/* * Copyright (c) 2004 James Courtier-Dutton * Driver CA0106 chips. e.g. Sound Blaster Audigy LS and Live 24bit * Version: 0.0.25 * * FEATURES currently supported: * Front, Rear and Center/LFE. * Surround40 and Surround51. * Capture from MIC an LINE IN input. * SPDIF digital playback of PCM stereo and AC3/DTS works. * (One can use a standard mono mini-jack to one RCA plugs cable. * or one can use a standard stereo mini-jack to two RCA plugs cable. * Plug one of the RCA plugs into the Coax input of the external decoder/receiver.) * ( In theory one could output 3 different AC3 streams at once, to 3 different SPDIF outputs. ) * Notes on how to capture sound: * The AC97 is used in the PLAYBACK direction. * The output from the AC97 chip, instead of reaching the speakers, is fed into the Philips 1361T ADC. * So, to record from the MIC, set the MIC Playback volume to max, * unmute the MIC and turn up the MASTER Playback volume. * So, to prevent feedback when capturing, minimise the "Capture feedback into Playback" volume. * * The only playback controls that currently do anything are: - * Analog Front * Analog Rear * Analog Center/LFE * SPDIF Front * SPDIF Rear * SPDIF Center/LFE * * For capture from Mic in or Line in. * Digital/Analog ( switch must be in Analog mode for CAPTURE. ) * * CAPTURE feedback into PLAYBACK * * Changelog: * Support interrupts per period. * Removed noise from Center/LFE channel when in Analog mode. * Rename and remove mixer controls. * 0.0.6 * Use separate card based DMA buffer for periods table list. * 0.0.7 * Change remove and rename ctrls into lists. * 0.0.8 * Try to fix capture sources. * 0.0.9 * Fix AC3 output. * Enable S32_LE format support. * 0.0.10 * Enable playback 48000 and 96000 rates. (Rates other that these do not work, even with "plug:front".) * 0.0.11 * Add Model name recognition. * 0.0.12 * Correct interrupt timing. interrupt at end of period, instead of in the middle of a playback period. * Remove redundent "voice" handling. * 0.0.13 * Single trigger call for multi channels. * 0.0.14 * Set limits based on what the sound card hardware can do. * playback periods_min=2, periods_max=8 * capture hw constraints require period_size = n * 64 bytes. * playback hw constraints require period_size = n * 64 bytes. * 0.0.15 * Minor updates. * 0.0.16 * Implement 192000 sample rate. * 0.0.17 * Add support for SB0410 and SB0413. * 0.0.18 * Modified Copyright message. * 0.0.19 * Finally fix support for SB Live 24 bit. SB0410 and SB0413. * The output codec needs resetting, otherwise all output is muted. * 0.0.20 * Merge "pci_disable_device(pci);" fixes. * 0.0.21 * Add 4 capture channels. (SPDIF only comes in on channel 0. ) * Add SPDIF capture using optional digital I/O module for SB Live 24bit. (Analog capture does not yet work.) * 0.0.22 * Add support for MSI K8N Diamond Motherboard with onboard SB Live 24bit without AC97. From kiksen, bug #901 * 0.0.23 * Implement support for Line-in capture on SB Live 24bit. * 0.0.24 * Add support for mute control on SB Live 24bit (cards w/ SPI DAC) * 0.0.25 * Powerdown SPI DAC channels when not in use * * BUGS: * Some stability problems when unloading the snd-ca0106 kernel module. * -- * * TODO: * 4 Capture channels, only one implemented so far. * Other capture rates apart from 48khz not implemented. * MIDI * -- * GENERAL INFO: * Model: SB0310 * P17 Chip: CA0106-DAT * AC97 Codec: STAC 9721 * ADC: Philips 1361T (Stereo 24bit) * DAC: WM8746EDS (6-channel, 24bit, 192Khz) * * GENERAL INFO: * Model: SB0410 * P17 Chip: CA0106-DAT * AC97 Codec: None * ADC: WM8775EDS (4 Channel) * DAC: CS4382 (114 dB, 24-Bit, 192 kHz, 8-Channel D/A Converter with DSD Support) * SPDIF Out control switches between Mic in and SPDIF out. * No sound out or mic input working yet. * * GENERAL INFO: * Model: SB0413 * P17 Chip: CA0106-DAT * AC97 Codec: None. * ADC: Unknown * DAC: Unknown * Trying to handle it like the SB0410. * * This code was initially based on code from ALSA's emu10k1x.c which is: * Copyright (c) by Francisco Moraes * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include #include #include #include #include #include MODULE_AUTHOR("James Courtier-Dutton "); MODULE_DESCRIPTION("CA0106"); MODULE_LICENSE("GPL"); MODULE_SUPPORTED_DEVICE("{{Creative,SB CA0106 chip}}"); // module parameters (see "Module Parameters") static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; static uint subsystem[SNDRV_CARDS]; /* Force card subsystem model */ module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "Index value for the CA0106 soundcard."); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string for the CA0106 soundcard."); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "Enable the CA0106 soundcard."); module_param_array(subsystem, uint, NULL, 0444); MODULE_PARM_DESC(subsystem, "Force card subsystem model."); #include "ca0106.h" static struct snd_ca0106_details ca0106_chip_details[] = { /* Sound Blaster X-Fi Extreme Audio. This does not have an AC97. 53SB079000000 */ /* It is really just a normal SB Live 24bit. */ /* Tested: * See ALSA bug#3251 */ { .serial = 0x10131102, .name = "X-Fi Extreme Audio [SBxxxx]", .gpio_type = 1, .i2c_adc = 1 } , /* Sound Blaster X-Fi Extreme Audio. This does not have an AC97. 53SB079000000 */ /* It is really just a normal SB Live 24bit. */ /* * CTRL:CA0111-WTLF * ADC: WM8775SEDS * DAC: CS4382-KQZ */ /* Tested: * Playback on front, rear, center/lfe speakers * Capture from Mic in. * Not-Tested: * Capture from Line in. * Playback to digital out. */ { .serial = 0x10121102, .name = "X-Fi Extreme Audio [SB0790]", .gpio_type = 1, .i2c_adc = 1 } , /* New Dell Sound Blaster Live! 7.1 24bit. This does not have an AC97. */ /* AudigyLS[SB0310] */ { .serial = 0x10021102, .name = "AudigyLS [SB0310]", .ac97 = 1 } , /* Unknown AudigyLS that also says SB0310 on it */ { .serial = 0x10051102, .name = "AudigyLS [SB0310b]", .ac97 = 1 } , /* New Sound Blaster Live! 7.1 24bit. This does not have an AC97. 53SB041000001 */ { .serial = 0x10061102, .name = "Live! 7.1 24bit [SB0410]", .gpio_type = 1, .i2c_adc = 1 } , /* New Dell Sound Blaster Live! 7.1 24bit. This does not have an AC97. */ { .serial = 0x10071102, .name = "Live! 7.1 24bit [SB0413]", .gpio_type = 1, .i2c_adc = 1 } , /* New Audigy SE. Has a different DAC. */ /* SB0570: * CTRL:CA0106-DAT * ADC: WM8775EDS * DAC: WM8768GEDS */ { .serial = 0x100a1102, .name = "Audigy SE [SB0570]", .gpio_type = 1, .i2c_adc = 1, .spi_dac = 0x4021 } , /* New Audigy LS. Has a different DAC. */ /* SB0570: * CTRL:CA0106-DAT * ADC: WM8775EDS * DAC: WM8768GEDS */ { .serial = 0x10111102, .name = "Audigy SE OEM [SB0570a]", .gpio_type = 1, .i2c_adc = 1, .spi_dac = 0x4021 } , /* Sound Blaster 5.1vx * Tested: Playback on front, rear, center/lfe speakers * Not-Tested: Capture */ { .serial = 0x10041102, .name = "Sound Blaster 5.1vx [SB1070]", .gpio_type = 1, .i2c_adc = 0, .spi_dac = 0x0124 } , /* MSI K8N Diamond Motherboard with onboard SB Live 24bit without AC97 */ /* SB0438 * CTRL:CA0106-DAT * ADC: WM8775SEDS * DAC: CS4382-KQZ */ { .serial = 0x10091462, .name = "MSI K8N Diamond MB [SB0438]", .gpio_type = 2, .i2c_adc = 1 } , /* MSI K8N Diamond PLUS MB */ { .serial = 0x10091102, .name = "MSI K8N Diamond MB", .gpio_type = 2, .i2c_adc = 1, .spi_dac = 0x4021 } , /* Giga-byte GA-G1975X mobo * Novell bnc#395807 */ /* FIXME: the GPIO and I2C setting aren't tested well */ { .serial = 0x1458a006, .name = "Giga-byte GA-G1975X", .gpio_type = 1, .i2c_adc = 1 }, /* Shuttle XPC SD31P which has an onboard Creative Labs * Sound Blaster Live! 24-bit EAX * high-definition 7.1 audio processor". * Added using info from andrewvegan in alsa bug #1298 */ { .serial = 0x30381297, .name = "Shuttle XPC SD31P [SD31P]", .gpio_type = 1, .i2c_adc = 1 } , /* Shuttle XPC SD11G5 which has an onboard Creative Labs * Sound Blaster Live! 24-bit EAX * high-definition 7.1 audio processor". * Fixes ALSA bug#1600 */ { .serial = 0x30411297, .name = "Shuttle XPC SD11G5 [SD11G5]", .gpio_type = 1, .i2c_adc = 1 } , { .serial = 0, .name = "AudigyLS [Unknown]" } }; /* hardware definition */ static struct snd_pcm_hardware snd_ca0106_playback_hw = { .info = SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_SYNC_START, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE, .rates = (SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000), .rate_min = 48000, .rate_max = 192000, .channels_min = 2, //1, .channels_max = 2, //6, .buffer_bytes_max = ((65536 - 64) * 8), .period_bytes_min = 64, .period_bytes_max = (65536 - 64), .periods_min = 2, .periods_max = 8, .fifo_size = 0, }; static struct snd_pcm_hardware snd_ca0106_capture_hw = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE, #if 0 /* FIXME: looks like 44.1kHz capture causes noisy output on 48kHz */ .rates = (SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000), .rate_min = 44100, #else .rates = (SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000), .rate_min = 48000, #endif /* FIXME */ .rate_max = 192000, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = 65536 - 128, .period_bytes_min = 64, .period_bytes_max = 32768 - 64, .periods_min = 2, .periods_max = 2, .fifo_size = 0, }; unsigned int snd_ca0106_ptr_read(struct snd_ca0106 * emu, unsigned int reg, unsigned int chn) { unsigned long flags; unsigned int regptr, val; regptr = (reg << 16) | chn; spin_lock_irqsave(&emu->emu_lock, flags); outl(regptr, emu->port + PTR); val = inl(emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); return val; } void snd_ca0106_ptr_write(struct snd_ca0106 *emu, unsigned int reg, unsigned int chn, unsigned int data) { unsigned int regptr; unsigned long flags; regptr = (reg << 16) | chn; spin_lock_irqsave(&emu->emu_lock, flags); outl(regptr, emu->port + PTR); outl(data, emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } int snd_ca0106_spi_write(struct snd_ca0106 * emu, unsigned int data) { unsigned int reset, set; unsigned int reg, tmp; int n, result; reg = SPI; if (data > 0xffff) /* Only 16bit values allowed */ return 1; tmp = snd_ca0106_ptr_read(emu, reg, 0); reset = (tmp & ~0x3ffff) | 0x20000; /* Set xxx20000 */ set = reset | 0x10000; /* Set xxx1xxxx */ snd_ca0106_ptr_write(emu, reg, 0, reset | data); tmp = snd_ca0106_ptr_read(emu, reg, 0); /* write post */ snd_ca0106_ptr_write(emu, reg, 0, set | data); result = 1; /* Wait for status bit to return to 0 */ for (n = 0; n < 100; n++) { udelay(10); tmp = snd_ca0106_ptr_read(emu, reg, 0); if (!(tmp & 0x10000)) { result = 0; break; } } if (result) /* Timed out */ return 1; snd_ca0106_ptr_write(emu, reg, 0, reset | data); tmp = snd_ca0106_ptr_read(emu, reg, 0); /* Write post */ return 0; } /* The ADC does not support i2c read, so only write is implemented */ int snd_ca0106_i2c_write(struct snd_ca0106 *emu, u32 reg, u32 value) { u32 tmp; int timeout = 0; int status; int retry; if ((reg > 0x7f) || (value > 0x1ff)) { snd_printk(KERN_ERR "i2c_write: invalid values.\n"); return -EINVAL; } tmp = reg << 25 | value << 16; /* snd_printk(KERN_DEBUG "I2C-write:reg=0x%x, value=0x%x\n", reg, value); */ /* Not sure what this I2C channel controls. */ /* snd_ca0106_ptr_write(emu, I2C_D0, 0, tmp); */ /* This controls the I2C connected to the WM8775 ADC Codec */ snd_ca0106_ptr_write(emu, I2C_D1, 0, tmp); for (retry = 0; retry < 10; retry++) { /* Send the data to i2c */ //tmp = snd_ca0106_ptr_read(emu, I2C_A, 0); //tmp = tmp & ~(I2C_A_ADC_READ|I2C_A_ADC_LAST|I2C_A_ADC_START|I2C_A_ADC_ADD_MASK); tmp = 0; tmp = tmp | (I2C_A_ADC_LAST|I2C_A_ADC_START|I2C_A_ADC_ADD); snd_ca0106_ptr_write(emu, I2C_A, 0, tmp); /* Wait till the transaction ends */ while (1) { status = snd_ca0106_ptr_read(emu, I2C_A, 0); /*snd_printk(KERN_DEBUG "I2C:status=0x%x\n", status);*/ timeout++; if ((status & I2C_A_ADC_START) == 0) break; if (timeout > 1000) break; } //Read back and see if the transaction is successful if ((status & I2C_A_ADC_ABORT) == 0) break; } if (retry == 10) { snd_printk(KERN_ERR "Writing to ADC failed!\n"); return -EINVAL; } return 0; } static void snd_ca0106_intr_enable(struct snd_ca0106 *emu, unsigned int intrenb) { unsigned long flags; unsigned int intr_enable; spin_lock_irqsave(&emu->emu_lock, flags); intr_enable = inl(emu->port + INTE) | intrenb; outl(intr_enable, emu->port + INTE); spin_unlock_irqrestore(&emu->emu_lock, flags); } static void snd_ca0106_intr_disable(struct snd_ca0106 *emu, unsigned int intrenb) { unsigned long flags; unsigned int intr_enable; spin_lock_irqsave(&emu->emu_lock, flags); intr_enable = inl(emu->port + INTE) & ~intrenb; outl(intr_enable, emu->port + INTE); spin_unlock_irqrestore(&emu->emu_lock, flags); } static void snd_ca0106_pcm_free_substream(struct snd_pcm_runtime *runtime) { kfree(runtime->private_data); } static const int spi_dacd_reg[] = { SPI_DACD0_REG, SPI_DACD1_REG, SPI_DACD2_REG, 0, SPI_DACD4_REG, }; static const int spi_dacd_bit[] = { SPI_DACD0_BIT, SPI_DACD1_BIT, SPI_DACD2_BIT, 0, SPI_DACD4_BIT, }; static void restore_spdif_bits(struct snd_ca0106 *chip, int idx) { if (chip->spdif_str_bits[idx] != chip->spdif_bits[idx]) { chip->spdif_str_bits[idx] = chip->spdif_bits[idx]; snd_ca0106_ptr_write(chip, SPCS0 + idx, 0, chip->spdif_str_bits[idx]); } } static int snd_ca0106_channel_dac(struct snd_ca0106_details *details, int channel_id) { switch (channel_id) { case PCM_FRONT_CHANNEL: return (details->spi_dac & 0xf000) >> (4 * 3); case PCM_REAR_CHANNEL: return (details->spi_dac & 0x0f00) >> (4 * 2); case PCM_CENTER_LFE_CHANNEL: return (details->spi_dac & 0x00f0) >> (4 * 1); case PCM_UNKNOWN_CHANNEL: return (details->spi_dac & 0x000f) >> (4 * 0); default: snd_printk(KERN_DEBUG "ca0106: unknown channel_id %d\n", channel_id); } return 0; } static int snd_ca0106_pcm_power_dac(struct snd_ca0106 *chip, int channel_id, int power) { if (chip->details->spi_dac) { const int dac = snd_ca0106_channel_dac(chip->details, channel_id); const int reg = spi_dacd_reg[dac]; const int bit = spi_dacd_bit[dac]; if (power) /* Power up */ chip->spi_dac_reg[reg] &= ~bit; else /* Power down */ chip->spi_dac_reg[reg] |= bit; return snd_ca0106_spi_write(chip, chip->spi_dac_reg[reg]); } return 0; } /* open_playback callback */ static int snd_ca0106_pcm_open_playback_channel(struct snd_pcm_substream *substream, int channel_id) { struct snd_ca0106 *chip = snd_pcm_substream_chip(substream); struct snd_ca0106_channel *channel = &(chip->playback_channels[channel_id]); struct snd_ca0106_pcm *epcm; struct snd_pcm_runtime *runtime = substream->runtime; int err; epcm = kzalloc(sizeof(*epcm), GFP_KERNEL); if (epcm == NULL) return -ENOMEM; epcm->emu = chip; epcm->substream = substream; epcm->channel_id=channel_id; runtime->private_data = epcm; runtime->private_free = snd_ca0106_pcm_free_substream; runtime->hw = snd_ca0106_playback_hw; channel->emu = chip; channel->number = channel_id; channel->use = 1; /* printk(KERN_DEBUG "open:channel_id=%d, chip=%p, channel=%p\n", channel_id, chip, channel); */ //channel->interrupt = snd_ca0106_pcm_channel_interrupt; channel->epcm = epcm; if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0) return err; if ((err = snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64)) < 0) return err; snd_pcm_set_sync(substream); /* Front channel dac should already be on */ if (channel_id != PCM_FRONT_CHANNEL) { err = snd_ca0106_pcm_power_dac(chip, channel_id, 1); if (err < 0) return err; } restore_spdif_bits(chip, channel_id); return 0; } /* close callback */ static int snd_ca0106_pcm_close_playback(struct snd_pcm_substream *substream) { struct snd_ca0106 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_ca0106_pcm *epcm = runtime->private_data; chip->playback_channels[epcm->channel_id].use = 0; restore_spdif_bits(chip, epcm->channel_id); /* Front channel dac should stay on */ if (epcm->channel_id != PCM_FRONT_CHANNEL) { int err; err = snd_ca0106_pcm_power_dac(chip, epcm->channel_id, 0); if (err < 0) return err; } /* FIXME: maybe zero others */ return 0; } static int snd_ca0106_pcm_open_playback_front(struct snd_pcm_substream *substream) { return snd_ca0106_pcm_open_playback_channel(substream, PCM_FRONT_CHANNEL); } static int snd_ca0106_pcm_open_playback_center_lfe(struct snd_pcm_substream *substream) { return snd_ca0106_pcm_open_playback_channel(substream, PCM_CENTER_LFE_CHANNEL); } static int snd_ca0106_pcm_open_playback_unknown(struct snd_pcm_substream *substream) { return snd_ca0106_pcm_open_playback_channel(substream, PCM_UNKNOWN_CHANNEL); } static int snd_ca0106_pcm_open_playback_rear(struct snd_pcm_substream *substream) { return snd_ca0106_pcm_open_playback_channel(substream, PCM_REAR_CHANNEL); } /* open_capture callback */ static int snd_ca0106_pcm_open_capture_channel(struct snd_pcm_substream *substream, int channel_id) { struct snd_ca0106 *chip = snd_pcm_substream_chip(substream); struct snd_ca0106_channel *channel = &(chip->capture_channels[channel_id]); struct snd_ca0106_pcm *epcm; struct snd_pcm_runtime *runtime = substream->runtime; int err; epcm = kzalloc(sizeof(*epcm), GFP_KERNEL); if (epcm == NULL) { snd_printk(KERN_ERR "open_capture_channel: failed epcm alloc\n"); return -ENOMEM; } epcm->emu = chip; epcm->substream = substream; epcm->channel_id=channel_id; runtime->private_data = epcm; runtime->private_free = snd_ca0106_pcm_free_substream; runtime->hw = snd_ca0106_capture_hw; channel->emu = chip; channel->number = channel_id; channel->use = 1; /* printk(KERN_DEBUG "open:channel_id=%d, chip=%p, channel=%p\n", channel_id, chip, channel); */ //channel->interrupt = snd_ca0106_pcm_channel_interrupt; channel->epcm = epcm; if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0) return err; //snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, &hw_constraints_capture_period_sizes); if ((err = snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64)) < 0) return err; return 0; } /* close callback */ static int snd_ca0106_pcm_close_capture(struct snd_pcm_substream *substream) { struct snd_ca0106 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_ca0106_pcm *epcm = runtime->private_data; chip->capture_channels[epcm->channel_id].use = 0; /* FIXME: maybe zero others */ return 0; } static int snd_ca0106_pcm_open_0_capture(struct snd_pcm_substream *substream) { return snd_ca0106_pcm_open_capture_channel(substream, 0); } static int snd_ca0106_pcm_open_1_capture(struct snd_pcm_substream *substream) { return snd_ca0106_pcm_open_capture_channel(substream, 1); } static int snd_ca0106_pcm_open_2_capture(struct snd_pcm_substream *substream) { return snd_ca0106_pcm_open_capture_channel(substream, 2); } static int snd_ca0106_pcm_open_3_capture(struct snd_pcm_substream *substream) { return snd_ca0106_pcm_open_capture_channel(substream, 3); } /* hw_params callback */ static int snd_ca0106_pcm_hw_params_playback(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); } /* hw_free callback */ static int snd_ca0106_pcm_hw_free_playback(struct snd_pcm_substream *substream) { return snd_pcm_lib_free_pages(substream); } /* hw_params callback */ static int snd_ca0106_pcm_hw_params_capture(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); } /* hw_free callback */ static int snd_ca0106_pcm_hw_free_capture(struct snd_pcm_substream *substream) { return snd_pcm_lib_free_pages(substream); } /* prepare playback callback */ static int snd_ca0106_pcm_prepare_playback(struct snd_pcm_substream *substream) { struct snd_ca0106 *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_ca0106_pcm *epcm = runtime->private_data; int channel = epcm->channel_id; u32 *table_base = (u32 *)(emu->buffer.area+(8*16*channel)); u32 period_size_bytes = frames_to_bytes(runtime, runtime->period_size); u32 hcfg_mask = HCFG_PLAYBACK_S32_LE; u32 hcfg_set = 0x00000000; u32 hcfg; u32 reg40_mask = 0x30000 << (channel<<1); u32 reg40_set = 0; u32 reg40; /* FIXME: Depending on mixer selection of SPDIF out or not, select the spdif rate or the DAC rate. */ u32 reg71_mask = 0x03030000 ; /* Global. Set SPDIF rate. We only support 44100 to spdif, not to DAC. */ u32 reg71_set = 0; u32 reg71; int i; #if 0 /* debug */ snd_printk(KERN_DEBUG "prepare:channel_number=%d, rate=%d, format=0x%x, " "channels=%d, buffer_size=%ld, period_size=%ld, " "periods=%u, frames_to_bytes=%d\n", channel, runtime->rate, runtime->format, runtime->channels, runtime->buffer_size, runtime->period_size, runtime->periods, frames_to_bytes(runtime, 1)); snd_printk(KERN_DEBUG "dma_addr=%x, dma_area=%p, table_base=%p\n", runtime->dma_addr, runtime->dma_area, table_base); snd_printk(KERN_DEBUG "dma_addr=%x, dma_area=%p, dma_bytes(size)=%x\n", emu->buffer.addr, emu->buffer.area, emu->buffer.bytes); #endif /* debug */ /* Rate can be set per channel. */ /* reg40 control host to fifo */ /* reg71 controls DAC rate. */ switch (runtime->rate) { case 44100: reg40_set = 0x10000 << (channel<<1); reg71_set = 0x01010000; break; case 48000: reg40_set = 0; reg71_set = 0; break; case 96000: reg40_set = 0x20000 << (channel<<1); reg71_set = 0x02020000; break; case 192000: reg40_set = 0x30000 << (channel<<1); reg71_set = 0x03030000; break; default: reg40_set = 0; reg71_set = 0; break; } /* Format is a global setting */ /* FIXME: Only let the first channel accessed set this. */ switch (runtime->format) { case SNDRV_PCM_FORMAT_S16_LE: hcfg_set = 0; break; case SNDRV_PCM_FORMAT_S32_LE: hcfg_set = HCFG_PLAYBACK_S32_LE; break; default: hcfg_set = 0; break; } hcfg = inl(emu->port + HCFG) ; hcfg = (hcfg & ~hcfg_mask) | hcfg_set; outl(hcfg, emu->port + HCFG); reg40 = snd_ca0106_ptr_read(emu, 0x40, 0); reg40 = (reg40 & ~reg40_mask) | reg40_set; snd_ca0106_ptr_write(emu, 0x40, 0, reg40); reg71 = snd_ca0106_ptr_read(emu, 0x71, 0); reg71 = (reg71 & ~reg71_mask) | reg71_set; snd_ca0106_ptr_write(emu, 0x71, 0, reg71); /* FIXME: Check emu->buffer.size before actually writing to it. */ for(i=0; i < runtime->periods; i++) { table_base[i*2] = runtime->dma_addr + (i * period_size_bytes); table_base[i*2+1] = period_size_bytes << 16; } snd_ca0106_ptr_write(emu, PLAYBACK_LIST_ADDR, channel, emu->buffer.addr+(8*16*channel)); snd_ca0106_ptr_write(emu, PLAYBACK_LIST_SIZE, channel, (runtime->periods - 1) << 19); snd_ca0106_ptr_write(emu, PLAYBACK_LIST_PTR, channel, 0); snd_ca0106_ptr_write(emu, PLAYBACK_DMA_ADDR, channel, runtime->dma_addr); snd_ca0106_ptr_write(emu, PLAYBACK_PERIOD_SIZE, channel, frames_to_bytes(runtime, runtime->period_size)<<16); // buffer size in bytes /* FIXME test what 0 bytes does. */ snd_ca0106_ptr_write(emu, PLAYBACK_PERIOD_SIZE, channel, 0); // buffer size in bytes snd_ca0106_ptr_write(emu, PLAYBACK_POINTER, channel, 0); snd_ca0106_ptr_write(emu, 0x07, channel, 0x0); snd_ca0106_ptr_write(emu, 0x08, channel, 0); snd_ca0106_ptr_write(emu, PLAYBACK_MUTE, 0x0, 0x0); /* Unmute output */ #if 0 snd_ca0106_ptr_write(emu, SPCS0, 0, SPCS_CLKACCY_1000PPM | SPCS_SAMPLERATE_48 | SPCS_CHANNELNUM_LEFT | SPCS_SOURCENUM_UNSPEC | SPCS_GENERATIONSTATUS | 0x00001200 | 0x00000000 | SPCS_EMPHASIS_NONE | SPCS_COPYRIGHT ); #endif return 0; } /* prepare capture callback */ static int snd_ca0106_pcm_prepare_capture(struct snd_pcm_substream *substream) { struct snd_ca0106 *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_ca0106_pcm *epcm = runtime->private_data; int channel = epcm->channel_id; u32 hcfg_mask = HCFG_CAPTURE_S32_LE; u32 hcfg_set = 0x00000000; u32 hcfg; u32 over_sampling=0x2; u32 reg71_mask = 0x0000c000 ; /* Global. Set ADC rate. */ u32 reg71_set = 0; u32 reg71; #if 0 /* debug */ snd_printk(KERN_DEBUG "prepare:channel_number=%d, rate=%d, format=0x%x, " "channels=%d, buffer_size=%ld, period_size=%ld, " "periods=%u, frames_to_bytes=%d\n", channel, runtime->rate, runtime->format, runtime->channels, runtime->buffer_size, runtime->period_size, runtime->periods, frames_to_bytes(runtime, 1)); snd_printk(KERN_DEBUG "dma_addr=%x, dma_area=%p, table_base=%p\n", runtime->dma_addr, runtime->dma_area, table_base); snd_printk(KERN_DEBUG "dma_addr=%x, dma_area=%p, dma_bytes(size)=%x\n", emu->buffer.addr, emu->buffer.area, emu->buffer.bytes); #endif /* debug */ /* reg71 controls ADC rate. */ switch (runtime->rate) { case 44100: reg71_set = 0x00004000; break; case 48000: reg71_set = 0; break; case 96000: reg71_set = 0x00008000; over_sampling=0xa; break; case 192000: reg71_set = 0x0000c000; over_sampling=0xa; break; default: reg71_set = 0; break; } /* Format is a global setting */ /* FIXME: Only let the first channel accessed set this. */ switch (runtime->format) { case SNDRV_PCM_FORMAT_S16_LE: hcfg_set = 0; break; case SNDRV_PCM_FORMAT_S32_LE: hcfg_set = HCFG_CAPTURE_S32_LE; break; default: hcfg_set = 0; break; } hcfg = inl(emu->port + HCFG) ; hcfg = (hcfg & ~hcfg_mask) | hcfg_set; outl(hcfg, emu->port + HCFG); reg71 = snd_ca0106_ptr_read(emu, 0x71, 0); reg71 = (reg71 & ~reg71_mask) | reg71_set; snd_ca0106_ptr_write(emu, 0x71, 0, reg71); if (emu->details->i2c_adc == 1) { /* The SB0410 and SB0413 use I2C to control ADC. */ snd_ca0106_i2c_write(emu, ADC_MASTER, over_sampling); /* Adjust the over sampler to better suit the capture rate. */ } /* printk(KERN_DEBUG "prepare:channel_number=%d, rate=%d, format=0x%x, channels=%d, " "buffer_size=%ld, period_size=%ld, frames_to_bytes=%d\n", channel, runtime->rate, runtime->format, runtime->channels, runtime->buffer_size, runtime->period_size, frames_to_bytes(runtime, 1)); */ snd_ca0106_ptr_write(emu, 0x13, channel, 0); snd_ca0106_ptr_write(emu, CAPTURE_DMA_ADDR, channel, runtime->dma_addr); snd_ca0106_ptr_write(emu, CAPTURE_BUFFER_SIZE, channel, frames_to_bytes(runtime, runtime->buffer_size)<<16); // buffer size in bytes snd_ca0106_ptr_write(emu, CAPTURE_POINTER, channel, 0); return 0; } /* trigger_playback callback */ static int snd_ca0106_pcm_trigger_playback(struct snd_pcm_substream *substream, int cmd) { struct snd_ca0106 *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime; struct snd_ca0106_pcm *epcm; int channel; int result = 0; struct snd_pcm_substream *s; u32 basic = 0; u32 extended = 0; u32 bits; int running = 0; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: running = 1; break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: default: running = 0; break; } snd_pcm_group_for_each_entry(s, substream) { if (snd_pcm_substream_chip(s) != emu || s->stream != SNDRV_PCM_STREAM_PLAYBACK) continue; runtime = s->runtime; epcm = runtime->private_data; channel = epcm->channel_id; /* snd_printk(KERN_DEBUG "channel=%d\n", channel); */ epcm->running = running; basic |= (0x1 << channel); extended |= (0x10 << channel); snd_pcm_trigger_done(s, substream); } /* snd_printk(KERN_DEBUG "basic=0x%x, extended=0x%x\n",basic, extended); */ switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: bits = snd_ca0106_ptr_read(emu, EXTENDED_INT_MASK, 0); bits |= extended; snd_ca0106_ptr_write(emu, EXTENDED_INT_MASK, 0, bits); bits = snd_ca0106_ptr_read(emu, BASIC_INTERRUPT, 0); bits |= basic; snd_ca0106_ptr_write(emu, BASIC_INTERRUPT, 0, bits); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: bits = snd_ca0106_ptr_read(emu, BASIC_INTERRUPT, 0); bits &= ~basic; snd_ca0106_ptr_write(emu, BASIC_INTERRUPT, 0, bits); bits = snd_ca0106_ptr_read(emu, EXTENDED_INT_MASK, 0); bits &= ~extended; snd_ca0106_ptr_write(emu, EXTENDED_INT_MASK, 0, bits); break; default: result = -EINVAL; break; } return result; } /* trigger_capture callback */ static int snd_ca0106_pcm_trigger_capture(struct snd_pcm_substream *substream, int cmd) { struct snd_ca0106 *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_ca0106_pcm *epcm = runtime->private_data; int channel = epcm->channel_id; int result = 0; switch (cmd) { case SNDRV_PCM_TRIGGER_START: snd_ca0106_ptr_write(emu, EXTENDED_INT_MASK, 0, snd_ca0106_ptr_read(emu, EXTENDED_INT_MASK, 0) | (0x110000<running = 1; break; case SNDRV_PCM_TRIGGER_STOP: snd_ca0106_ptr_write(emu, BASIC_INTERRUPT, 0, snd_ca0106_ptr_read(emu, BASIC_INTERRUPT, 0) & ~(0x100<running = 0; break; default: result = -EINVAL; break; } return result; } /* pointer_playback callback */ static snd_pcm_uframes_t snd_ca0106_pcm_pointer_playback(struct snd_pcm_substream *substream) { struct snd_ca0106 *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_ca0106_pcm *epcm = runtime->private_data; unsigned int ptr, prev_ptr; int channel = epcm->channel_id; int timeout = 10; if (!epcm->running) return 0; prev_ptr = -1; do { ptr = snd_ca0106_ptr_read(emu, PLAYBACK_LIST_PTR, channel); ptr = (ptr >> 3) * runtime->period_size; ptr += bytes_to_frames(runtime, snd_ca0106_ptr_read(emu, PLAYBACK_POINTER, channel)); if (ptr >= runtime->buffer_size) ptr -= runtime->buffer_size; if (prev_ptr == ptr) return ptr; prev_ptr = ptr; } while (--timeout); snd_printk(KERN_WARNING "ca0106: unstable DMA pointer!\n"); return 0; } /* pointer_capture callback */ static snd_pcm_uframes_t snd_ca0106_pcm_pointer_capture(struct snd_pcm_substream *substream) { struct snd_ca0106 *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_ca0106_pcm *epcm = runtime->private_data; snd_pcm_uframes_t ptr, ptr1, ptr2 = 0; int channel = epcm->channel_id; if (!epcm->running) return 0; ptr1 = snd_ca0106_ptr_read(emu, CAPTURE_POINTER, channel); ptr2 = bytes_to_frames(runtime, ptr1); ptr=ptr2; if (ptr >= runtime->buffer_size) ptr -= runtime->buffer_size; /* printk(KERN_DEBUG "ptr1 = 0x%lx, ptr2=0x%lx, ptr=0x%lx, " "buffer_size = 0x%x, period_size = 0x%x, bits=%d, rate=%d\n", ptr1, ptr2, ptr, (int)runtime->buffer_size, (int)runtime->period_size, (int)runtime->frame_bits, (int)runtime->rate); */ return ptr; } /* operators */ static struct snd_pcm_ops snd_ca0106_playback_front_ops = { .open = snd_ca0106_pcm_open_playback_front, .close = snd_ca0106_pcm_close_playback, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_ca0106_pcm_hw_params_playback, .hw_free = snd_ca0106_pcm_hw_free_playback, .prepare = snd_ca0106_pcm_prepare_playback, .trigger = snd_ca0106_pcm_trigger_playback, .pointer = snd_ca0106_pcm_pointer_playback, }; static struct snd_pcm_ops snd_ca0106_capture_0_ops = { .open = snd_ca0106_pcm_open_0_capture, .close = snd_ca0106_pcm_close_capture, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_ca0106_pcm_hw_params_capture, .hw_free = snd_ca0106_pcm_hw_free_capture, .prepare = snd_ca0106_pcm_prepare_capture, .trigger = snd_ca0106_pcm_trigger_capture, .pointer = snd_ca0106_pcm_pointer_capture, }; static struct snd_pcm_ops snd_ca0106_capture_1_ops = { .open = snd_ca0106_pcm_open_1_capture, .close = snd_ca0106_pcm_close_capture, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_ca0106_pcm_hw_params_capture, .hw_free = snd_ca0106_pcm_hw_free_capture, .prepare = snd_ca0106_pcm_prepare_capture, .trigger = snd_ca0106_pcm_trigger_capture, .pointer = snd_ca0106_pcm_pointer_capture, }; static struct snd_pcm_ops snd_ca0106_capture_2_ops = { .open = snd_ca0106_pcm_open_2_capture, .close = snd_ca0106_pcm_close_capture, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_ca0106_pcm_hw_params_capture, .hw_free = snd_ca0106_pcm_hw_free_capture, .prepare = snd_ca0106_pcm_prepare_capture, .trigger = snd_ca0106_pcm_trigger_capture, .pointer = snd_ca0106_pcm_pointer_capture, }; static struct snd_pcm_ops snd_ca0106_capture_3_ops = { .open = snd_ca0106_pcm_open_3_capture, .close = snd_ca0106_pcm_close_capture, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_ca0106_pcm_hw_params_capture, .hw_free = snd_ca0106_pcm_hw_free_capture, .prepare = snd_ca0106_pcm_prepare_capture, .trigger = snd_ca0106_pcm_trigger_capture, .pointer = snd_ca0106_pcm_pointer_capture, }; static struct snd_pcm_ops snd_ca0106_playback_center_lfe_ops = { .open = snd_ca0106_pcm_open_playback_center_lfe, .close = snd_ca0106_pcm_close_playback, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_ca0106_pcm_hw_params_playback, .hw_free = snd_ca0106_pcm_hw_free_playback, .prepare = snd_ca0106_pcm_prepare_playback, .trigger = snd_ca0106_pcm_trigger_playback, .pointer = snd_ca0106_pcm_pointer_playback, }; static struct snd_pcm_ops snd_ca0106_playback_unknown_ops = { .open = snd_ca0106_pcm_open_playback_unknown, .close = snd_ca0106_pcm_close_playback, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_ca0106_pcm_hw_params_playback, .hw_free = snd_ca0106_pcm_hw_free_playback, .prepare = snd_ca0106_pcm_prepare_playback, .trigger = snd_ca0106_pcm_trigger_playback, .pointer = snd_ca0106_pcm_pointer_playback, }; static struct snd_pcm_ops snd_ca0106_playback_rear_ops = { .open = snd_ca0106_pcm_open_playback_rear, .close = snd_ca0106_pcm_close_playback, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_ca0106_pcm_hw_params_playback, .hw_free = snd_ca0106_pcm_hw_free_playback, .prepare = snd_ca0106_pcm_prepare_playback, .trigger = snd_ca0106_pcm_trigger_playback, .pointer = snd_ca0106_pcm_pointer_playback, }; static unsigned short snd_ca0106_ac97_read(struct snd_ac97 *ac97, unsigned short reg) { struct snd_ca0106 *emu = ac97->private_data; unsigned long flags; unsigned short val; spin_lock_irqsave(&emu->emu_lock, flags); outb(reg, emu->port + AC97ADDRESS); val = inw(emu->port + AC97DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); return val; } static void snd_ca0106_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short val) { struct snd_ca0106 *emu = ac97->private_data; unsigned long flags; spin_lock_irqsave(&emu->emu_lock, flags); outb(reg, emu->port + AC97ADDRESS); outw(val, emu->port + AC97DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } static int snd_ca0106_ac97(struct snd_ca0106 *chip) { struct snd_ac97_bus *pbus; struct snd_ac97_template ac97; int err; static struct snd_ac97_bus_ops ops = { .write = snd_ca0106_ac97_write, .read = snd_ca0106_ac97_read, }; if ((err = snd_ac97_bus(chip->card, 0, &ops, NULL, &pbus)) < 0) return err; pbus->no_vra = 1; /* we don't need VRA */ memset(&ac97, 0, sizeof(ac97)); ac97.private_data = chip; ac97.scaps = AC97_SCAP_NO_SPDIF; return snd_ac97_mixer(pbus, &ac97, &chip->ac97); } static void ca0106_stop_chip(struct snd_ca0106 *chip); static int snd_ca0106_free(struct snd_ca0106 *chip) { if (chip->res_port != NULL) { /* avoid access to already used hardware */ ca0106_stop_chip(chip); } if (chip->irq >= 0) free_irq(chip->irq, chip); // release the data #if 1 if (chip->buffer.area) snd_dma_free_pages(&chip->buffer); #endif // release the i/o port release_and_free_resource(chip->res_port); pci_disable_device(chip->pci); kfree(chip); return 0; } static int snd_ca0106_dev_free(struct snd_device *device) { struct snd_ca0106 *chip = device->device_data; return snd_ca0106_free(chip); } static irqreturn_t snd_ca0106_interrupt(int irq, void *dev_id) { unsigned int status; struct snd_ca0106 *chip = dev_id; int i; int mask; unsigned int stat76; struct snd_ca0106_channel *pchannel; status = inl(chip->port + IPR); if (! status) return IRQ_NONE; stat76 = snd_ca0106_ptr_read(chip, EXTENDED_INT, 0); /* snd_printk(KERN_DEBUG "interrupt status = 0x%08x, stat76=0x%08x\n", status, stat76); snd_printk(KERN_DEBUG "ptr=0x%08x\n", snd_ca0106_ptr_read(chip, PLAYBACK_POINTER, 0)); */ mask = 0x11; /* 0x1 for one half, 0x10 for the other half period. */ for(i = 0; i < 4; i++) { pchannel = &(chip->playback_channels[i]); if (stat76 & mask) { /* FIXME: Select the correct substream for period elapsed */ if(pchannel->use) { snd_pcm_period_elapsed(pchannel->epcm->substream); //printk(KERN_INFO "interrupt [%d] used\n", i); } } //printk(KERN_INFO "channel=%p\n",pchannel); //printk(KERN_INFO "interrupt stat76[%d] = %08x, use=%d, channel=%d\n", i, stat76, pchannel->use, pchannel->number); mask <<= 1; } mask = 0x110000; /* 0x1 for one half, 0x10 for the other half period. */ for(i = 0; i < 4; i++) { pchannel = &(chip->capture_channels[i]); if (stat76 & mask) { /* FIXME: Select the correct substream for period elapsed */ if(pchannel->use) { snd_pcm_period_elapsed(pchannel->epcm->substream); //printk(KERN_INFO "interrupt [%d] used\n", i); } } //printk(KERN_INFO "channel=%p\n",pchannel); //printk(KERN_INFO "interrupt stat76[%d] = %08x, use=%d, channel=%d\n", i, stat76, pchannel->use, pchannel->number); mask <<= 1; } snd_ca0106_ptr_write(chip, EXTENDED_INT, 0, stat76); if (chip->midi.dev_id && (status & (chip->midi.ipr_tx|chip->midi.ipr_rx))) { if (chip->midi.interrupt) chip->midi.interrupt(&chip->midi, status); else chip->midi.interrupt_disable(&chip->midi, chip->midi.tx_enable | chip->midi.rx_enable); } // acknowledge the interrupt if necessary outl(status, chip->port+IPR); return IRQ_HANDLED; } static int __devinit snd_ca0106_pcm(struct snd_ca0106 *emu, int device) { struct snd_pcm *pcm; struct snd_pcm_substream *substream; int err; err = snd_pcm_new(emu->card, "ca0106", device, 1, 1, &pcm); if (err < 0) return err; pcm->private_data = emu; switch (device) { case 0: snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ca0106_playback_front_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ca0106_capture_0_ops); break; case 1: snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ca0106_playback_rear_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ca0106_capture_1_ops); break; case 2: snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ca0106_playback_center_lfe_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ca0106_capture_2_ops); break; case 3: snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ca0106_playback_unknown_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ca0106_capture_3_ops); break; } pcm->info_flags = 0; strcpy(pcm->name, "CA0106"); for(substream = pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream; substream; substream = substream->next) { if ((err = snd_pcm_lib_preallocate_pages(substream, SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(emu->pci), 64*1024, 64*1024)) < 0) /* FIXME: 32*1024 for sound buffer, between 32and64 for Periods table. */ return err; } for (substream = pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream; substream; substream = substream->next) { if ((err = snd_pcm_lib_preallocate_pages(substream, SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(emu->pci), 64*1024, 64*1024)) < 0) return err; } emu->pcm[device] = pcm; return 0; } #define SPI_REG(reg, value) (((reg) << SPI_REG_SHIFT) | (value)) static unsigned int spi_dac_init[] = { SPI_REG(SPI_LDA1_REG, SPI_DA_BIT_0dB), /* 0dB dig. attenuation */ SPI_REG(SPI_RDA1_REG, SPI_DA_BIT_0dB), SPI_REG(SPI_PL_REG, SPI_PL_BIT_L_L | SPI_PL_BIT_R_R | SPI_IZD_BIT), SPI_REG(SPI_FMT_REG, SPI_FMT_BIT_I2S | SPI_IWL_BIT_24), SPI_REG(SPI_LDA2_REG, SPI_DA_BIT_0dB), SPI_REG(SPI_RDA2_REG, SPI_DA_BIT_0dB), SPI_REG(SPI_LDA3_REG, SPI_DA_BIT_0dB), SPI_REG(SPI_RDA3_REG, SPI_DA_BIT_0dB), SPI_REG(SPI_MASTDA_REG, SPI_DA_BIT_0dB), SPI_REG(9, 0x00), SPI_REG(SPI_MS_REG, SPI_DACD0_BIT | SPI_DACD1_BIT | SPI_DACD2_BIT), SPI_REG(12, 0x00), SPI_REG(SPI_LDA4_REG, SPI_DA_BIT_0dB), SPI_REG(SPI_RDA4_REG, SPI_DA_BIT_0dB | SPI_DA_BIT_UPDATE), SPI_REG(SPI_DACD4_REG, SPI_DACD4_BIT), }; static unsigned int i2c_adc_init[][2] = { { 0x17, 0x00 }, /* Reset */ { 0x07, 0x00 }, /* Timeout */ { 0x0b, 0x22 }, /* Interface control */ { 0x0c, 0x22 }, /* Master mode control */ { 0x0d, 0x08 }, /* Powerdown control */ { 0x0e, 0xcf }, /* Attenuation Left 0x01 = -103dB, 0xff = 24dB */ { 0x0f, 0xcf }, /* Attenuation Right 0.5dB steps */ { 0x10, 0x7b }, /* ALC Control 1 */ { 0x11, 0x00 }, /* ALC Control 2 */ { 0x12, 0x32 }, /* ALC Control 3 */ { 0x13, 0x00 }, /* Noise gate control */ { 0x14, 0xa6 }, /* Limiter control */ { 0x15, ADC_MUX_LINEIN }, /* ADC Mixer control */ }; static void ca0106_init_chip(struct snd_ca0106 *chip, int resume) { int ch; unsigned int def_bits; outl(0, chip->port + INTE); /* * Init to 0x02109204 : * Clock accuracy = 0 (1000ppm) * Sample Rate = 2 (48kHz) * Audio Channel = 1 (Left of 2) * Source Number = 0 (Unspecified) * Generation Status = 1 (Original for Cat Code 12) * Cat Code = 12 (Digital Signal Mixer) * Mode = 0 (Mode 0) * Emphasis = 0 (None) * CP = 1 (Copyright unasserted) * AN = 0 (Audio data) * P = 0 (Consumer) */ def_bits = SPCS_CLKACCY_1000PPM | SPCS_SAMPLERATE_48 | SPCS_CHANNELNUM_LEFT | SPCS_SOURCENUM_UNSPEC | SPCS_GENERATIONSTATUS | 0x00001200 | 0x00000000 | SPCS_EMPHASIS_NONE | SPCS_COPYRIGHT; if (!resume) { chip->spdif_str_bits[0] = chip->spdif_bits[0] = def_bits; chip->spdif_str_bits[1] = chip->spdif_bits[1] = def_bits; chip->spdif_str_bits[2] = chip->spdif_bits[2] = def_bits; chip->spdif_str_bits[3] = chip->spdif_bits[3] = def_bits; } /* Only SPCS1 has been tested */ snd_ca0106_ptr_write(chip, SPCS1, 0, chip->spdif_str_bits[1]); snd_ca0106_ptr_write(chip, SPCS0, 0, chip->spdif_str_bits[0]); snd_ca0106_ptr_write(chip, SPCS2, 0, chip->spdif_str_bits[2]); snd_ca0106_ptr_write(chip, SPCS3, 0, chip->spdif_str_bits[3]); snd_ca0106_ptr_write(chip, PLAYBACK_MUTE, 0, 0x00fc0000); snd_ca0106_ptr_write(chip, CAPTURE_MUTE, 0, 0x00fc0000); /* Write 0x8000 to AC97_REC_GAIN to mute it. */ outb(AC97_REC_GAIN, chip->port + AC97ADDRESS); outw(0x8000, chip->port + AC97DATA); #if 0 /* FIXME: what are these? */ snd_ca0106_ptr_write(chip, SPCS0, 0, 0x2108006); snd_ca0106_ptr_write(chip, 0x42, 0, 0x2108006); snd_ca0106_ptr_write(chip, 0x43, 0, 0x2108006); snd_ca0106_ptr_write(chip, 0x44, 0, 0x2108006); #endif /* OSS drivers set this. */ /* snd_ca0106_ptr_write(chip, SPDIF_SELECT2, 0, 0xf0f003f); */ /* Analog or Digital output */ snd_ca0106_ptr_write(chip, SPDIF_SELECT1, 0, 0xf); /* 0x0b000000 for digital, 0x000b0000 for analog, from win2000 drivers. * Use 0x000f0000 for surround71 */ snd_ca0106_ptr_write(chip, SPDIF_SELECT2, 0, 0x000f0000); chip->spdif_enable = 0; /* Set digital SPDIF output off */ /*snd_ca0106_ptr_write(chip, 0x45, 0, 0);*/ /* Analogue out */ /*snd_ca0106_ptr_write(chip, 0x45, 0, 0xf00);*/ /* Digital out */ /* goes to 0x40c80000 when doing SPDIF IN/OUT */ snd_ca0106_ptr_write(chip, CAPTURE_CONTROL, 0, 0x40c81000); /* (Mute) CAPTURE feedback into PLAYBACK volume. * Only lower 16 bits matter. */ snd_ca0106_ptr_write(chip, CAPTURE_CONTROL, 1, 0xffffffff); /* SPDIF IN Volume */ snd_ca0106_ptr_write(chip, CAPTURE_CONTROL, 2, 0x30300000); /* SPDIF IN Volume, 0x70 = (vol & 0x3f) | 0x40 */ snd_ca0106_ptr_write(chip, CAPTURE_CONTROL, 3, 0x00700000); snd_ca0106_ptr_write(chip, PLAYBACK_ROUTING1, 0, 0x32765410); snd_ca0106_ptr_write(chip, PLAYBACK_ROUTING2, 0, 0x76767676); snd_ca0106_ptr_write(chip, CAPTURE_ROUTING1, 0, 0x32765410); snd_ca0106_ptr_write(chip, CAPTURE_ROUTING2, 0, 0x76767676); for (ch = 0; ch < 4; ch++) { /* Only high 16 bits matter */ snd_ca0106_ptr_write(chip, CAPTURE_VOLUME1, ch, 0x30303030); snd_ca0106_ptr_write(chip, CAPTURE_VOLUME2, ch, 0x30303030); #if 0 /* Mute */ snd_ca0106_ptr_write(chip, PLAYBACK_VOLUME1, ch, 0x40404040); snd_ca0106_ptr_write(chip, PLAYBACK_VOLUME2, ch, 0x40404040); snd_ca0106_ptr_write(chip, PLAYBACK_VOLUME1, ch, 0xffffffff); snd_ca0106_ptr_write(chip, PLAYBACK_VOLUME2, ch, 0xffffffff); #endif } if (chip->details->i2c_adc == 1) { /* Select MIC, Line in, TAD in, AUX in */ snd_ca0106_ptr_write(chip, CAPTURE_SOURCE, 0x0, 0x333300e4); /* Default to CAPTURE_SOURCE to i2s in */ if (!resume) chip->capture_source = 3; } else if (chip->details->ac97 == 1) { /* Default to AC97 in */ snd_ca0106_ptr_write(chip, CAPTURE_SOURCE, 0x0, 0x444400e4); /* Default to CAPTURE_SOURCE to AC97 in */ if (!resume) chip->capture_source = 4; } else { /* Select MIC, Line in, TAD in, AUX in */ snd_ca0106_ptr_write(chip, CAPTURE_SOURCE, 0x0, 0x333300e4); /* Default to Set CAPTURE_SOURCE to i2s in */ if (!resume) chip->capture_source = 3; } if (chip->details->gpio_type == 2) { /* The SB0438 use GPIO differently. */ /* FIXME: Still need to find out what the other GPIO bits do. * E.g. For digital spdif out. */ outl(0x0, chip->port+GPIO); /* outl(0x00f0e000, chip->port+GPIO); */ /* Analog */ outl(0x005f5301, chip->port+GPIO); /* Analog */ } else if (chip->details->gpio_type == 1) { /* The SB0410 and SB0413 use GPIO differently. */ /* FIXME: Still need to find out what the other GPIO bits do. * E.g. For digital spdif out. */ outl(0x0, chip->port+GPIO); /* outl(0x00f0e000, chip->port+GPIO); */ /* Analog */ outl(0x005f5301, chip->port+GPIO); /* Analog */ } else { outl(0x0, chip->port+GPIO); outl(0x005f03a3, chip->port+GPIO); /* Analog */ /* outl(0x005f02a2, chip->port+GPIO); */ /* SPDIF */ } snd_ca0106_intr_enable(chip, 0x105); /* Win2000 uses 0x1e0 */ /* outl(HCFG_LOCKSOUNDCACHE|HCFG_AUDIOENABLE, chip->port+HCFG); */ /* 0x1000 causes AC3 to fails. Maybe it effects 24 bit output. */ /* outl(0x00001409, chip->port+HCFG); */ /* outl(0x00000009, chip->port+HCFG); */ /* AC97 2.0, Enable outputs. */ outl(HCFG_AC97 | HCFG_AUDIOENABLE, chip->port+HCFG); if (chip->details->i2c_adc == 1) { /* The SB0410 and SB0413 use I2C to control ADC. */ int size, n; size = ARRAY_SIZE(i2c_adc_init); /* snd_printk(KERN_DEBUG "I2C:array size=0x%x\n", size); */ for (n = 0; n < size; n++) snd_ca0106_i2c_write(chip, i2c_adc_init[n][0], i2c_adc_init[n][1]); for (n = 0; n < 4; n++) { chip->i2c_capture_volume[n][0] = 0xcf; chip->i2c_capture_volume[n][1] = 0xcf; } chip->i2c_capture_source = 2; /* Line in */ /* Enable Line-in capture. MIC in currently untested. */ /* snd_ca0106_i2c_write(chip, ADC_MUX, ADC_MUX_LINEIN); */ } if (chip->details->spi_dac) { /* The SB0570 use SPI to control DAC. */ int size, n; size = ARRAY_SIZE(spi_dac_init); for (n = 0; n < size; n++) { int reg = spi_dac_init[n] >> SPI_REG_SHIFT; snd_ca0106_spi_write(chip, spi_dac_init[n]); if (reg < ARRAY_SIZE(chip->spi_dac_reg)) chip->spi_dac_reg[reg] = spi_dac_init[n]; } /* Enable front dac only */ snd_ca0106_pcm_power_dac(chip, PCM_FRONT_CHANNEL, 1); } } static void ca0106_stop_chip(struct snd_ca0106 *chip) { /* disable interrupts */ snd_ca0106_ptr_write(chip, BASIC_INTERRUPT, 0, 0); outl(0, chip->port + INTE); snd_ca0106_ptr_write(chip, EXTENDED_INT_MASK, 0, 0); udelay(1000); /* disable audio */ /* outl(HCFG_LOCKSOUNDCACHE, chip->port + HCFG); */ outl(0, chip->port + HCFG); /* FIXME: We need to stop and DMA transfers here. * But as I am not sure how yet, we cannot from the dma pages. * So we can fix: snd-malloc: Memory leak? pages not freed = 8 */ } static int __devinit snd_ca0106_create(int dev, struct snd_card *card, struct pci_dev *pci, struct snd_ca0106 **rchip) { struct snd_ca0106 *chip; struct snd_ca0106_details *c; int err; static struct snd_device_ops ops = { .dev_free = snd_ca0106_dev_free, }; *rchip = NULL; err = pci_enable_device(pci); if (err < 0) return err; if (pci_set_dma_mask(pci, DMA_BIT_MASK(32)) < 0 || pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(32)) < 0) { printk(KERN_ERR "error to set 32bit mask DMA\n"); pci_disable_device(pci); return -ENXIO; } chip = kzalloc(sizeof(*chip), GFP_KERNEL); if (chip == NULL) { pci_disable_device(pci); return -ENOMEM; } chip->card = card; chip->pci = pci; chip->irq = -1; spin_lock_init(&chip->emu_lock); chip->port = pci_resource_start(pci, 0); chip->res_port = request_region(chip->port, 0x20, "snd_ca0106"); if (!chip->res_port) { snd_ca0106_free(chip); printk(KERN_ERR "cannot allocate the port\n"); return -EBUSY; } if (request_irq(pci->irq, snd_ca0106_interrupt, IRQF_SHARED, "snd_ca0106", chip)) { snd_ca0106_free(chip); printk(KERN_ERR "cannot grab irq\n"); return -EBUSY; } chip->irq = pci->irq; /* This stores the periods table. */ if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci), 1024, &chip->buffer) < 0) { snd_ca0106_free(chip); return -ENOMEM; } pci_set_master(pci); /* read serial */ pci_read_config_dword(pci, PCI_SUBSYSTEM_VENDOR_ID, &chip->serial); pci_read_config_word(pci, PCI_SUBSYSTEM_ID, &chip->model); printk(KERN_INFO "snd-ca0106: Model %04x Rev %08x Serial %08x\n", chip->model, pci->revision, chip->serial); strcpy(card->driver, "CA0106"); strcpy(card->shortname, "CA0106"); for (c = ca0106_chip_details; c->serial; c++) { if (subsystem[dev]) { if (c->serial == subsystem[dev]) break; } else if (c->serial == chip->serial) break; } chip->details = c; if (subsystem[dev]) { printk(KERN_INFO "snd-ca0106: Sound card name=%s, " "subsystem=0x%x. Forced to subsystem=0x%x\n", c->name, chip->serial, subsystem[dev]); } sprintf(card->longname, "%s at 0x%lx irq %i", c->name, chip->port, chip->irq); ca0106_init_chip(chip, 0); err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); if (err < 0) { snd_ca0106_free(chip); return err; } *rchip = chip; return 0; } static void ca0106_midi_interrupt_enable(struct snd_ca_midi *midi, int intr) { snd_ca0106_intr_enable((struct snd_ca0106 *)(midi->dev_id), intr); } static void ca0106_midi_interrupt_disable(struct snd_ca_midi *midi, int intr) { snd_ca0106_intr_disable((struct snd_ca0106 *)(midi->dev_id), intr); } static unsigned char ca0106_midi_read(struct snd_ca_midi *midi, int idx) { return (unsigned char)snd_ca0106_ptr_read((struct snd_ca0106 *)(midi->dev_id), midi->port + idx, 0); } static void ca0106_midi_write(struct snd_ca_midi *midi, int data, int idx) { snd_ca0106_ptr_write((struct snd_ca0106 *)(midi->dev_id), midi->port + idx, 0, data); } static struct snd_card *ca0106_dev_id_card(void *dev_id) { return ((struct snd_ca0106 *)dev_id)->card; } static int ca0106_dev_id_port(void *dev_id) { return ((struct snd_ca0106 *)dev_id)->port; } static int __devinit snd_ca0106_midi(struct snd_ca0106 *chip, unsigned int channel) { struct snd_ca_midi *midi; char *name; int err; if (channel == CA0106_MIDI_CHAN_B) { name = "CA0106 MPU-401 (UART) B"; midi = &chip->midi2; midi->tx_enable = INTE_MIDI_TX_B; midi->rx_enable = INTE_MIDI_RX_B; midi->ipr_tx = IPR_MIDI_TX_B; midi->ipr_rx = IPR_MIDI_RX_B; midi->port = MIDI_UART_B_DATA; } else { name = "CA0106 MPU-401 (UART)"; midi = &chip->midi; midi->tx_enable = INTE_MIDI_TX_A; midi->rx_enable = INTE_MIDI_TX_B; midi->ipr_tx = IPR_MIDI_TX_A; midi->ipr_rx = IPR_MIDI_RX_A; midi->port = MIDI_UART_A_DATA; } midi->reset = CA0106_MPU401_RESET; midi->enter_uart = CA0106_MPU401_ENTER_UART; midi->ack = CA0106_MPU401_ACK; midi->input_avail = CA0106_MIDI_INPUT_AVAIL; midi->output_ready = CA0106_MIDI_OUTPUT_READY; midi->channel = channel; midi->interrupt_enable = ca0106_midi_interrupt_enable; midi->interrupt_disable = ca0106_midi_interrupt_disable; midi->read = ca0106_midi_read; midi->write = ca0106_midi_write; midi->get_dev_id_card = ca0106_dev_id_card; midi->get_dev_id_port = ca0106_dev_id_port; midi->dev_id = chip; if ((err = ca_midi_init(chip, midi, 0, name)) < 0) return err; return 0; } static int __devinit snd_ca0106_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { static int dev; struct snd_card *card; struct snd_ca0106 *chip; int i, err; if (dev >= SNDRV_CARDS) return -ENODEV; if (!enable[dev]) { dev++; return -ENOENT; } err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card); if (err < 0) return err; err = snd_ca0106_create(dev, card, pci, &chip); if (err < 0) goto error; card->private_data = chip; for (i = 0; i < 4; i++) { err = snd_ca0106_pcm(chip, i); if (err < 0) goto error; } if (chip->details->ac97 == 1) { /* The SB0410 and SB0413 do not have an AC97 chip. */ err = snd_ca0106_ac97(chip); if (err < 0) goto error; } err = snd_ca0106_mixer(chip); if (err < 0) goto error; snd_printdd("ca0106: probe for MIDI channel A ..."); err = snd_ca0106_midi(chip, CA0106_MIDI_CHAN_A); if (err < 0) goto error; snd_printdd(" done.\n"); #ifdef CONFIG_PROC_FS snd_ca0106_proc_init(chip); #endif snd_card_set_dev(card, &pci->dev); err = snd_card_register(card); if (err < 0) goto error; pci_set_drvdata(pci, card); dev++; return 0; error: snd_card_free(card); return err; } static void __devexit snd_ca0106_remove(struct pci_dev *pci) { snd_card_free(pci_get_drvdata(pci)); pci_set_drvdata(pci, NULL); } #ifdef CONFIG_PM static int snd_ca0106_suspend(struct pci_dev *pci, pm_message_t state) { struct snd_card *card = pci_get_drvdata(pci); struct snd_ca0106 *chip = card->private_data; int i; snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); for (i = 0; i < 4; i++) snd_pcm_suspend_all(chip->pcm[i]); if (chip->details->ac97) snd_ac97_suspend(chip->ac97); snd_ca0106_mixer_suspend(chip); ca0106_stop_chip(chip); pci_disable_device(pci); pci_save_state(pci); pci_set_power_state(pci, pci_choose_state(pci, state)); return 0; } static int snd_ca0106_resume(struct pci_dev *pci) { struct snd_card *card = pci_get_drvdata(pci); struct snd_ca0106 *chip = card->private_data; int i; pci_set_power_state(pci, PCI_D0); pci_restore_state(pci); if (pci_enable_device(pci) < 0) { snd_card_disconnect(card); return -EIO; } pci_set_master(pci); ca0106_init_chip(chip, 1); if (chip->details->ac97) snd_ac97_resume(chip->ac97); snd_ca0106_mixer_resume(chip); if (chip->details->spi_dac) { for (i = 0; i < ARRAY_SIZE(chip->spi_dac_reg); i++) snd_ca0106_spi_write(chip, chip->spi_dac_reg[i]); } snd_power_change_state(card, SNDRV_CTL_POWER_D0); return 0; } #endif // PCI IDs static DEFINE_PCI_DEVICE_TABLE(snd_ca0106_ids) = { { PCI_VDEVICE(CREATIVE, 0x0007), 0 }, /* Audigy LS or Live 24bit */ { 0, } }; MODULE_DEVICE_TABLE(pci, snd_ca0106_ids); // pci_driver definition static struct pci_driver driver = { .name = KBUILD_MODNAME, .id_table = snd_ca0106_ids, .probe = snd_ca0106_probe, .remove = __devexit_p(snd_ca0106_remove), #ifdef CONFIG_PM .suspend = snd_ca0106_suspend, .resume = snd_ca0106_resume, #endif }; // initialization of the module static int __init alsa_card_ca0106_init(void) { return pci_register_driver(&driver); } // clean up the module static void __exit alsa_card_ca0106_exit(void) { pci_unregister_driver(&driver); } module_init(alsa_card_ca0106_init) module_exit(alsa_card_ca0106_exit)