/* * at91-ssc.c -- ALSA SoC AT91 SSC Audio Layer Platform driver * * Author: Frank Mandarino <fmandarino@endrelia.com> * Endrelia Technologies Inc. * * Based on pxa2xx Platform drivers by * Liam Girdwood <liam.girdwood@wolfsonmicro.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * */ #include <linux/init.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/device.h> #include <linux/delay.h> #include <linux/clk.h> #include <linux/atmel_pdc.h> #include <sound/driver.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/initval.h> #include <sound/soc.h> #include <asm/arch/hardware.h> #include <asm/arch/at91_pmc.h> #include <asm/arch/at91_ssc.h> #include "at91-pcm.h" #include "at91-ssc.h" #if 0 #define DBG(x...) printk(KERN_DEBUG "at91-ssc:" x) #else #define DBG(x...) #endif #if defined(CONFIG_ARCH_AT91SAM9260) #define NUM_SSC_DEVICES 1 #else #define NUM_SSC_DEVICES 3 #endif /* * SSC PDC registers required by the PCM DMA engine. */ static struct at91_pdc_regs pdc_tx_reg = { .xpr = ATMEL_PDC_TPR, .xcr = ATMEL_PDC_TCR, .xnpr = ATMEL_PDC_TNPR, .xncr = ATMEL_PDC_TNCR, }; static struct at91_pdc_regs pdc_rx_reg = { .xpr = ATMEL_PDC_RPR, .xcr = ATMEL_PDC_RCR, .xnpr = ATMEL_PDC_RNPR, .xncr = ATMEL_PDC_RNCR, }; /* * SSC & PDC status bits for transmit and receive. */ static struct at91_ssc_mask ssc_tx_mask = { .ssc_enable = AT91_SSC_TXEN, .ssc_disable = AT91_SSC_TXDIS, .ssc_endx = AT91_SSC_ENDTX, .ssc_endbuf = AT91_SSC_TXBUFE, .pdc_enable = ATMEL_PDC_TXTEN, .pdc_disable = ATMEL_PDC_TXTDIS, }; static struct at91_ssc_mask ssc_rx_mask = { .ssc_enable = AT91_SSC_RXEN, .ssc_disable = AT91_SSC_RXDIS, .ssc_endx = AT91_SSC_ENDRX, .ssc_endbuf = AT91_SSC_RXBUFF, .pdc_enable = ATMEL_PDC_RXTEN, .pdc_disable = ATMEL_PDC_RXTDIS, }; /* * DMA parameters. */ static struct at91_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = { {{ .name = "SSC0 PCM out", .pdc = &pdc_tx_reg, .mask = &ssc_tx_mask, }, { .name = "SSC0 PCM in", .pdc = &pdc_rx_reg, .mask = &ssc_rx_mask, }}, #if NUM_SSC_DEVICES == 3 {{ .name = "SSC1 PCM out", .pdc = &pdc_tx_reg, .mask = &ssc_tx_mask, }, { .name = "SSC1 PCM in", .pdc = &pdc_rx_reg, .mask = &ssc_rx_mask, }}, {{ .name = "SSC2 PCM out", .pdc = &pdc_tx_reg, .mask = &ssc_tx_mask, }, { .name = "SSC2 PCM in", .pdc = &pdc_rx_reg, .mask = &ssc_rx_mask, }}, #endif }; struct at91_ssc_state { u32 ssc_cmr; u32 ssc_rcmr; u32 ssc_rfmr; u32 ssc_tcmr; u32 ssc_tfmr; u32 ssc_sr; u32 ssc_imr; }; static struct at91_ssc_info { char *name; struct at91_ssc_periph ssc; spinlock_t lock; /* lock for dir_mask */ unsigned short dir_mask; /* 0=unused, 1=playback, 2=capture */ unsigned short initialized; /* 1=SSC has been initialized */ unsigned short daifmt; unsigned short cmr_div; unsigned short tcmr_period; unsigned short rcmr_period; struct at91_pcm_dma_params *dma_params[2]; struct at91_ssc_state ssc_state; } ssc_info[NUM_SSC_DEVICES] = { { .name = "ssc0", .lock = __SPIN_LOCK_UNLOCKED(ssc_info[0].lock), .dir_mask = 0, .initialized = 0, }, #if NUM_SSC_DEVICES == 3 { .name = "ssc1", .lock = __SPIN_LOCK_UNLOCKED(ssc_info[1].lock), .dir_mask = 0, .initialized = 0, }, { .name = "ssc2", .lock = __SPIN_LOCK_UNLOCKED(ssc_info[2].lock), .dir_mask = 0, .initialized = 0, }, #endif }; static unsigned int at91_ssc_sysclk; /* * SSC interrupt handler. Passes PDC interrupts to the DMA * interrupt handler in the PCM driver. */ static irqreturn_t at91_ssc_interrupt(int irq, void *dev_id) { struct at91_ssc_info *ssc_p = dev_id; struct at91_pcm_dma_params *dma_params; u32 ssc_sr; int i; ssc_sr = at91_ssc_read(ssc_p->ssc.base + AT91_SSC_SR) & at91_ssc_read(ssc_p->ssc.base + AT91_SSC_IMR); /* * Loop through the substreams attached to this SSC. If * a DMA-related interrupt occurred on that substream, call * the DMA interrupt handler function, if one has been * registered in the dma_params structure by the PCM driver. */ for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) { dma_params = ssc_p->dma_params[i]; if (dma_params != NULL && dma_params->dma_intr_handler != NULL && (ssc_sr & (dma_params->mask->ssc_endx | dma_params->mask->ssc_endbuf))) dma_params->dma_intr_handler(ssc_sr, dma_params->substream); } return IRQ_HANDLED; } /* * Startup. Only that one substream allowed in each direction. */ static int at91_ssc_startup(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct at91_ssc_info *ssc_p = &ssc_info[rtd->dai->cpu_dai->id]; int dir_mask; DBG("ssc_startup: SSC_SR=0x%08lx\n", at91_ssc_read(ssc_p->ssc.base + AT91_SSC_SR)); dir_mask = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0x1 : 0x2; spin_lock_irq(&ssc_p->lock); if (ssc_p->dir_mask & dir_mask) { spin_unlock_irq(&ssc_p->lock); return -EBUSY; } ssc_p->dir_mask |= dir_mask; spin_unlock_irq(&ssc_p->lock); return 0; } /* * Shutdown. Clear DMA parameters and shutdown the SSC if there * are no other substreams open. */ static void at91_ssc_shutdown(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct at91_ssc_info *ssc_p = &ssc_info[rtd->dai->cpu_dai->id]; struct at91_pcm_dma_params *dma_params; int dir, dir_mask; dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1; dma_params = ssc_p->dma_params[dir]; if (dma_params != NULL) { at91_ssc_write(dma_params->ssc_base + AT91_SSC_CR, dma_params->mask->ssc_disable); DBG("%s disabled SSC_SR=0x%08lx\n", (dir ? "receive" : "transmit"), at91_ssc_read(ssc_p->ssc.base + AT91_SSC_SR)); dma_params->ssc_base = NULL; dma_params->substream = NULL; ssc_p->dma_params[dir] = NULL; } dir_mask = 1 << dir; spin_lock_irq(&ssc_p->lock); ssc_p->dir_mask &= ~dir_mask; if (!ssc_p->dir_mask) { /* Shutdown the SSC clock. */ DBG("Stopping pid %d clock\n", ssc_p->ssc.pid); at91_sys_write(AT91_PMC_PCDR, 1<<ssc_p->ssc.pid); if (ssc_p->initialized) { free_irq(ssc_p->ssc.pid, ssc_p); ssc_p->initialized = 0; } /* Reset the SSC */ at91_ssc_write(ssc_p->ssc.base + AT91_SSC_CR, AT91_SSC_SWRST); /* Clear the SSC dividers */ ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0; } spin_unlock_irq(&ssc_p->lock); } /* * Record the SSC system clock rate. */ static int at91_ssc_set_dai_sysclk(struct snd_soc_cpu_dai *cpu_dai, int clk_id, unsigned int freq, int dir) { /* * The only clock supplied to the SSC is the AT91 master clock, * which is only used if the SSC is generating BCLK and/or * LRC clocks. */ switch (clk_id) { case AT91_SYSCLK_MCK: at91_ssc_sysclk = freq; break; default: return -EINVAL; } return 0; } /* * Record the DAI format for use in hw_params(). */ static int at91_ssc_set_dai_fmt(struct snd_soc_cpu_dai *cpu_dai, unsigned int fmt) { struct at91_ssc_info *ssc_p = &ssc_info[cpu_dai->id]; ssc_p->daifmt = fmt; return 0; } /* * Record SSC clock dividers for use in hw_params(). */ static int at91_ssc_set_dai_clkdiv(struct snd_soc_cpu_dai *cpu_dai, int div_id, int div) { struct at91_ssc_info *ssc_p = &ssc_info[cpu_dai->id]; switch (div_id) { case AT91SSC_CMR_DIV: /* * The same master clock divider is used for both * transmit and receive, so if a value has already * been set, it must match this value. */ if (ssc_p->cmr_div == 0) ssc_p->cmr_div = div; else if (div != ssc_p->cmr_div) return -EBUSY; break; case AT91SSC_TCMR_PERIOD: ssc_p->tcmr_period = div; break; case AT91SSC_RCMR_PERIOD: ssc_p->rcmr_period = div; break; default: return -EINVAL; } return 0; } /* * Configure the SSC. */ static int at91_ssc_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = substream->private_data; int id = rtd->dai->cpu_dai->id; struct at91_ssc_info *ssc_p = &ssc_info[id]; struct at91_pcm_dma_params *dma_params; int dir, channels, bits; u32 tfmr, rfmr, tcmr, rcmr; int start_event; int ret; /* * Currently, there is only one set of dma params for * each direction. If more are added, this code will * have to be changed to select the proper set. */ dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1; dma_params = &ssc_dma_params[id][dir]; dma_params->ssc_base = ssc_p->ssc.base; dma_params->substream = substream; ssc_p->dma_params[dir] = dma_params; /* * The cpu_dai->dma_data field is only used to communicate the * appropriate DMA parameters to the pcm driver hw_params() * function. It should not be used for other purposes * as it is common to all substreams. */ rtd->dai->cpu_dai->dma_data = dma_params; channels = params_channels(params); /* * Determine sample size in bits and the PDC increment. */ switch(params_format(params)) { case SNDRV_PCM_FORMAT_S8: bits = 8; dma_params->pdc_xfer_size = 1; break; case SNDRV_PCM_FORMAT_S16_LE: bits = 16; dma_params->pdc_xfer_size = 2; break; case SNDRV_PCM_FORMAT_S24_LE: bits = 24; dma_params->pdc_xfer_size = 4; break; case SNDRV_PCM_FORMAT_S32_LE: bits = 32; dma_params->pdc_xfer_size = 4; break; default: printk(KERN_WARNING "at91-ssc: unsupported PCM format"); return -EINVAL; } /* * The SSC only supports up to 16-bit samples in I2S format, due * to the size of the Frame Mode Register FSLEN field. */ if ((ssc_p->daifmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_I2S && bits > 16) { printk(KERN_WARNING "at91-ssc: sample size %d is too large for I2S\n", bits); return -EINVAL; } /* * Compute SSC register settings. */ switch (ssc_p->daifmt & (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_MASTER_MASK)) { case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBS_CFS: /* * I2S format, SSC provides BCLK and LRC clocks. * * The SSC transmit and receive clocks are generated from the * MCK divider, and the BCLK signal is output on the SSC TK line. */ rcmr = (( ssc_p->rcmr_period << 24) & AT91_SSC_PERIOD) | (( 1 << 16) & AT91_SSC_STTDLY) | (( AT91_SSC_START_FALLING_RF ) & AT91_SSC_START) | (( AT91_SSC_CK_RISING ) & AT91_SSC_CKI) | (( AT91_SSC_CKO_NONE ) & AT91_SSC_CKO) | (( AT91_SSC_CKS_DIV ) & AT91_SSC_CKS); rfmr = (( AT91_SSC_FSEDGE_POSITIVE ) & AT91_SSC_FSEDGE) | (( AT91_SSC_FSOS_NEGATIVE ) & AT91_SSC_FSOS) | (((bits - 1) << 16) & AT91_SSC_FSLEN) | (((channels - 1) << 8) & AT91_SSC_DATNB) | (( 1 << 7) & AT91_SSC_MSBF) | (( 0 << 5) & AT91_SSC_LOOP) | (((bits - 1) << 0) & AT91_SSC_DATALEN); tcmr = (( ssc_p->tcmr_period << 24) & AT91_SSC_PERIOD) | (( 1 << 16) & AT91_SSC_STTDLY) | (( AT91_SSC_START_FALLING_RF ) & AT91_SSC_START) | (( AT91_SSC_CKI_FALLING ) & AT91_SSC_CKI) | (( AT91_SSC_CKO_CONTINUOUS ) & AT91_SSC_CKO) | (( AT91_SSC_CKS_DIV ) & AT91_SSC_CKS); tfmr = (( AT91_SSC_FSEDGE_POSITIVE ) & AT91_SSC_FSEDGE) | (( 0 << 23) & AT91_SSC_FSDEN) | (( AT91_SSC_FSOS_NEGATIVE ) & AT91_SSC_FSOS) | (((bits - 1) << 16) & AT91_SSC_FSLEN) | (((channels - 1) << 8) & AT91_SSC_DATNB) | (( 1 << 7) & AT91_SSC_MSBF) | (( 0 << 5) & AT91_SSC_DATDEF) | (((bits - 1) << 0) & AT91_SSC_DATALEN); break; case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFM: /* * I2S format, CODEC supplies BCLK and LRC clocks. * * The SSC transmit clock is obtained from the BCLK signal on * on the TK line, and the SSC receive clock is generated from the * transmit clock. * * For single channel data, one sample is transferred on the falling * edge of the LRC clock. For two channel data, one sample is * transferred on both edges of the LRC clock. */ start_event = channels == 1 ? AT91_SSC_START_FALLING_RF : AT91_SSC_START_EDGE_RF; rcmr = (( 0 << 24) & AT91_SSC_PERIOD) | (( 1 << 16) & AT91_SSC_STTDLY) | (( start_event ) & AT91_SSC_START) | (( AT91_SSC_CK_RISING ) & AT91_SSC_CKI) | (( AT91_SSC_CKO_NONE ) & AT91_SSC_CKO) | (( AT91_SSC_CKS_CLOCK ) & AT91_SSC_CKS); rfmr = (( AT91_SSC_FSEDGE_POSITIVE ) & AT91_SSC_FSEDGE) | (( AT91_SSC_FSOS_NONE ) & AT91_SSC_FSOS) | (( 0 << 16) & AT91_SSC_FSLEN) | (( 0 << 8) & AT91_SSC_DATNB) | (( 1 << 7) & AT91_SSC_MSBF) | (( 0 << 5) & AT91_SSC_LOOP) | (((bits - 1) << 0) & AT91_SSC_DATALEN); tcmr = (( 0 << 24) & AT91_SSC_PERIOD) | (( 1 << 16) & AT91_SSC_STTDLY) | (( start_event ) & AT91_SSC_START) | (( AT91_SSC_CKI_FALLING ) & AT91_SSC_CKI) | (( AT91_SSC_CKO_NONE ) & AT91_SSC_CKO) | (( AT91_SSC_CKS_PIN ) & AT91_SSC_CKS); tfmr = (( AT91_SSC_FSEDGE_POSITIVE ) & AT91_SSC_FSEDGE) | (( 0 << 23) & AT91_SSC_FSDEN) | (( AT91_SSC_FSOS_NONE ) & AT91_SSC_FSOS) | (( 0 << 16) & AT91_SSC_FSLEN) | (( 0 << 8) & AT91_SSC_DATNB) | (( 1 << 7) & AT91_SSC_MSBF) | (( 0 << 5) & AT91_SSC_DATDEF) | (((bits - 1) << 0) & AT91_SSC_DATALEN); break; case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBS_CFS: /* * DSP/PCM Mode A format, SSC provides BCLK and LRC clocks. * * The SSC transmit and receive clocks are generated from the * MCK divider, and the BCLK signal is output on the SSC TK line. */ rcmr = (( ssc_p->rcmr_period << 24) & AT91_SSC_PERIOD) | (( 1 << 16) & AT91_SSC_STTDLY) | (( AT91_SSC_START_RISING_RF ) & AT91_SSC_START) | (( AT91_SSC_CK_RISING ) & AT91_SSC_CKI) | (( AT91_SSC_CKO_NONE ) & AT91_SSC_CKO) | (( AT91_SSC_CKS_DIV ) & AT91_SSC_CKS); rfmr = (( AT91_SSC_FSEDGE_POSITIVE ) & AT91_SSC_FSEDGE) | (( AT91_SSC_FSOS_POSITIVE ) & AT91_SSC_FSOS) | (( 0 << 16) & AT91_SSC_FSLEN) | (((channels - 1) << 8) & AT91_SSC_DATNB) | (( 1 << 7) & AT91_SSC_MSBF) | (( 0 << 5) & AT91_SSC_LOOP) | (((bits - 1) << 0) & AT91_SSC_DATALEN); tcmr = (( ssc_p->tcmr_period << 24) & AT91_SSC_PERIOD) | (( 1 << 16) & AT91_SSC_STTDLY) | (( AT91_SSC_START_RISING_RF ) & AT91_SSC_START) | (( AT91_SSC_CK_RISING ) & AT91_SSC_CKI) | (( AT91_SSC_CKO_CONTINUOUS ) & AT91_SSC_CKO) | (( AT91_SSC_CKS_DIV ) & AT91_SSC_CKS); tfmr = (( AT91_SSC_FSEDGE_POSITIVE ) & AT91_SSC_FSEDGE) | (( 0 << 23) & AT91_SSC_FSDEN) | (( AT91_SSC_FSOS_POSITIVE ) & AT91_SSC_FSOS) | (( 0 << 16) & AT91_SSC_FSLEN) | (((channels - 1) << 8) & AT91_SSC_DATNB) | (( 1 << 7) & AT91_SSC_MSBF) | (( 0 << 5) & AT91_SSC_DATDEF) | (((bits - 1) << 0) & AT91_SSC_DATALEN); break; case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBM_CFM: default: printk(KERN_WARNING "at91-ssc: unsupported DAI format 0x%x.\n", ssc_p->daifmt); return -EINVAL; break; } DBG("RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n", rcmr, rfmr, tcmr, tfmr); if (!ssc_p->initialized) { /* Enable PMC peripheral clock for this SSC */ DBG("Starting pid %d clock\n", ssc_p->ssc.pid); at91_sys_write(AT91_PMC_PCER, 1<<ssc_p->ssc.pid); /* Reset the SSC and its PDC registers */ at91_ssc_write(ssc_p->ssc.base + AT91_SSC_CR, AT91_SSC_SWRST); at91_ssc_write(ssc_p->ssc.base + ATMEL_PDC_RPR, 0); at91_ssc_write(ssc_p->ssc.base + ATMEL_PDC_RCR, 0); at91_ssc_write(ssc_p->ssc.base + ATMEL_PDC_RNPR, 0); at91_ssc_write(ssc_p->ssc.base + ATMEL_PDC_RNCR, 0); at91_ssc_write(ssc_p->ssc.base + ATMEL_PDC_TPR, 0); at91_ssc_write(ssc_p->ssc.base + ATMEL_PDC_TCR, 0); at91_ssc_write(ssc_p->ssc.base + ATMEL_PDC_TNPR, 0); at91_ssc_write(ssc_p->ssc.base + ATMEL_PDC_TNCR, 0); if ((ret = request_irq(ssc_p->ssc.pid, at91_ssc_interrupt, 0, ssc_p->name, ssc_p)) < 0) { printk(KERN_WARNING "at91-ssc: request_irq failure\n"); DBG("Stopping pid %d clock\n", ssc_p->ssc.pid); at91_sys_write(AT91_PMC_PCER, 1<<ssc_p->ssc.pid); return ret; } ssc_p->initialized = 1; } /* set SSC clock mode register */ at91_ssc_write(ssc_p->ssc.base + AT91_SSC_CMR, ssc_p->cmr_div); /* set receive clock mode and format */ at91_ssc_write(ssc_p->ssc.base + AT91_SSC_RCMR, rcmr); at91_ssc_write(ssc_p->ssc.base + AT91_SSC_RFMR, rfmr); /* set transmit clock mode and format */ at91_ssc_write(ssc_p->ssc.base + AT91_SSC_TCMR, tcmr); at91_ssc_write(ssc_p->ssc.base + AT91_SSC_TFMR, tfmr); DBG("hw_params: SSC initialized\n"); return 0; } static int at91_ssc_prepare(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct at91_ssc_info *ssc_p = &ssc_info[rtd->dai->cpu_dai->id]; struct at91_pcm_dma_params *dma_params; int dir; dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1; dma_params = ssc_p->dma_params[dir]; at91_ssc_write(dma_params->ssc_base + AT91_SSC_CR, dma_params->mask->ssc_enable); DBG("%s enabled SSC_SR=0x%08lx\n", dir ? "receive" : "transmit", at91_ssc_read(dma_params->ssc_base + AT91_SSC_SR)); return 0; } #ifdef CONFIG_PM static int at91_ssc_suspend(struct platform_device *pdev, struct snd_soc_cpu_dai *cpu_dai) { struct at91_ssc_info *ssc_p; if(!cpu_dai->active) return 0; ssc_p = &ssc_info[cpu_dai->id]; /* Save the status register before disabling transmit and receive. */ ssc_p->ssc_state.ssc_sr = at91_ssc_read(ssc_p->ssc.base + AT91_SSC_SR); at91_ssc_write(ssc_p->ssc.base + AT91_SSC_CR, AT91_SSC_TXDIS | AT91_SSC_RXDIS); /* Save the current interrupt mask, then disable unmasked interrupts. */ ssc_p->ssc_state.ssc_imr = at91_ssc_read(ssc_p->ssc.base + AT91_SSC_IMR); at91_ssc_write(ssc_p->ssc.base + AT91_SSC_IDR, ssc_p->ssc_state.ssc_imr); ssc_p->ssc_state.ssc_cmr = at91_ssc_read(ssc_p->ssc.base + AT91_SSC_CMR); ssc_p->ssc_state.ssc_rcmr = at91_ssc_read(ssc_p->ssc.base + AT91_SSC_RCMR); ssc_p->ssc_state.ssc_rfmr = at91_ssc_read(ssc_p->ssc.base + AT91_SSC_RFMR); ssc_p->ssc_state.ssc_tcmr = at91_ssc_read(ssc_p->ssc.base + AT91_SSC_TCMR); ssc_p->ssc_state.ssc_tfmr = at91_ssc_read(ssc_p->ssc.base + AT91_SSC_TFMR); return 0; } static int at91_ssc_resume(struct platform_device *pdev, struct snd_soc_cpu_dai *cpu_dai) { struct at91_ssc_info *ssc_p; if(!cpu_dai->active) return 0; ssc_p = &ssc_info[cpu_dai->id]; at91_ssc_write(ssc_p->ssc.base + AT91_SSC_TFMR, ssc_p->ssc_state.ssc_tfmr); at91_ssc_write(ssc_p->ssc.base + AT91_SSC_TCMR, ssc_p->ssc_state.ssc_tcmr); at91_ssc_write(ssc_p->ssc.base + AT91_SSC_RFMR, ssc_p->ssc_state.ssc_rfmr); at91_ssc_write(ssc_p->ssc.base + AT91_SSC_RCMR, ssc_p->ssc_state.ssc_rcmr); at91_ssc_write(ssc_p->ssc.base + AT91_SSC_CMR, ssc_p->ssc_state.ssc_cmr); at91_ssc_write(ssc_p->ssc.base + AT91_SSC_IER, ssc_p->ssc_state.ssc_imr); at91_ssc_write(ssc_p->ssc.base + AT91_SSC_CR, ((ssc_p->ssc_state.ssc_sr & AT91_SSC_RXENA) ? AT91_SSC_RXEN : 0) | ((ssc_p->ssc_state.ssc_sr & AT91_SSC_TXENA) ? AT91_SSC_TXEN : 0)); return 0; } #else #define at91_ssc_suspend NULL #define at91_ssc_resume NULL #endif #define AT91_SSC_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_11025 |\ SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_22050 |\ SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 |\ SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 |\ SNDRV_PCM_RATE_96000) #define AT91_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE |\ SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE) struct snd_soc_cpu_dai at91_ssc_dai[NUM_SSC_DEVICES] = { { .name = "at91-ssc0", .id = 0, .type = SND_SOC_DAI_PCM, .suspend = at91_ssc_suspend, .resume = at91_ssc_resume, .playback = { .channels_min = 1, .channels_max = 2, .rates = AT91_SSC_RATES, .formats = AT91_SSC_FORMATS,}, .capture = { .channels_min = 1, .channels_max = 2, .rates = AT91_SSC_RATES, .formats = AT91_SSC_FORMATS,}, .ops = { .startup = at91_ssc_startup, .shutdown = at91_ssc_shutdown, .prepare = at91_ssc_prepare, .hw_params = at91_ssc_hw_params,}, .dai_ops = { .set_sysclk = at91_ssc_set_dai_sysclk, .set_fmt = at91_ssc_set_dai_fmt, .set_clkdiv = at91_ssc_set_dai_clkdiv,}, .private_data = &ssc_info[0].ssc, }, #if NUM_SSC_DEVICES == 3 { .name = "at91-ssc1", .id = 1, .type = SND_SOC_DAI_PCM, .suspend = at91_ssc_suspend, .resume = at91_ssc_resume, .playback = { .channels_min = 1, .channels_max = 2, .rates = AT91_SSC_RATES, .formats = AT91_SSC_FORMATS,}, .capture = { .channels_min = 1, .channels_max = 2, .rates = AT91_SSC_RATES, .formats = AT91_SSC_FORMATS,}, .ops = { .startup = at91_ssc_startup, .shutdown = at91_ssc_shutdown, .prepare = at91_ssc_prepare, .hw_params = at91_ssc_hw_params,}, .dai_ops = { .set_sysclk = at91_ssc_set_dai_sysclk, .set_fmt = at91_ssc_set_dai_fmt, .set_clkdiv = at91_ssc_set_dai_clkdiv,}, .private_data = &ssc_info[1].ssc, }, { .name = "at91-ssc2", .id = 2, .type = SND_SOC_DAI_PCM, .suspend = at91_ssc_suspend, .resume = at91_ssc_resume, .playback = { .channels_min = 1, .channels_max = 2, .rates = AT91_SSC_RATES, .formats = AT91_SSC_FORMATS,}, .capture = { .channels_min = 1, .channels_max = 2, .rates = AT91_SSC_RATES, .formats = AT91_SSC_FORMATS,}, .ops = { .startup = at91_ssc_startup, .shutdown = at91_ssc_shutdown, .prepare = at91_ssc_prepare, .hw_params = at91_ssc_hw_params,}, .dai_ops = { .set_sysclk = at91_ssc_set_dai_sysclk, .set_fmt = at91_ssc_set_dai_fmt, .set_clkdiv = at91_ssc_set_dai_clkdiv,}, .private_data = &ssc_info[2].ssc, }, #endif }; EXPORT_SYMBOL_GPL(at91_ssc_dai); /* Module information */ MODULE_AUTHOR("Frank Mandarino, fmandarino@endrelia.com, www.endrelia.com"); MODULE_DESCRIPTION("AT91 SSC ASoC Interface"); MODULE_LICENSE("GPL");