, aacirun->base + AACI_IE); writel(aacirun->cr, aacirun->base + AACI_TXCR); } static int aaci_pcm_playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct aaci_runtime *aacirun = substream->runtime->private_data; unsigned long flags; int ret = 0; spin_lock_irqsave(&aacirun->lock, flags); switch (cmd) { case SNDRV_PCM_TRIGGER_START: aaci_pcm_playback_start(aacirun); break; case SNDRV_PCM_TRIGGER_RESUME: aaci_pcm_playback_start(aacirun); break; case SNDRV_PCM_TRIGGER_STOP: aaci_pcm_playback_stop(aacirun); break; case SNDRV_PCM_TRIGGER_SUSPEND: aaci_pcm_playback_stop(aacirun); break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: break; case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: break; default: ret = -EINVAL; } spin_unlock_irqrestore(&aacirun->lock, flags); return ret; } static struct snd_pcm_ops aaci_playback_ops = { .open = aaci_pcm_open, .close = aaci_pcm_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = aaci_pcm_hw_params, .hw_free = aaci_pcm_hw_free, .prepare = aaci_pcm_prepare, .trigger = aaci_pcm_playback_trigger, .pointer = aaci_pcm_pointer, }; static void aaci_pcm_capture_stop(struct aaci_runtime *aacirun) { u32 ie; aaci_chan_wait_ready(aacirun, SR_RXB); ie = readl(aacirun->base + AACI_IE); ie &= ~(IE_ORIE | IE_RXIE); writel(ie, aacirun->base+AACI_IE); aacirun->cr &= ~CR_EN; writel(aacirun->cr, aacirun->base + AACI_RXCR); } static void aaci_pcm_capture_start(struct aaci_runtime *aacirun) { u32 ie; aaci_chan_wait_ready(aacirun, SR_RXB); #ifdef DEBUG /* RX Timeout value: bits 28:17 in RXCR */ aacirun->cr |= 0xf << 17; #endif aacirun->cr |= CR_EN; writel(aacirun->cr, aacirun->base + AACI_RXCR); ie = readl(aacirun->base + AACI_IE); ie |= IE_ORIE |IE_RXIE; // overrun and rx interrupt -- half full writel(ie, aacirun->base + AACI_IE); } static int aaci_pcm_capture_trigger(struct snd_pcm_substream *substream, int cmd) { struct aaci_runtime *aacirun = substream->runtime->private_data; unsigned long flags; int ret = 0; spin_lock_irqsave(&aacirun->lock, flags); switch (cmd) { case SNDRV_PCM_TRIGGER_START: aaci_pcm_capture_start(aacirun); break; case SNDRV_PCM_TRIGGER_RESUME: aaci_pcm_capture_start(aacirun); break; case SNDRV_PCM_TRIGGER_STOP: aaci_pcm_capture_stop(aacirun); break; case SNDRV_PCM_TRIGGER_SUSPEND: aaci_pcm_capture_stop(aacirun); break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: break; case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: break; default: ret = -EINVAL; } spin_unlock_irqrestore(&aacirun->lock, flags); return ret; } static int aaci_pcm_capture_prepare(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct aaci *aaci = substream->private_data; aaci_pcm_prepare(substream); /* allow changing of sample rate */ aaci_ac97_write(aaci->ac97, AC97_EXTENDED_STATUS, 0x0001); /* VRA */ aaci_ac97_write(aaci->ac97, AC97_PCM_LR_ADC_RATE, runtime->rate); aaci_ac97_write(aaci->ac97, AC97_PCM_MIC_ADC_RATE, runtime->rate); /* Record select: Mic: 0, Aux: 3, Line: 4 */ aaci_ac97_write(aaci->ac97, AC97_REC_SEL, 0x0404); return 0; } static struct snd_pcm_ops aaci_capture_ops = { .open = aaci_pcm_open, .close = aaci_pcm_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = aaci_pcm_hw_params, .hw_free = aaci_pcm_hw_free, .prepare = aaci_pcm_capture_prepare, .trigger = aaci_pcm_capture_trigger, .pointer = aaci_pcm_pointer, }; /* * Power Management. */ #ifdef CONFIG_PM static int aaci_do_suspend(struct snd_card *card, unsigned int state) { struct aaci *aaci = card->private_data; snd_power_change_state(card, SNDRV_CTL_POWER_D3cold); snd_pcm_suspend_all(aaci->pcm); return 0; } static int aaci_do_resume(struct snd_card *card, unsigned int state) { snd_power_change_state(card, SNDRV_CTL_POWER_D0); return 0; } static int aaci_suspend(struct amba_device *dev, pm_message_t state) { struct snd_card *card = amba_get_drvdata(dev); return card ? aaci_do_suspend(card) : 0; } static int aaci_resume(struct amba_device *dev) { struct snd_card *card = amba_get_drvdata(dev); return card ? aaci_do_resume(card) : 0; } #else #define aaci_do_suspend NULL #define aaci_do_resume NULL #define aaci_suspend NULL #define aaci_resume NULL #endif static struct ac97_pcm ac97_defs[] __devinitdata = { [0] = { /* Front PCM */ .exclusive = 1, .r = { [0] = { .slots = (1 << AC97_SLOT_PCM_LEFT) | (1 << AC97_SLOT_PCM_RIGHT) | (1 << AC97_SLOT_PCM_CENTER) | (1 << AC97_SLOT_PCM_SLEFT) | (1 << AC97_SLOT_PCM_SRIGHT) | (1 << AC97_SLOT_LFE), }, [1] = { .slots = (1 << AC97_SLOT_PCM_LEFT) | (1 << AC97_SLOT_PCM_RIGHT) | (1 << AC97_SLOT_PCM_LEFT_0) | (1 << AC97_SLOT_PCM_RIGHT_0), }, }, }, [1] = { /* PCM in */ .stream = 1, .exclusive = 1, .r = { [0] = { .slots = (1 << AC97_SLOT_PCM_LEFT) | (1 << AC97_SLOT_PCM_RIGHT), }, }, }, [2] = { /* Mic in */ .stream = 1, .exclusive = 1, .r = { [0] = { .slots = (1 << AC97_SLOT_MIC), }, }, } }; static struct snd_ac97_bus_ops aaci_bus_ops = { .write = aaci_ac97_write, .read = aaci_ac97_read, }; static int __devinit aaci_probe_ac97(struct aaci *aaci) { struct snd_ac97_template ac97_template; struct snd_ac97_bus *ac97_bus; struct snd_ac97 *ac97; int ret; /* * Assert AACIRESET for 2us */ writel(0, aaci->base + AACI_RESET); udelay(2); writel(RESET_NRST, aaci->base + AACI_RESET); /* * Give the AC'97 codec more than enough time * to wake up. (42us = ~2 frames at 48kHz.) */ udelay(FRAME_PERIOD_US * 2); ret = snd_ac97_bus(aaci->card, 0, &aaci_bus_ops, aaci, &ac97_bus); if (ret) goto out; ac97_bus->clock = 48000; aaci->ac97_bus = ac97_bus; memset(&ac97_template, 0, sizeof(struct snd_ac97_template)); ac97_template.private_data = aaci; ac97_template.num = 0; ac97_template.scaps = AC97_SCAP_SKIP_MODEM; ret = snd_ac97_mixer(ac97_bus, &ac97_template, &ac97); if (ret) goto out; aaci->ac97 = ac97; /* * Disable AC97 PC Beep input on audio codecs. */ if (ac97_is_audio(ac97)) snd_ac97_write_cache(ac97, AC97_PC_BEEP, 0x801e); ret = snd_ac97_pcm_assign(ac97_bus, ARRAY_SIZE(ac97_defs), ac97_defs); if (ret) goto out; aaci->playback.pcm = &ac97_bus->pcms[0]; aaci->capture.pcm = &ac97_bus->pcms[1]; out: return ret; } static void aaci_free_card(struct snd_card *card) { struct aaci *aaci = card->private_data; if (aaci->base) iounmap(aaci->base); } static struct aaci * __devinit aaci_init_card(struct amba_device *dev) { struct aaci *aaci; struct snd_card *card; int err; err = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1, THIS_MODULE, sizeof(struct aaci), &card); if (err < 0) return NULL; card->private_free = aaci_free_card; strlcpy(card->driver, DRIVER_NAME, sizeof(card->driver)); strlcpy(card->shortname, "ARM AC'97 Interface", sizeof(card->shortname)); snprintf(card->longname, sizeof(card->longname), "%s PL%03x rev%u at 0x%08llx, irq %d", card->shortname, amba_part(dev), amba_rev(dev), (unsigned long long)dev->res.start, dev->irq[0]); aaci = card->private_data; mutex_init(&aaci->ac97_sem); mutex_init(&aaci->irq_lock); aaci->card = card; aaci->dev = dev; /* Set MAINCR to allow slot 1 and 2 data IO */ aaci->maincr = MAINCR_IE | MAINCR_SL1RXEN | MAINCR_SL1TXEN | MAINCR_SL2RXEN | MAINCR_SL2TXEN; return aaci; } static int __devinit aaci_init_pcm(struct aaci *aaci) { struct snd_pcm *pcm; int ret; ret = snd_pcm_new(aaci->card, "AACI AC'97", 0, 1, 1, &pcm); if (ret == 0) { aaci->pcm = pcm; pcm->private_data = aaci; pcm->info_flags = 0; strlcpy(pcm->name, DRIVER_NAME, sizeof(pcm->name)); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &aaci_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &aaci_capture_ops); snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, NULL, 0, 64 * 1024); } return ret; } static unsigned int __devinit aaci_size_fifo(struct aaci *aaci) { struct aaci_runtime *aacirun = &aaci->playback; int i; /* * Enable the channel, but don't assign it to any slots, so * it won't empty onto the AC'97 link. */ writel(CR_FEN | CR_SZ16 | CR_EN, aacirun->base + AACI_TXCR); for (i = 0; !(readl(aacirun->base + AACI_SR) & SR_TXFF) && i < 4096; i++) writel(0, aacirun->fifo); writel(0, aacirun->base + AACI_TXCR); /* * Re-initialise the AACI after the FIFO depth test, to * ensure that the FIFOs are empty. Unfortunately, merely * disabling the channel doesn't clear the FIFO. */ writel(aaci->maincr & ~MAINCR_IE, aaci->base + AACI_MAINCR); writel(aaci->maincr, aaci->base + AACI_MAINCR); /* * If we hit 4096 entries, we failed. Go back to the specified * fifo depth. */ if (i == 4096) i = 8; return i; } static int __devinit aaci_probe(struct amba_device *dev, struct amba_id *id) { struct aaci *aaci; int ret, i; ret = amba_request_regions(dev, NULL); if (ret) return ret; aaci = aaci_init_card(dev); if (!aaci) { ret = -ENOMEM; goto out; } aaci->base = ioremap(dev->res.start, resource_size(&dev->res)); if (!aaci->base) { ret = -ENOMEM; goto out; } /* * Playback uses AACI channel 0 */ spin_lock_init(&aaci->playback.lock); aaci->playback.base = aaci->base + AACI_CSCH1; aaci->playback.fifo = aaci->base + AACI_DR1; /* * Capture uses AACI channel 0 */ spin_lock_init(&aaci->capture.lock); aaci->capture.base = aaci->base + AACI_CSCH1; aaci->capture.fifo = aaci->base + AACI_DR1; for (i = 0; i < 4; i++) { void __iomem *base = aaci->base + i * 0x14; writel(0, base + AACI_IE); writel(0, base + AACI_TXCR); writel(0, base + AACI_RXCR); } writel(0x1fff, aaci->base + AACI_INTCLR); writel(aaci->maincr, aaci->base + AACI_MAINCR); /* * Fix: ac97 read back fail errors by reading * from any arbitrary aaci register. */ readl(aaci->base + AACI_CSCH1); ret = aaci_probe_ac97(aaci); if (ret) goto out; /* * Size the FIFOs (must be multiple of 16). * This is the number of entries in the FIFO. */ aaci->fifo_depth = aaci_size_fifo(aaci); if (aaci->fifo_depth & 15) { printk(KERN_WARNING "AACI: FIFO depth %d not supported\n", aaci->fifo_depth); ret = -ENODEV; goto out; } ret = aaci_init_pcm(aaci); if (ret) goto out; snd_card_set_dev(aaci->card, &dev->dev); ret = snd_card_register(aaci->card); if (ret == 0) { dev_info(&dev->dev, "%s\n", aaci->card->longname); dev_info(&dev->dev, "FIFO %u entries\n", aaci->fifo_depth); amba_set_drvdata(dev, aaci->card); return ret; } out: if (aaci) snd_card_free(aaci->card); amba_release_regions(dev); return ret; } static int __devexit aaci_remove(struct amba_device *dev) { struct snd_card *card = amba_get_drvdata(dev); amba_set_drvdata(dev, NULL); if (card) { struct aaci *aaci = card->private_data; writel(0, aaci->base + AACI_MAINCR); snd_card_free(card); amba_release_regions(dev); } return 0; } static struct amba_id aaci_ids[] = { { .id = 0x00041041, .mask = 0x000fffff, }, { 0, 0 }, }; static struct amba_driver aaci_driver = { .drv = { .name = DRIVER_NAME, }, .probe = aaci_probe, .remove = __devexit_p(aaci_remove), .suspend = aaci_suspend, .resume = aaci_resume, .id_table = aaci_ids, }; static int __init aaci_init(void) { return amba_driver_register(&aaci_driver); } static void __exit aaci_exit(void) { amba_driver_unregister(&aaci_driver); } module_init(aaci_init); module_exit(aaci_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("ARM PrimeCell PL041 Advanced Audio CODEC Interface driver");