/* * HD audio interface patch for Cirrus Logic CS420x chip * * Copyright (c) 2009 Takashi Iwai * * This driver is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This driver is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include "hda_codec.h" #include "hda_local.h" #include /* */ struct cs_spec { int board_config; struct auto_pin_cfg autocfg; struct hda_multi_out multiout; struct snd_kcontrol *vmaster_sw; struct snd_kcontrol *vmaster_vol; hda_nid_t dac_nid[AUTO_CFG_MAX_OUTS]; hda_nid_t slave_dig_outs[2]; unsigned int input_idx[AUTO_PIN_LAST]; unsigned int capsrc_idx[AUTO_PIN_LAST]; hda_nid_t adc_nid[AUTO_PIN_LAST]; unsigned int adc_idx[AUTO_PIN_LAST]; unsigned int num_inputs; unsigned int cur_input; unsigned int automic_idx; hda_nid_t cur_adc; unsigned int cur_adc_stream_tag; unsigned int cur_adc_format; hda_nid_t dig_in; const struct hda_bind_ctls *capture_bind[2]; unsigned int gpio_mask; unsigned int gpio_dir; unsigned int gpio_data; unsigned int gpio_eapd_hp; /* EAPD GPIO bit for headphones */ unsigned int gpio_eapd_speaker; /* EAPD GPIO bit for speakers */ struct hda_pcm pcm_rec[2]; /* PCM information */ unsigned int hp_detect:1; unsigned int mic_detect:1; /* CS421x */ unsigned int spdif_detect:1; unsigned int sense_b:1; hda_nid_t vendor_nid; struct hda_input_mux input_mux; unsigned int last_input; }; /* available models with CS420x */ enum { CS420X_MBP53, CS420X_MBP55, CS420X_IMAC27, CS420X_APPLE, CS420X_AUTO, CS420X_MODELS }; /* CS421x boards */ enum { CS421X_CDB4210, CS421X_MODELS }; /* Vendor-specific processing widget */ #define CS420X_VENDOR_NID 0x11 #define CS_DIG_OUT1_PIN_NID 0x10 #define CS_DIG_OUT2_PIN_NID 0x15 #define CS_DMIC1_PIN_NID 0x12 #define CS_DMIC2_PIN_NID 0x0e /* coef indices */ #define IDX_SPDIF_STAT 0x0000 #define IDX_SPDIF_CTL 0x0001 #define IDX_ADC_CFG 0x0002 /* SZC bitmask, 4 modes below: * 0 = immediate, * 1 = digital immediate, analog zero-cross * 2 = digtail & analog soft-ramp * 3 = digital soft-ramp, analog zero-cross */ #define CS_COEF_ADC_SZC_MASK (3 << 0) #define CS_COEF_ADC_MIC_SZC_MODE (3 << 0) /* SZC setup for mic */ #define CS_COEF_ADC_LI_SZC_MODE (3 << 0) /* SZC setup for line-in */ /* PGA mode: 0 = differential, 1 = signle-ended */ #define CS_COEF_ADC_MIC_PGA_MODE (1 << 5) /* PGA setup for mic */ #define CS_COEF_ADC_LI_PGA_MODE (1 << 6) /* PGA setup for line-in */ #define IDX_DAC_CFG 0x0003 /* SZC bitmask, 4 modes below: * 0 = Immediate * 1 = zero-cross * 2 = soft-ramp * 3 = soft-ramp on zero-cross */ #define CS_COEF_DAC_HP_SZC_MODE (3 << 0) /* nid 0x02 */ #define CS_COEF_DAC_LO_SZC_MODE (3 << 2) /* nid 0x03 */ #define CS_COEF_DAC_SPK_SZC_MODE (3 << 4) /* nid 0x04 */ #define IDX_BEEP_CFG 0x0004 /* 0x0008 - test reg key */ /* 0x0009 - 0x0014 -> 12 test regs */ /* 0x0015 - visibility reg */ /* * Cirrus Logic CS4210 * * 1 DAC => HP(sense) / Speakers, * 1 ADC <= LineIn(sense) / MicIn / DMicIn, * 1 SPDIF OUT => SPDIF Trasmitter(sense) */ #define CS4210_DAC_NID 0x02 #define CS4210_ADC_NID 0x03 #define CS421X_VENDOR_NID 0x0B #define CS421X_DMIC_PIN_NID 0x09 /* Port E */ #define CS421X_SPDIF_PIN_NID 0x0A /* Port H */ #define CS421X_IDX_DEV_CFG 0x01 #define CS421X_IDX_ADC_CFG 0x02 #define CS421X_IDX_DAC_CFG 0x03 #define CS421X_IDX_SPK_CTL 0x04 #define SPDIF_EVENT 0x04 static inline int cs_vendor_coef_get(struct hda_codec *codec, unsigned int idx) { struct cs_spec *spec = codec->spec; snd_hda_codec_write(codec, spec->vendor_nid, 0, AC_VERB_SET_COEF_INDEX, idx); return snd_hda_codec_read(codec, spec->vendor_nid, 0, AC_VERB_GET_PROC_COEF, 0); } static inline void cs_vendor_coef_set(struct hda_codec *codec, unsigned int idx, unsigned int coef) { struct cs_spec *spec = codec->spec; snd_hda_codec_write(codec, spec->vendor_nid, 0, AC_VERB_SET_COEF_INDEX, idx); snd_hda_codec_write(codec, spec->vendor_nid, 0, AC_VERB_SET_PROC_COEF, coef); } #define HP_EVENT 1 #define MIC_EVENT 2 /* * PCM callbacks */ static int cs_playback_pcm_open(struct hda_pcm_stream *hinfo, struct hda_codec *codec, struct snd_pcm_substream *substream) { struct cs_spec *spec = codec->spec; return snd_hda_multi_out_analog_open(codec, &spec->multiout, substream, hinfo); } static int cs_playback_pcm_prepare(struct hda_pcm_stream *hinfo, struct hda_codec *codec, unsigned int stream_tag, unsigned int format, struct snd_pcm_substream *substream) { struct cs_spec *spec = codec->spec; return snd_hda_multi_out_analog_prepare(codec, &spec->multiout, stream_tag, format, substream); } static int cs_playback_pcm_cleanup(struct hda_pcm_stream *hinfo, struct hda_codec *codec, struct snd_pcm_substream *substream) { struct cs_spec *spec = codec->spec; return snd_hda_multi_out_analog_cleanup(codec, &spec->multiout); } /* * Digital out */ static int cs_dig_playback_pcm_open(struct hda_pcm_stream *hinfo, struct hda_codec *codec, struct snd_pcm_substream *substream) { struct cs_spec *spec = codec->spec; return snd_hda_multi_out_dig_open(codec, &spec->multiout); } static int cs_dig_playback_pcm_close(struct hda_pcm_stream *hinfo, struct hda_codec *codec, struct snd_pcm_substream *substream) { struct cs_spec *spec = codec->spec; return snd_hda_multi_out_dig_close(codec, &spec->multiout); } static int cs_dig_playback_pcm_prepare(struct hda_pcm_stream *hinfo, struct hda_codec *codec, unsigned int stream_tag, unsigned int format, struct snd_pcm_substream *substream) { struct cs_spec *spec = codec->spec; return snd_hda_multi_out_dig_prepare(codec, &spec->multiout, stream_tag, format, substream); } static int cs_dig_playback_pcm_cleanup(struct hda_pcm_stream *hinfo, struct hda_codec *codec, struct snd_pcm_substream *substream) { struct cs_spec *spec = codec->spec; return snd_hda_multi_out_dig_cleanup(codec, &spec->multiout); } static void cs_update_input_select(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; if (spec->cur_adc) snd_hda_codec_write(codec, spec->cur_adc, 0, AC_VERB_SET_CONNECT_SEL, spec->adc_idx[spec->cur_input]); } /* * Analog capture */ static int cs_capture_pcm_prepare(struct hda_pcm_stream *hinfo, struct hda_codec *codec, unsigned int stream_tag, unsigned int format, struct snd_pcm_substream *substream) { struct cs_spec *spec = codec->spec; spec->cur_adc = spec->adc_nid[spec->cur_input]; spec->cur_adc_stream_tag = stream_tag; spec->cur_adc_format = format; cs_update_input_select(codec); snd_hda_codec_setup_stream(codec, spec->cur_adc, stream_tag, 0, format); return 0; } static int cs_capture_pcm_cleanup(struct hda_pcm_stream *hinfo, struct hda_codec *codec, struct snd_pcm_substream *substream) { struct cs_spec *spec = codec->spec; snd_hda_codec_cleanup_stream(codec, spec->cur_adc); spec->cur_adc = 0; return 0; } /* */ static const struct hda_pcm_stream cs_pcm_analog_playback = { .substreams = 1, .channels_min = 2, .channels_max = 2, .ops = { .open = cs_playback_pcm_open, .prepare = cs_playback_pcm_prepare, .cleanup = cs_playback_pcm_cleanup }, }; static const struct hda_pcm_stream cs_pcm_analog_capture = { .substreams = 1, .channels_min = 2, .channels_max = 2, .ops = { .prepare = cs_capture_pcm_prepare, .cleanup = cs_capture_pcm_cleanup }, }; static const struct hda_pcm_stream cs_pcm_digital_playback = { .substreams = 1, .channels_min = 2, .channels_max = 2, .ops = { .open = cs_dig_playback_pcm_open, .close = cs_dig_playback_pcm_close, .prepare = cs_dig_playback_pcm_prepare, .cleanup = cs_dig_playback_pcm_cleanup }, }; static const struct hda_pcm_stream cs_pcm_digital_capture = { .substreams = 1, .channels_min = 2, .channels_max = 2, }; static int cs_build_pcms(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; struct hda_pcm *info = spec->pcm_rec; codec->pcm_info = info; codec->num_pcms = 0; info->name = "Cirrus Analog"; info->stream[SNDRV_PCM_STREAM_PLAYBACK] = cs_pcm_analog_playback; info->stream[SNDRV_PCM_STREAM_PLAYBACK].nid = spec->dac_nid[0]; info->stream[SNDRV_PCM_STREAM_PLAYBACK].channels_max = spec->multiout.max_channels; info->stream[SNDRV_PCM_STREAM_CAPTURE] = cs_pcm_analog_capture; info->stream[SNDRV_PCM_STREAM_CAPTURE].nid = spec->adc_nid[spec->cur_input]; codec->num_pcms++; if (!spec->multiout.dig_out_nid && !spec->dig_in) return 0; info++; info->name = "Cirrus Digital"; info->pcm_type = spec->autocfg.dig_out_type[0]; if (!info->pcm_type) info->pcm_type = HDA_PCM_TYPE_SPDIF; if (spec->multiout.dig_out_nid) { info->stream[SNDRV_PCM_STREAM_PLAYBACK] = cs_pcm_digital_playback; info->stream[SNDRV_PCM_STREAM_PLAYBACK].nid = spec->multiout.dig_out_nid; } if (spec->dig_in) { info->stream[SNDRV_PCM_STREAM_CAPTURE] = cs_pcm_digital_capture; info->stream[SNDRV_PCM_STREAM_CAPTURE].nid = spec->dig_in; } codec->num_pcms++; return 0; } /* * parse codec topology */ static hda_nid_t get_dac(struct hda_codec *codec, hda_nid_t pin) { hda_nid_t dac; if (!pin) return 0; if (snd_hda_get_connections(codec, pin, &dac, 1) != 1) return 0; return dac; } static int is_ext_mic(struct hda_codec *codec, unsigned int idx) { struct cs_spec *spec = codec->spec; struct auto_pin_cfg *cfg = &spec->autocfg; hda_nid_t pin = cfg->inputs[idx].pin; unsigned int val; if (!is_jack_detectable(codec, pin)) return 0; val = snd_hda_codec_get_pincfg(codec, pin); return (snd_hda_get_input_pin_attr(val) != INPUT_PIN_ATTR_INT); } static hda_nid_t get_adc(struct hda_codec *codec, hda_nid_t pin, unsigned int *idxp) { int i, idx; hda_nid_t nid; nid = codec->start_nid; for (i = 0; i < codec->num_nodes; i++, nid++) { unsigned int type; type = get_wcaps_type(get_wcaps(codec, nid)); if (type != AC_WID_AUD_IN) continue; idx = snd_hda_get_conn_index(codec, nid, pin, false); if (idx >= 0) { *idxp = idx; return nid; } } return 0; } static int is_active_pin(struct hda_codec *codec, hda_nid_t nid) { unsigned int val; val = snd_hda_codec_get_pincfg(codec, nid); return (get_defcfg_connect(val) != AC_JACK_PORT_NONE); } static int parse_output(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; struct auto_pin_cfg *cfg = &spec->autocfg; int i, extra_nids; hda_nid_t dac; for (i = 0; i < cfg->line_outs; i++) { dac = get_dac(codec, cfg->line_out_pins[i]); if (!dac) break; spec->dac_nid[i] = dac; } spec->multiout.num_dacs = i; spec->multiout.dac_nids = spec->dac_nid; spec->multiout.max_channels = i * 2; /* add HP and speakers */ extra_nids = 0; for (i = 0; i < cfg->hp_outs; i++) { dac = get_dac(codec, cfg->hp_pins[i]); if (!dac) break; if (!i) spec->multiout.hp_nid = dac; else spec->multiout.extra_out_nid[extra_nids++] = dac; } for (i = 0; i < cfg->speaker_outs; i++) { dac = get_dac(codec, cfg->speaker_pins[i]); if (!dac) break; spec->multiout.extra_out_nid[extra_nids++] = dac; } if (cfg->line_out_type == AUTO_PIN_SPEAKER_OUT) { cfg->speaker_outs = cfg->line_outs; memcpy(cfg->speaker_pins, cfg->line_out_pins, sizeof(cfg->speaker_pins)); cfg->line_outs = 0; } return 0; } static int parse_input(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; struct auto_pin_cfg *cfg = &spec->autocfg; int i; for (i = 0; i < cfg->num_inputs; i++) { hda_nid_t pin = cfg->inputs[i].pin; spec->input_idx[spec->num_inputs] = i; spec->capsrc_idx[i] = spec->num_inputs++; spec->cur_input = i; spec->adc_nid[i] = get_adc(codec, pin, &spec->adc_idx[i]); } if (!spec->num_inputs) return 0; /* check whether the automatic mic switch is available */ if (spec->num_inputs == 2 && cfg->inputs[0].type == AUTO_PIN_MIC && cfg->inputs[1].type == AUTO_PIN_MIC) { if (is_ext_mic(codec, cfg->inputs[0].pin)) { if (!is_ext_mic(codec, cfg->inputs[1].pin)) { spec->mic_detect = 1; spec->automic_idx = 0; } } else { if (is_ext_mic(codec, cfg->inputs[1].pin)) { spec->mic_detect = 1; spec->automic_idx = 1; } } } return 0; } static int parse_digital_output(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; struct auto_pin_cfg *cfg = &spec->autocfg; hda_nid_t nid; if (!cfg->dig_outs) return 0; if (snd_hda_get_connections(codec, cfg->dig_out_pins[0], &nid, 1) < 1) return 0; spec->multiout.dig_out_nid = nid; spec->multiout.share_spdif = 1; if (cfg->dig_outs > 1 && snd_hda_get_connections(codec, cfg->dig_out_pins[1], &nid, 1) > 0) { spec->slave_dig_outs[0] = nid; codec->slave_dig_outs = spec->slave_dig_outs; } return 0; } static int parse_digital_input(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; struct auto_pin_cfg *cfg = &spec->autocfg; int idx; if (cfg->dig_in_pin) spec->dig_in = get_adc(codec, cfg->dig_in_pin, &idx); return 0; } /* * create mixer controls */ static const char * const dir_sfx[2] = { "Playback", "Capture" }; static int add_mute(struct hda_codec *codec, const char *name, int index, unsigned int pval, int dir, struct snd_kcontrol **kctlp) { char tmp[44]; struct snd_kcontrol_new knew = HDA_CODEC_MUTE_IDX(tmp, index, 0, 0, HDA_OUTPUT); knew.private_value = pval; snprintf(tmp, sizeof(tmp), "%s %s Switch", name, dir_sfx[dir]); *kctlp = snd_ctl_new1(&knew, codec); (*kctlp)->id.subdevice = HDA_SUBDEV_AMP_FLAG; return snd_hda_ctl_add(codec, 0, *kctlp); } static int add_volume(struct hda_codec *codec, const char *name, int index, unsigned int pval, int dir, struct snd_kcontrol **kctlp) { char tmp[44]; struct snd_kcontrol_new knew = HDA_CODEC_VOLUME_IDX(tmp, index, 0, 0, HDA_OUTPUT); knew.private_value = pval; snprintf(tmp, sizeof(tmp), "%s %s Volume", name, dir_sfx[dir]); *kctlp = snd_ctl_new1(&knew, codec); (*kctlp)->id.subdevice = HDA_SUBDEV_AMP_FLAG; return snd_hda_ctl_add(codec, 0, *kctlp); } static void fix_volume_caps(struct hda_codec *codec, hda_nid_t dac) { unsigned int caps; /* set the upper-limit for mixer amp to 0dB */ caps = query_amp_caps(codec, dac, HDA_OUTPUT); caps &= ~(0x7f << AC_AMPCAP_NUM_STEPS_SHIFT); caps |= ((caps >> AC_AMPCAP_OFFSET_SHIFT) & 0x7f) << AC_AMPCAP_NUM_STEPS_SHIFT; snd_hda_override_amp_caps(codec, dac, HDA_OUTPUT, caps); } static int add_vmaster(struct hda_codec *codec, hda_nid_t dac) { struct cs_spec *spec = codec->spec; unsigned int tlv[4]; int err; spec->vmaster_sw = snd_ctl_make_virtual_master("Master Playback Switch", NULL); err = snd_hda_ctl_add(codec, dac, spec->vmaster_sw); if (err < 0) return err; snd_hda_set_vmaster_tlv(codec, dac, HDA_OUTPUT, tlv); spec->vmaster_vol = snd_ctl_make_virtual_master("Master Playback Volume", tlv); err = snd_hda_ctl_add(codec, dac, spec->vmaster_vol); if (err < 0) return err; return 0; } static int add_output(struct hda_codec *codec, hda_nid_t dac, int idx, int num_ctls, int type) { struct cs_spec *spec = codec->spec; const char *name; int err, index; struct snd_kcontrol *kctl; static const char * const speakers[] = { "Front Speaker", "Surround Speaker", "Bass Speaker" }; static const char * const line_outs[] = { "Front Line-Out", "Surround Line-Out", "Bass Line-Out" }; fix_volume_caps(codec, dac); if (!spec->vmaster_sw) { err = add_vmaster(codec, dac); if (err < 0) return err; } index = 0; switch (type) { case AUTO_PIN_HP_OUT: name = "Headphone"; index = idx; break; case AUTO_PIN_SPEAKER_OUT: if (num_ctls > 1) name = speakers[idx]; else name = "Speaker"; break; default: if (num_ctls > 1) name = line_outs[idx]; else name = "Line-Out"; break; } err = add_mute(codec, name, index, HDA_COMPOSE_AMP_VAL(dac, 3, 0, HDA_OUTPUT), 0, &kctl); if (err < 0) return err; err = snd_ctl_add_slave(spec->vmaster_sw, kctl); if (err < 0) return err; err = add_volume(codec, name, index, HDA_COMPOSE_AMP_VAL(dac, 3, 0, HDA_OUTPUT), 0, &kctl); if (err < 0) return err; err = snd_ctl_add_slave(spec->vmaster_vol, kctl); if (err < 0) return err; return 0; } static int build_output(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; struct auto_pin_cfg *cfg = &spec->autocfg; int i, err; for (i = 0; i < cfg->line_outs; i++) { err = add_output(codec, get_dac(codec, cfg->line_out_pins[i]), i, cfg->line_outs, cfg->line_out_type); if (err < 0) return err; } for (i = 0; i < cfg->hp_outs; i++) { err = add_output(codec, get_dac(codec, cfg->hp_pins[i]), i, cfg->hp_outs, AUTO_PIN_HP_OUT); if (err < 0) return err; } for (i = 0; i < cfg->speaker_outs; i++) { err = add_output(codec, get_dac(codec, cfg->speaker_pins[i]), i, cfg->speaker_outs, AUTO_PIN_SPEAKER_OUT); if (err < 0) return err; } return 0; } /* */ static const struct snd_kcontrol_new cs_capture_ctls[] = { HDA_BIND_SW("Capture Switch", 0), HDA_BIND_VOL("Capture Volume", 0), }; static int change_cur_input(struct hda_codec *codec, unsigned int idx, int force) { struct cs_spec *spec = codec->spec; if (spec->cur_input == idx && !force) return 0; if (spec->cur_adc && spec->cur_adc != spec->adc_nid[idx]) { /* stream is running, let's swap the current ADC */ __snd_hda_codec_cleanup_stream(codec, spec->cur_adc, 1); spec->cur_adc = spec->adc_nid[idx]; snd_hda_codec_setup_stream(codec, spec->cur_adc, spec->cur_adc_stream_tag, 0, spec->cur_adc_format); } spec->cur_input = idx; cs_update_input_select(codec); return 1; } static int cs_capture_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct cs_spec *spec = codec->spec; struct auto_pin_cfg *cfg = &spec->autocfg; unsigned int idx; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; uinfo->value.enumerated.items = spec->num_inputs; if (uinfo->value.enumerated.item >= spec->num_inputs) uinfo->value.enumerated.item = spec->num_inputs - 1; idx = spec->input_idx[uinfo->value.enumerated.item]; strcpy(uinfo->value.enumerated.name, hda_get_input_pin_label(codec, cfg->inputs[idx].pin, 1)); return 0; } static int cs_capture_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct cs_spec *spec = codec->spec; ucontrol->value.enumerated.item[0] = spec->capsrc_idx[spec->cur_input]; return 0; } static int cs_capture_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct cs_spec *spec = codec->spec; unsigned int idx = ucontrol->value.enumerated.item[0]; if (idx >= spec->num_inputs) return -EINVAL; idx = spec->input_idx[idx]; return change_cur_input(codec, idx, 0); } static const struct snd_kcontrol_new cs_capture_source = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Capture Source", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = cs_capture_source_info, .get = cs_capture_source_get, .put = cs_capture_source_put, }; static const struct hda_bind_ctls *make_bind_capture(struct hda_codec *codec, struct hda_ctl_ops *ops) { struct cs_spec *spec = codec->spec; struct hda_bind_ctls *bind; int i, n; bind = kzalloc(sizeof(*bind) + sizeof(long) * (spec->num_inputs + 1), GFP_KERNEL); if (!bind) return NULL; bind->ops = ops; n = 0; for (i = 0; i < AUTO_PIN_LAST; i++) { if (!spec->adc_nid[i]) continue; bind->values[n++] = HDA_COMPOSE_AMP_VAL(spec->adc_nid[i], 3, spec->adc_idx[i], HDA_INPUT); } return bind; } /* add a (input-boost) volume control to the given input pin */ static int add_input_volume_control(struct hda_codec *codec, struct auto_pin_cfg *cfg, int item) { hda_nid_t pin = cfg->inputs[item].pin; u32 caps; const char *label; struct snd_kcontrol *kctl; if (!(get_wcaps(codec, pin) & AC_WCAP_IN_AMP)) return 0; caps = query_amp_caps(codec, pin, HDA_INPUT); caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; if (caps <= 1) return 0; label = hda_get_autocfg_input_label(codec, cfg, item); return add_volume(codec, label, 0, HDA_COMPOSE_AMP_VAL(pin, 3, 0, HDA_INPUT), 1, &kctl); } static int build_input(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; int i, err; if (!spec->num_inputs) return 0; /* make bind-capture */ spec->capture_bind[0] = make_bind_capture(codec, &snd_hda_bind_sw); spec->capture_bind[1] = make_bind_capture(codec, &snd_hda_bind_vol); for (i = 0; i < 2; i++) { struct snd_kcontrol *kctl; int n; if (!spec->capture_bind[i]) return -ENOMEM; kctl = snd_ctl_new1(&cs_capture_ctls[i], codec); if (!kctl) return -ENOMEM; kctl->private_value = (long)spec->capture_bind[i]; err = snd_hda_ctl_add(codec, 0, kctl); if (err < 0) return err; for (n = 0; n < AUTO_PIN_LAST; n++) { if (!spec->adc_nid[n]) continue; err = snd_hda_add_nid(codec, kctl, 0, spec->adc_nid[n]); if (err < 0) return err; } } if (spec->num_inputs > 1 && !spec->mic_detect) { err = snd_hda_ctl_add(codec, 0, snd_ctl_new1(&cs_capture_source, codec)); if (err < 0) return err; } for (i = 0; i < spec->num_inputs; i++) { err = add_input_volume_control(codec, &spec->autocfg, i); if (err < 0) return err; } return 0; } /* */ static int build_digital_output(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; int err; if (!spec->multiout.dig_out_nid) return 0; err = snd_hda_create_spdif_out_ctls(codec, spec->multiout.dig_out_nid, spec->multiout.dig_out_nid); if (err < 0) return err; err = snd_hda_create_spdif_share_sw(codec, &spec->multiout); if (err < 0) return err; return 0; } static int build_digital_input(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; if (spec->dig_in) return snd_hda_create_spdif_in_ctls(codec, spec->dig_in); return 0; } /* * auto-mute and auto-mic switching * CS421x auto-output redirecting * HP/SPK/SPDIF */ static void cs_automute(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; struct auto_pin_cfg *cfg = &spec->autocfg; unsigned int hp_present; unsigned int spdif_present; hda_nid_t nid; int i; spdif_present = 0; if (cfg->dig_outs) { nid = cfg->dig_out_pins[0]; if (is_jack_detectable(codec, nid)) { /* TODO: SPDIF output redirect when SENSE_B is enabled. Shared (SENSE_A) jack (e.g HP/mini-TOSLINK) assumed. */ if (snd_hda_jack_detect(codec, nid) /* && spec->sense_b */) spdif_present = 1; } } hp_present = 0; for (i = 0; i < cfg->hp_outs; i++) { nid = cfg->hp_pins[i]; if (!is_jack_detectable(codec, nid)) continue; hp_present = snd_hda_jack_detect(codec, nid); if (hp_present) break; } /* mute speakers if spdif or hp jack is plugged in */ for (i = 0; i < cfg->speaker_outs; i++) { int pin_ctl = hp_present ? 0 : PIN_OUT; /* detect on spdif is specific to CS421x */ if (spdif_present && (spec->vendor_nid == CS421X_VENDOR_NID)) pin_ctl = 0; nid = cfg->speaker_pins[i]; snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_PIN_WIDGET_CONTROL, pin_ctl); } if (spec->gpio_eapd_hp) { unsigned int gpio = hp_present ? spec->gpio_eapd_hp : spec->gpio_eapd_speaker; snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_DATA, gpio); } /* specific to CS421x */ if (spec->vendor_nid == CS421X_VENDOR_NID) { /* mute HPs if spdif jack (SENSE_B) is present */ for (i = 0; i < cfg->hp_outs; i++) { nid = cfg->hp_pins[i]; snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_PIN_WIDGET_CONTROL, (spdif_present && spec->sense_b) ? 0 : PIN_HP); } /* SPDIF TX on/off */ if (cfg->dig_outs) { nid = cfg->dig_out_pins[0]; snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_PIN_WIDGET_CONTROL, spdif_present ? PIN_OUT : 0); } /* Update board GPIOs if neccessary ... */ } } /* * Auto-input redirect for CS421x * Switch max 3 inputs of a single ADC (nid 3) */ static void cs_automic(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; struct auto_pin_cfg *cfg = &spec->autocfg; hda_nid_t nid; unsigned int present; nid = cfg->inputs[spec->automic_idx].pin; present = snd_hda_jack_detect(codec, nid); /* specific to CS421x, single ADC */ if (spec->vendor_nid == CS421X_VENDOR_NID) { if (present) { spec->last_input = spec->cur_input; spec->cur_input = spec->automic_idx; } else { spec->cur_input = spec->last_input; } cs_update_input_select(codec); } else { if (present) change_cur_input(codec, spec->automic_idx, 0); else change_cur_input(codec, !spec->automic_idx, 0); } } /* */ static void init_output(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; struct auto_pin_cfg *cfg = &spec->autocfg; int i; /* mute first */ for (i = 0; i < spec->multiout.num_dacs; i++) snd_hda_codec_write(codec, spec->multiout.dac_nids[i], 0, AC_VERB_SET_AMP_GAIN_MUTE, AMP_OUT_MUTE); if (spec->multiout.hp_nid) snd_hda_codec_write(codec, spec->multiout.hp_nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, AMP_OUT_MUTE); for (i = 0; i < ARRAY_SIZE(spec->multiout.extra_out_nid); i++) { if (!spec->multiout.extra_out_nid[i]) break; snd_hda_codec_write(codec, spec->multiout.extra_out_nid[i], 0, AC_VERB_SET_AMP_GAIN_MUTE, AMP_OUT_MUTE); } /* set appropriate pin controls */ for (i = 0; i < cfg->line_outs; i++) snd_hda_codec_write(codec, cfg->line_out_pins[i], 0, AC_VERB_SET_PIN_WIDGET_CONTROL, PIN_OUT); /* HP */ for (i = 0; i < cfg->hp_outs; i++) { hda_nid_t nid = cfg->hp_pins[i]; snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_PIN_WIDGET_CONTROL, PIN_HP); if (!cfg->speaker_outs) continue; if (get_wcaps(codec, nid) & AC_WCAP_UNSOL_CAP) { snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_UNSOLICITED_ENABLE, AC_USRSP_EN | HP_EVENT); spec->hp_detect = 1; } } /* Speaker */ for (i = 0; i < cfg->speaker_outs; i++) snd_hda_codec_write(codec, cfg->speaker_pins[i], 0, AC_VERB_SET_PIN_WIDGET_CONTROL, PIN_OUT); /* SPDIF is enabled on presence detect for CS421x */ if (spec->hp_detect || spec->spdif_detect) cs_automute(codec); } static void init_input(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; struct auto_pin_cfg *cfg = &spec->autocfg; unsigned int coef; int i; for (i = 0; i < cfg->num_inputs; i++) { unsigned int ctl; hda_nid_t pin = cfg->inputs[i].pin; if (!spec->adc_nid[i]) continue; /* set appropriate pin control and mute first */ ctl = PIN_IN; if (cfg->inputs[i].type == AUTO_PIN_MIC) { unsigned int caps = snd_hda_query_pin_caps(codec, pin); caps >>= AC_PINCAP_VREF_SHIFT; if (caps & AC_PINCAP_VREF_80) ctl = PIN_VREF80; } snd_hda_codec_write(codec, pin, 0, AC_VERB_SET_PIN_WIDGET_CONTROL, ctl); snd_hda_codec_write(codec, spec->adc_nid[i], 0, AC_VERB_SET_AMP_GAIN_MUTE, AMP_IN_MUTE(spec->adc_idx[i])); if (spec->mic_detect && spec->automic_idx == i) snd_hda_codec_write(codec, pin, 0, AC_VERB_SET_UNSOLICITED_ENABLE, AC_USRSP_EN | MIC_EVENT); } /* specific to CS421x */ if (spec->vendor_nid == CS421X_VENDOR_NID) { if (spec->mic_detect) cs_automic(codec); else { spec->cur_adc = spec->adc_nid[spec->cur_input]; cs_update_input_select(codec); } } else { change_cur_input(codec, spec->cur_input, 1); if (spec->mic_detect) cs_automic(codec); coef = 0x000a; /* ADC1/2 - Digital and Analog Soft Ramp */ if (is_active_pin(codec, CS_DMIC2_PIN_NID)) coef |= 0x0500; /* DMIC2 2 chan on, GPIO1 off */ if (is_active_pin(codec, CS_DMIC1_PIN_NID)) coef |= 0x1800; /* DMIC1 2 chan on, GPIO0 off * No effect if SPDIF_OUT2 is * selected in IDX_SPDIF_CTL. */ cs_vendor_coef_set(codec, IDX_ADC_CFG, coef); } } static const struct hda_verb cs_coef_init_verbs[] = { {0x11, AC_VERB_SET_PROC_STATE, 1}, {0x11, AC_VERB_SET_COEF_INDEX, IDX_DAC_CFG}, {0x11, AC_VERB_SET_PROC_COEF, (0x002a /* DAC1/2/3 SZCMode Soft Ramp */ | 0x0040 /* Mute DACs on FIFO error */ | 0x1000 /* Enable DACs High Pass Filter */ | 0x0400 /* Disable Coefficient Auto increment */ )}, /* Beep */ {0x11, AC_VERB_SET_COEF_INDEX, IDX_DAC_CFG}, {0x11, AC_VERB_SET_PROC_COEF, 0x0007}, /* Enable Beep thru DAC1/2/3 */ {} /* terminator */ }; /* Errata: CS4207 rev C0/C1/C2 Silicon * * http://www.cirrus.com/en/pubs/errata/ER880C3.pdf * * 6. At high temperature (TA > +85°C), the digital supply current (IVD) * may be excessive (up to an additional 200 μA), which is most easily * observed while the part is being held in reset (RESET# active low). * * Root Cause: At initial powerup of the device, the logic that drives * the clock and write enable to the S/PDIF SRC RAMs is not properly * initialized. * Certain random patterns will cause a steady leakage current in those * RAM cells. The issue will resolve once the SRCs are used (turned on). * * Workaround: The following verb sequence briefly turns on the S/PDIF SRC * blocks, which will alleviate the issue. */ static const struct hda_verb cs_errata_init_verbs[] = { {0x01, AC_VERB_SET_POWER_STATE, 0x00}, /* AFG: D0 */ {0x11, AC_VERB_SET_PROC_STATE, 0x01}, /* VPW: processing on */ {0x11, AC_VERB_SET_COEF_INDEX, 0x0008}, {0x11, AC_VERB_SET_PROC_COEF, 0x9999}, {0x11, AC_VERB_SET_COEF_INDEX, 0x0017}, {0x11, AC_VERB_SET_PROC_COEF, 0xa412}, {0x11, AC_VERB_SET_COEF_INDEX, 0x0001}, {0x11, AC_VERB_SET_PROC_COEF, 0x0009}, {0x07, AC_VERB_SET_POWER_STATE, 0x00}, /* S/PDIF Rx: D0 */ {0x08, AC_VERB_SET_POWER_STATE, 0x00}, /* S/PDIF Tx: D0 */ {0x11, AC_VERB_SET_COEF_INDEX, 0x0017}, {0x11, AC_VERB_SET_PROC_COEF, 0x2412}, {0x11, AC_VERB_SET_COEF_INDEX, 0x0008}, {0x11, AC_VERB_SET_PROC_COEF, 0x0000}, {0x11, AC_VERB_SET_COEF_INDEX, 0x0001}, {0x11, AC_VERB_SET_PROC_COEF, 0x0008}, {0x11, AC_VERB_SET_PROC_STATE, 0x00}, #if 0 /* Don't to set to D3 as we are in power-up sequence */ {0x07, AC_VERB_SET_POWER_STATE, 0x03}, /* S/PDIF Rx: D3 */ {0x08, AC_VERB_SET_POWER_STATE, 0x03}, /* S/PDIF Tx: D3 */ /*{0x01, AC_VERB_SET_POWER_STATE, 0x03},*/ /* AFG: D3 This is already handled */ #endif {} /* terminator */ }; /* SPDIF setup */ static void init_digital(struct hda_codec *codec) { unsigned int coef; coef = 0x0002; /* SRC_MUTE soft-mute on SPDIF (if no lock) */ coef |= 0x0008; /* Replace with mute on error */ if (is_active_pin(codec, CS_DIG_OUT2_PIN_NID)) coef |= 0x4000; /* RX to TX1 or TX2 Loopthru / SPDIF2 * SPDIF_OUT2 is shared with GPIO1 and * DMIC_SDA2. */ cs_vendor_coef_set(codec, IDX_SPDIF_CTL, coef); } static int cs_init(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; /* init_verb sequence for C0/C1/C2 errata*/ snd_hda_sequence_write(codec, cs_errata_init_verbs); snd_hda_sequence_write(codec, cs_coef_init_verbs); if (spec->gpio_mask) { snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_MASK, spec->gpio_mask); snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_DIRECTION, spec->gpio_dir); snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_DATA, spec->gpio_data); } init_output(codec); init_input(codec); init_digital(codec); return 0; } static int cs_build_controls(struct hda_codec *codec) { int err; err = build_output(codec); if (err < 0) return err; err = build_input(codec); if (err < 0) return err; err = build_digital_output(codec); if (err < 0) return err; err = build_digital_input(codec); if (err < 0) return err; return cs_init(codec); } static void cs_free(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; kfree(spec->capture_bind[0]); kfree(spec->capture_bind[1]); kfree(codec->spec); } static void cs_unsol_event(struct hda_codec *codec, unsigned int res) { switch ((res >> 26) & 0x7f) { case HP_EVENT: cs_automute(codec); break; case MIC_EVENT: cs_automic(codec); break; } } static const struct hda_codec_ops cs_patch_ops = { .build_controls = cs_build_controls, .build_pcms = cs_build_pcms, .init = cs_init, .free = cs_free, .unsol_event = cs_unsol_event, }; static int cs_parse_auto_config(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; int err; err = snd_hda_parse_pin_def_config(codec, &spec->autocfg, NULL); if (err < 0) return err; err = parse_output(codec); if (err < 0) return err; err = parse_input(codec); if (err < 0) return err; err = parse_digital_output(codec); if (err < 0) return err; err = parse_digital_input(codec); if (err < 0) return err; return 0; } static const char * const cs420x_models[CS420X_MODELS] = { [CS420X_MBP53] = "mbp53", [CS420X_MBP55] = "mbp55", [CS420X_IMAC27] = "imac27", [CS420X_APPLE] = "apple", [CS420X_AUTO] = "auto", }; static const struct snd_pci_quirk cs420x_cfg_tbl[] = { SND_PCI_QUIRK(0x10de, 0x0ac0, "MacBookPro 5,3", CS420X_MBP53), SND_PCI_QUIRK(0x10de, 0x0d94, "MacBookAir 3,1(2)", CS420X_MBP55), SND_PCI_QUIRK(0x10de, 0xcb79, "MacBookPro 5,5", CS420X_MBP55), SND_PCI_QUIRK(0x10de, 0xcb89, "MacBookPro 7,1", CS420X_MBP55), /* this conflicts with too many other models */ /*SND_PCI_QUIRK(0x8086, 0x7270, "IMac 27 Inch", CS420X_IMAC27),*/ {} /* terminator */ }; static const struct snd_pci_quirk cs420x_codec_cfg_tbl[] = { SND_PCI_QUIRK_VENDOR(0x106b, "Apple", CS420X_APPLE), {} /* terminator */ }; struct cs_pincfg { hda_nid_t nid; u32 val; }; static const struct cs_pincfg mbp53_pincfgs[] = { { 0x09, 0x012b4050 }, { 0x0a, 0x90100141 }, { 0x0b, 0x90100140 }, { 0x0c, 0x018b3020 }, { 0x0d, 0x90a00110 }, { 0x0e, 0x400000f0 }, { 0x0f, 0x01cbe030 }, { 0x10, 0x014be060 }, { 0x12, 0x400000f0 }, { 0x15, 0x400000f0 }, {} /* terminator */ }; static const struct cs_pincfg mbp55_pincfgs[] = { { 0x09, 0x012b4030 }, { 0x0a, 0x90100121 }, { 0x0b, 0x90100120 }, { 0x0c, 0x400000f0 }, { 0x0d, 0x90a00110 }, { 0x0e, 0x400000f0 }, { 0x0f, 0x400000f0 }, { 0x10, 0x014be040 }, { 0x12, 0x400000f0 }, { 0x15, 0x400000f0 }, {} /* terminator */ }; static const struct cs_pincfg imac27_pincfgs[] = { { 0x09, 0x012b4050 }, { 0x0a, 0x90100140 }, { 0x0b, 0x90100142 }, { 0x0c, 0x018b3020 }, { 0x0d, 0x90a00110 }, { 0x0e, 0x400000f0 }, { 0x0f, 0x01cbe030 }, { 0x10, 0x014be060 }, { 0x12, 0x01ab9070 }, { 0x15, 0x400000f0 }, {} /* terminator */ }; static const struct cs_pincfg *cs_pincfgs[CS420X_MODELS] = { [CS420X_MBP53] = mbp53_pincfgs, [CS420X_MBP55] = mbp55_pincfgs, [CS420X_IMAC27] = imac27_pincfgs, }; static void fix_pincfg(struct hda_codec *codec, int model, const struct cs_pincfg **pin_configs) { const struct cs_pincfg *cfg = pin_configs[model]; if (!cfg) return; for (; cfg->nid; cfg++) snd_hda_codec_set_pincfg(codec, cfg->nid, cfg->val); } static int patch_cs420x(struct hda_codec *codec) { struct cs_spec *spec; int err; spec = kzalloc(sizeof(*spec), GFP_KERNEL); if (!spec) return -ENOMEM; codec->spec = spec; spec->vendor_nid = CS420X_VENDOR_NID; spec->board_config = snd_hda_check_board_config(codec, CS420X_MODELS, cs420x_models, cs420x_cfg_tbl); if (spec->board_config < 0) spec->board_config = snd_hda_check_board_codec_sid_config(codec, CS420X_MODELS, NULL, cs420x_codec_cfg_tbl); if (spec->board_config >= 0) fix_pincfg(codec, spec->board_config, cs_pincfgs); switch (spec->board_config) { case CS420X_IMAC27: case CS420X_MBP53: case CS420X_MBP55: case CS420X_APPLE: spec->gpio_eapd_hp = 2; /* GPIO1 = headphones */ spec->gpio_eapd_speaker = 8; /* GPIO3 = speakers */ spec->gpio_mask = spec->gpio_dir = spec->gpio_eapd_hp | spec->gpio_eapd_speaker; break; } err = cs_parse_auto_config(codec); if (err < 0) goto error; codec->patch_ops = cs_patch_ops; return 0; error: kfree(codec->spec); codec->spec = NULL; return err; } /* * Cirrus Logic CS4210 * * 1 DAC => HP(sense) / Speakers, * 1 ADC <= LineIn(sense) / MicIn / DMicIn, * 1 SPDIF OUT => SPDIF Trasmitter(sense) */ /* CS4210 board names */ static const char *cs421x_models[CS421X_MODELS] = { [CS421X_CDB4210] = "cdb4210", }; static const struct snd_pci_quirk cs421x_cfg_tbl[] = { /* Test Intel board + CDB2410 */ SND_PCI_QUIRK(0x8086, 0x5001, "DP45SG/CDB4210", CS421X_CDB4210), {} /* terminator */ }; /* CS4210 board pinconfigs */ /* Default CS4210 (CDB4210)*/ static const struct cs_pincfg cdb4210_pincfgs[] = { { 0x05, 0x0321401f }, { 0x06, 0x90170010 }, { 0x07, 0x03813031 }, { 0x08, 0xb7a70037 }, { 0x09, 0xb7a6003e }, { 0x0a, 0x034510f0 }, {} /* terminator */ }; static const struct cs_pincfg *cs421x_pincfgs[CS421X_MODELS] = { [CS421X_CDB4210] = cdb4210_pincfgs, }; static const struct hda_verb cs421x_coef_init_verbs[] = { {0x0B, AC_VERB_SET_PROC_STATE, 1}, {0x0B, AC_VERB_SET_COEF_INDEX, CS421X_IDX_DEV_CFG}, /* Disable Coefficient Index Auto-Increment(DAI)=1, PDREF=0 */ {0x0B, AC_VERB_SET_PROC_COEF, 0x0001 }, {0x0B, AC_VERB_SET_COEF_INDEX, CS421X_IDX_ADC_CFG}, /* ADC SZCMode = Digital Soft Ramp */ {0x0B, AC_VERB_SET_PROC_COEF, 0x0002 }, {0x0B, AC_VERB_SET_COEF_INDEX, CS421X_IDX_DAC_CFG}, {0x0B, AC_VERB_SET_PROC_COEF, (0x0002 /* DAC SZCMode = Digital Soft Ramp */ | 0x0004 /* Mute DAC on FIFO error */ | 0x0008 /* Enable DAC High Pass Filter */ )}, {} /* terminator */ }; /* Errata: CS4210 rev A1 Silicon * * http://www.cirrus.com/en/pubs/errata/ * * Description: * 1. Performance degredation is present in the ADC. * 2. Speaker output is not completely muted upon HP detect. * 3. Noise is present when clipping occurs on the amplified * speaker outputs. * * Workaround: * The following verb sequence written to the registers during * initialization will correct the issues listed above. */ static const struct hda_verb cs421x_coef_init_verbs_A1_silicon_fixes[] = { {0x0B, AC_VERB_SET_PROC_STATE, 0x01}, /* VPW: processing on */ {0x0B, AC_VERB_SET_COEF_INDEX, 0x0006}, {0x0B, AC_VERB_SET_PROC_COEF, 0x9999}, /* Test mode: on */ {0x0B, AC_VERB_SET_COEF_INDEX, 0x000A}, {0x0B, AC_VERB_SET_PROC_COEF, 0x14CB}, /* Chop double */ {0x0B, AC_VERB_SET_COEF_INDEX, 0x0011}, {0x0B, AC_VERB_SET_PROC_COEF, 0xA2D0}, /* Increase ADC current */ {0x0B, AC_VERB_SET_COEF_INDEX, 0x001A}, {0x0B, AC_VERB_SET_PROC_COEF, 0x02A9}, /* Mute speaker */ {0x0B, AC_VERB_SET_COEF_INDEX, 0x001B}, {0x0B, AC_VERB_SET_PROC_COEF, 0X1006}, /* Remove noise */ {} /* terminator */ }; /* Speaker Amp Gain is controlled by the vendor widget's coef 4 */ static const DECLARE_TLV_DB_SCALE(cs421x_speaker_boost_db_scale, 900, 300, 0); static int cs421x_boost_vol_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 3; return 0; } static int cs421x_boost_vol_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = cs_vendor_coef_get(codec, CS421X_IDX_SPK_CTL) & 0x0003; return 0; } static int cs421x_boost_vol_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); unsigned int vol = ucontrol->value.integer.value[0]; unsigned int coef = cs_vendor_coef_get(codec, CS421X_IDX_SPK_CTL); unsigned int original_coef = coef; coef &= ~0x0003; coef |= (vol & 0x0003); if (original_coef == coef) return 0; else { cs_vendor_coef_set(codec, CS421X_IDX_SPK_CTL, coef); return 1; } } static const struct snd_kcontrol_new cs421x_speaker_bost_ctl = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ), .name = "Speaker Boost Playback Volume", .info = cs421x_boost_vol_info, .get = cs421x_boost_vol_get, .put = cs421x_boost_vol_put, .tlv = { .p = cs421x_speaker_boost_db_scale }, }; static void cs421x_pinmux_init(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; unsigned int def_conf, coef; /* GPIO, DMIC_SCL, DMIC_SDA and SENSE_B are multiplexed */ coef = cs_vendor_coef_get(codec, CS421X_IDX_DEV_CFG); if (spec->gpio_mask) coef |= 0x0008; /* B1,B2 are GPIOs */ else coef &= ~0x0008; if (spec->sense_b) coef |= 0x0010; /* B2 is SENSE_B, not inverted */ else coef &= ~0x0010; cs_vendor_coef_set(codec, CS421X_IDX_DEV_CFG, coef); if ((spec->gpio_mask || spec->sense_b) && is_active_pin(codec, CS421X_DMIC_PIN_NID)) { /* GPIO or SENSE_B forced - disconnect the DMIC pin. */ def_conf = snd_hda_codec_get_pincfg(codec, CS421X_DMIC_PIN_NID); def_conf &= ~AC_DEFCFG_PORT_CONN; def_conf |= (AC_JACK_PORT_NONE << AC_DEFCFG_PORT_CONN_SHIFT); snd_hda_codec_set_pincfg(codec, CS421X_DMIC_PIN_NID, def_conf); } } static void init_cs421x_digital(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; struct auto_pin_cfg *cfg = &spec->autocfg; int i; for (i = 0; i < cfg->dig_outs; i++) { hda_nid_t nid = cfg->dig_out_pins[i]; if (!cfg->speaker_outs) continue; if (get_wcaps(codec, nid) & AC_WCAP_UNSOL_CAP) { snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_UNSOLICITED_ENABLE, AC_USRSP_EN | SPDIF_EVENT); spec->spdif_detect = 1; } } } static int cs421x_init(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; snd_hda_sequence_write(codec, cs421x_coef_init_verbs); snd_hda_sequence_write(codec, cs421x_coef_init_verbs_A1_silicon_fixes); cs421x_pinmux_init(codec); if (spec->gpio_mask) { snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_MASK, spec->gpio_mask); snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_DIRECTION, spec->gpio_dir); snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_DATA, spec->gpio_data); } init_output(codec); init_input(codec); init_cs421x_digital(codec); return 0; } /* * CS4210 Input MUX (1 ADC) */ static int cs421x_mux_enum_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct cs_spec *spec = codec->spec; return snd_hda_input_mux_info(&spec->input_mux, uinfo); } static int cs421x_mux_enum_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct cs_spec *spec = codec->spec; ucontrol->value.enumerated.item[0] = spec->cur_input; return 0; } static int cs421x_mux_enum_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct cs_spec *spec = codec->spec; return snd_hda_input_mux_put(codec, &spec->input_mux, ucontrol, spec->adc_nid[0], &spec->cur_input); } static struct snd_kcontrol_new cs421x_capture_source = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Capture Source", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = cs421x_mux_enum_info, .get = cs421x_mux_enum_get, .put = cs421x_mux_enum_put, }; static int cs421x_add_input_volume_control(struct hda_codec *codec, int item) { struct cs_spec *spec = codec->spec; struct auto_pin_cfg *cfg = &spec->autocfg; const struct hda_input_mux *imux = &spec->input_mux; hda_nid_t pin = cfg->inputs[item].pin; struct snd_kcontrol *kctl; u32 caps; if (!(get_wcaps(codec, pin) & AC_WCAP_IN_AMP)) return 0; caps = query_amp_caps(codec, pin, HDA_INPUT); caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; if (caps <= 1) return 0; return add_volume(codec, imux->items[item].label, 0, HDA_COMPOSE_AMP_VAL(pin, 3, 0, HDA_INPUT), 1, &kctl); } /* add a (input-boost) volume control to the given input pin */ static int build_cs421x_input(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; struct auto_pin_cfg *cfg = &spec->autocfg; struct hda_input_mux *imux = &spec->input_mux; int i, err, type_idx; const char *label; if (!spec->num_inputs) return 0; /* make bind-capture */ spec->capture_bind[0] = make_bind_capture(codec, &snd_hda_bind_sw); spec->capture_bind[1] = make_bind_capture(codec, &snd_hda_bind_vol); for (i = 0; i < 2; i++) { struct snd_kcontrol *kctl; int n; if (!spec->capture_bind[i]) return -ENOMEM; kctl = snd_ctl_new1(&cs_capture_ctls[i], codec); if (!kctl) return -ENOMEM; kctl->private_value = (long)spec->capture_bind[i]; err = snd_hda_ctl_add(codec, 0, kctl); if (err < 0) return err; for (n = 0; n < AUTO_PIN_LAST; n++) { if (!spec->adc_nid[n]) continue; err = snd_hda_add_nid(codec, kctl, 0, spec->adc_nid[n]); if (err < 0) return err; } } /* Add Input MUX Items + Capture Volume/Switch */ for (i = 0; i < spec->num_inputs; i++) { label = hda_get_autocfg_input_label(codec, cfg, i); snd_hda_add_imux_item(imux, label, spec->adc_idx[i], &type_idx); err = cs421x_add_input_volume_control(codec, i); if (err < 0) return err; } /* Add 'Capture Source' Switch if * 2 inputs and no mic detec * 3 inputs */ if ((spec->num_inputs == 2 && !spec->mic_detect) || (spec->num_inputs == 3)) { err = snd_hda_ctl_add(codec, spec->adc_nid[0], snd_ctl_new1(&cs421x_capture_source, codec)); if (err < 0) return err; } return 0; } /* Single DAC (Mute/Gain) */ static int build_cs421x_output(struct hda_codec *codec) { hda_nid_t dac = CS4210_DAC_NID; struct cs_spec *spec = codec->spec; struct auto_pin_cfg *cfg = &spec->autocfg; struct snd_kcontrol *kctl; int err; char *name = "Master"; fix_volume_caps(codec, dac); err = add_mute(codec, name, 0, HDA_COMPOSE_AMP_VAL(dac, 3, 0, HDA_OUTPUT), 0, &kctl); if (err < 0) return err; err = add_volume(codec, name, 0, HDA_COMPOSE_AMP_VAL(dac, 3, 0, HDA_OUTPUT), 0, &kctl); if (err < 0) return err; if (cfg->speaker_outs) { err = snd_hda_ctl_add(codec, 0, snd_ctl_new1(&cs421x_speaker_bost_ctl, codec)); if (err < 0) return err; } return err; } static int cs421x_build_controls(struct hda_codec *codec) { int err; err = build_cs421x_output(codec); if (err < 0) return err; err = build_cs421x_input(codec); if (err < 0) return err; err = build_digital_output(codec); if (err < 0) return err; return cs421x_init(codec); } static void cs421x_unsol_event(struct hda_codec *codec, unsigned int res) { switch ((res >> 26) & 0x3f) { case HP_EVENT: case SPDIF_EVENT: cs_automute(codec); break; case MIC_EVENT: cs_automic(codec); break; } } static int parse_cs421x_input(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; struct auto_pin_cfg *cfg = &spec->autocfg; int i; for (i = 0; i < cfg->num_inputs; i++) { hda_nid_t pin = cfg->inputs[i].pin; spec->adc_nid[i] = get_adc(codec, pin, &spec->adc_idx[i]); spec->cur_input = spec->last_input = i; spec->num_inputs++; /* check whether the automatic mic switch is available */ if (is_ext_mic(codec, i) && cfg->num_inputs >= 2) { spec->mic_detect = 1; spec->automic_idx = i; } } return 0; } static int cs421x_parse_auto_config(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; int err; err = snd_hda_parse_pin_def_config(codec, &spec->autocfg, NULL); if (err < 0) return err; err = parse_output(codec); if (err < 0) return err; err = parse_cs421x_input(codec); if (err < 0) return err; err = parse_digital_output(codec); if (err < 0) return err; return 0; } #ifdef CONFIG_PM /* Manage PDREF, when transitioning to D3hot (DAC,ADC) -> D3, PDREF=1, AFG->D3 */ static int cs421x_suspend(struct hda_codec *codec, pm_message_t state) { unsigned int coef; snd_hda_shutup_pins(codec); snd_hda_codec_write(codec, CS4210_DAC_NID, 0, AC_VERB_SET_POWER_STATE, AC_PWRST_D3); snd_hda_codec_write(codec, CS4210_ADC_NID, 0, AC_VERB_SET_POWER_STATE, AC_PWRST_D3); coef = cs_vendor_coef_get(codec, CS421X_IDX_DEV_CFG); coef |= 0x0004; /* PDREF */ cs_vendor_coef_set(codec, CS421X_IDX_DEV_CFG, coef); return 0; } #endif static struct hda_codec_ops cs4210_patch_ops = { .build_controls = cs421x_build_controls, .build_pcms = cs_build_pcms, .init = cs421x_init, .free = cs_free, .unsol_event = cs421x_unsol_event, #ifdef CONFIG_PM .suspend = cs421x_suspend, #endif }; static int patch_cs421x(struct hda_codec *codec) { struct cs_spec *spec; int err; spec = kzalloc(sizeof(*spec), GFP_KERNEL); if (!spec) return -ENOMEM; codec->spec = spec; spec->vendor_nid = CS421X_VENDOR_NID; spec->board_config = snd_hda_check_board_config(codec, CS421X_MODELS, cs421x_models, cs421x_cfg_tbl); if (spec->board_config >= 0) fix_pincfg(codec, spec->board_config, cs421x_pincfgs); /* Setup GPIO/SENSE for each board (if used) */ switch (spec->board_config) { case CS421X_CDB4210: snd_printd("CS4210 board: %s\n", cs421x_models[spec->board_config]); /* spec->gpio_mask = 3; spec->gpio_dir = 3; spec->gpio_data = 3; */ spec->sense_b = 1; break; } /* Update the GPIO/DMIC/SENSE_B pinmux before the configuration is auto-parsed. If GPIO or SENSE_B is forced, DMIC input is disabled. */ cs421x_pinmux_init(codec); err = cs421x_parse_auto_config(codec); if (err < 0) goto error; codec->patch_ops = cs4210_patch_ops; return 0; error: kfree(codec->spec); codec->spec = NULL; return err; } /* * patch entries */ static const struct hda_codec_preset snd_hda_preset_cirrus[] = { { .id = 0x10134206, .name = "CS4206", .patch = patch_cs420x }, { .id = 0x10134207, .name = "CS4207", .patch = patch_cs420x }, { .id = 0x10134210, .name = "CS4210", .patch = patch_cs421x }, {} /* terminator */ }; MODULE_ALIAS("snd-hda-codec-id:10134206"); MODULE_ALIAS("snd-hda-codec-id:10134207"); MODULE_ALIAS("snd-hda-codec-id:10134210"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Cirrus Logic HD-audio codec"); static struct hda_codec_preset_list cirrus_list = { .preset = snd_hda_preset_cirrus, .owner = THIS_MODULE, }; static int __init patch_cirrus_init(void) { return snd_hda_add_codec_preset(&cirrus_list); } static void __exit patch_cirrus_exit(void) { snd_hda_delete_codec_preset(&cirrus_list); } module_init(patch_cirrus_init) module_exit(patch_cirrus_exit)