// SPDX-License-Identifier: GPL-2.0 // Copyright 2019 NXP #include #include #include #include #include #include "fsl_easrc.h" #define FSL_ASRC_DMABUF_SIZE (256 * 1024) static struct snd_pcm_hardware snd_imx_hardware = { .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID, .buffer_bytes_max = FSL_ASRC_DMABUF_SIZE, .period_bytes_min = 128, .period_bytes_max = 65532, /* Limited by SDMA engine */ .periods_min = 2, .periods_max = 255, .fifo_size = 0, }; static bool filter(struct dma_chan *chan, void *param) { if (!imx_dma_is_general_purpose(chan)) return false; chan->private = param; return true; } static void fsl_easrc_dma_complete(void *arg) { struct snd_pcm_substream *substream = arg; struct snd_pcm_runtime *runtime = substream->runtime; struct fsl_easrc_context *ctx = runtime->private_data; ctx->pos += snd_pcm_lib_period_bytes(substream); if (ctx->pos >= snd_pcm_lib_buffer_bytes(substream)) ctx->pos = 0; snd_pcm_period_elapsed(substream); } static int fsl_easrc_dma_prepare_and_submit(struct snd_pcm_substream *substream) { u8 dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? OUT : IN; struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_pcm_runtime *runtime = substream->runtime; struct fsl_easrc_context *ctx = runtime->private_data; struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME); struct device *dev = component->dev; unsigned long flags = DMA_CTRL_ACK; /* Prepare and submit Front-End DMA channel */ if (!substream->runtime->no_period_wakeup) flags |= DMA_PREP_INTERRUPT; ctx->pos = 0; ctx->desc[!dir] = dmaengine_prep_dma_cyclic( ctx->dma_chan[!dir], runtime->dma_addr, snd_pcm_lib_buffer_bytes(substream), snd_pcm_lib_period_bytes(substream), dir == OUT ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM, flags); if (!ctx->desc[!dir]) { dev_err(dev, "failed to prepare slave DMA for Front-End\n"); return -ENOMEM; } ctx->desc[!dir]->callback = fsl_easrc_dma_complete; ctx->desc[!dir]->callback_param = substream; dmaengine_submit(ctx->desc[!dir]); /* Prepare and submit Back-End DMA channel */ ctx->desc[dir] = dmaengine_prep_dma_cyclic( ctx->dma_chan[dir], 0xffff, 64, 64, DMA_DEV_TO_DEV, 0); if (!ctx->desc[dir]) { dev_err(dev, "failed to prepare slave DMA for Back-End\n"); return -ENOMEM; } dmaengine_submit(ctx->desc[dir]); return 0; } static int fsl_easrc_dma_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_pcm_runtime *runtime = substream->runtime; struct fsl_easrc_context *ctx = runtime->private_data; int ret; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: ret = fsl_easrc_dma_prepare_and_submit(substream); if (ret) return ret; dma_async_issue_pending(ctx->dma_chan[IN]); dma_async_issue_pending(ctx->dma_chan[OUT]); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: dmaengine_terminate_all(ctx->dma_chan[OUT]); dmaengine_terminate_all(ctx->dma_chan[IN]); break; default: return -EINVAL; } return 0; } static int fsl_easrc_dma_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { enum dma_slave_buswidth buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; struct snd_soc_pcm_runtime *rtd = substream->private_data; bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; struct snd_dmaengine_dai_dma_data *dma_params_fe = NULL; struct snd_dmaengine_dai_dma_data *dma_params_be = NULL; struct snd_pcm_runtime *runtime = substream->runtime; struct fsl_easrc_context *ctx = runtime->private_data; struct fsl_easrc *easrc = ctx->easrc; struct dma_slave_config config_fe, config_be; enum asrc_pair_index index = ctx->index; struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME); struct device *dev = component->dev; int stream = substream->stream; struct imx_dma_data *tmp_data; struct snd_soc_dpcm *dpcm; struct dma_chan *tmp_chan; struct device *dev_be; u8 dir = tx ? OUT : IN; dma_cap_mask_t mask; enum sdma_peripheral_type be_peripheral_type; struct device_node *of_dma_node; int ret; /* Fetch the Back-End dma_data from DPCM */ list_for_each_entry(dpcm, &rtd->dpcm[stream].be_clients, list_be) { struct snd_soc_pcm_runtime *be = dpcm->be; struct snd_pcm_substream *substream_be; struct snd_soc_dai *dai = be->cpu_dai; if (dpcm->fe != rtd) continue; substream_be = snd_soc_dpcm_get_substream(be, stream); dma_params_be = snd_soc_dai_get_dma_data(dai, substream_be); dev_be = dai->dev; break; } if (!dma_params_be) { dev_err(dev, "failed to get the substream of Back-End\n"); return -EINVAL; } /* Override dma_data of the Front-End and config its dmaengine */ dma_params_fe = snd_soc_dai_get_dma_data(rtd->cpu_dai, substream); dma_params_fe->addr = easrc->paddr + REG_EASRC_FIFO(!dir, index); dma_params_fe->maxburst = dma_params_be->maxburst; ctx->dma_chan[!dir] = fsl_easrc_get_dma_channel(ctx, !dir); if (!ctx->dma_chan[!dir]) { dev_err(dev, "failed to request DMA channel\n"); return -EINVAL; } memset(&config_fe, 0, sizeof(config_fe)); ret = snd_dmaengine_pcm_prepare_slave_config(substream, params, &config_fe); if (ret) { dev_err(dev, "failed to prepare DMA config for Front-End\n"); return ret; } ret = dmaengine_slave_config(ctx->dma_chan[!dir], &config_fe); if (ret) { dev_err(dev, "failed to config DMA channel for Front-End\n"); return ret; } of_dma_node = ctx->dma_chan[!dir]->device->dev->of_node; /* Request and config DMA channel for Back-End */ dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); dma_cap_set(DMA_CYCLIC, mask); /* Get DMA request of Back-End */ tmp_chan = dma_request_slave_channel(dev_be, tx ? "tx" : "rx"); if (tmp_chan) { tmp_data = tmp_chan->private; if (tmp_data) { ctx->dma_data.dma_request = tmp_data->dma_request; be_peripheral_type = tmp_data->peripheral_type; if (tx && be_peripheral_type == IMX_DMATYPE_SSI_DUAL) ctx->dma_data.dst_dualfifo = true; if (!tx && be_peripheral_type == IMX_DMATYPE_SSI_DUAL) ctx->dma_data.src_dualfifo = true; } dma_release_channel(tmp_chan); } /* Get DMA request of Front-End */ tmp_chan = fsl_easrc_get_dma_channel(ctx, dir); if (tmp_chan) { tmp_data = tmp_chan->private; if (tmp_data) { ctx->dma_data.dma_request2 = tmp_data->dma_request; ctx->dma_data.peripheral_type = tmp_data->peripheral_type; ctx->dma_data.priority = tmp_data->priority; } dma_release_channel(tmp_chan); } /* For sdma DEV_TO_DEV, there is two dma request * But for emda DEV_TO_DEV, there is only one dma request, which is * from the BE. */ if (ctx->dma_data.dma_request2 != ctx->dma_data.dma_request) ctx->dma_chan[dir] = __dma_request_channel(&mask, filter, &ctx->dma_data, of_dma_node); else ctx->dma_chan[dir] = dma_request_slave_channel(dev_be, tx ? "tx" : "rx"); if (!ctx->dma_chan[dir]) { dev_err(dev, "failed to request DMA channel for Back-End\n"); return -EINVAL; } if (easrc->easrc_format == SNDRV_PCM_FORMAT_S16_LE) buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; else buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES; memset(&config_be, 0, sizeof(config_be)); config_be.direction = DMA_DEV_TO_DEV; config_be.src_addr_width = buswidth; config_be.src_maxburst = dma_params_be->maxburst; config_be.dst_addr_width = buswidth; config_be.dst_maxburst = dma_params_be->maxburst; if (tx) { config_be.src_addr = easrc->paddr + REG_EASRC_RDFIFO(index); config_be.dst_addr = dma_params_be->addr; } else { config_be.dst_addr = easrc->paddr + REG_EASRC_WRFIFO(index); config_be.src_addr = dma_params_be->addr; } ret = dmaengine_slave_config(ctx->dma_chan[dir], &config_be); if (ret) { dev_err(dev, "failed to config DMA channel for Back-End\n"); return ret; } snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer); return 0; } static int fsl_easrc_dma_hw_free(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct fsl_easrc_context *ctx = runtime->private_data; snd_pcm_set_runtime_buffer(substream, NULL); if (ctx->dma_chan[IN]) dma_release_channel(ctx->dma_chan[IN]); if (ctx->dma_chan[OUT]) dma_release_channel(ctx->dma_chan[OUT]); ctx->dma_chan[IN] = NULL; ctx->dma_chan[OUT] = NULL; return 0; } static int fsl_easrc_dma_startup(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_pcm_runtime *runtime = substream->runtime; struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME); struct device *dev = component->dev; struct fsl_easrc *easrc = dev_get_drvdata(dev); struct fsl_easrc_context *ctx; bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; u8 dir = tx ? OUT : IN; struct dma_slave_caps dma_caps; struct dma_chan *tmp_chan; struct snd_dmaengine_dai_dma_data *dma_data; u32 addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); int ret; int i; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->easrc = easrc; runtime->private_data = ctx; ret = snd_pcm_hw_constraint_integer(substream->runtime, SNDRV_PCM_HW_PARAM_PERIODS); if (ret < 0) { dev_err(dev, "failed to set pcm hw params periods\n"); return ret; } dma_data = snd_soc_dai_get_dma_data(rtd->cpu_dai, substream); fsl_easrc_request_context(ctx, 1); tmp_chan = fsl_easrc_get_dma_channel(ctx, dir); if (!tmp_chan) { dev_err(dev, "can't get dma channel\n"); return -EINVAL; } ret = dma_get_slave_caps(tmp_chan, &dma_caps); if (ret == 0) { if (dma_caps.cmd_pause) snd_imx_hardware.info |= SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME; if (dma_caps.residue_granularity <= DMA_RESIDUE_GRANULARITY_SEGMENT) snd_imx_hardware.info |= SNDRV_PCM_INFO_BATCH; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) addr_widths = dma_caps.dst_addr_widths; else addr_widths = dma_caps.src_addr_widths; } /* * If SND_DMAENGINE_PCM_DAI_FLAG_PACK is set keep * hw.formats set to 0, meaning no restrictions are in place. * In this case it's the responsibility of the DAI driver to * provide the supported format information. */ if (!(dma_data->flags & SND_DMAENGINE_PCM_DAI_FLAG_PACK)) /* * Prepare formats mask for valid/allowed sample types. If the * dma does not have support for the given physical word size, * it needs to be masked out so user space can not use the * format which produces corrupted audio. * In case the dma driver does not implement the slave_caps the * default assumption is that it supports 1, 2 and 4 bytes * widths. */ for (i = 0; i <= SNDRV_PCM_FORMAT_LAST; i++) { int bits = snd_pcm_format_physical_width(i); /* * Enable only samples with DMA supported physical * widths */ switch (bits) { case 8: case 16: case 24: case 32: case 64: if (addr_widths & (1 << (bits / 8))) snd_imx_hardware.formats |= (1LL << i); break; default: /* Unsupported types */ break; } } if (tmp_chan) dma_release_channel(tmp_chan); fsl_easrc_release_context(ctx); snd_soc_set_runtime_hwparams(substream, &snd_imx_hardware); return 0; } static int fsl_easrc_dma_shutdown(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct fsl_easrc_context *ctx = runtime->private_data; struct fsl_easrc *easrc; if (!ctx) return 0; easrc = ctx->easrc; if (easrc->ctx[ctx->index] == ctx) easrc->ctx[ctx->index] = NULL; kfree(ctx); return 0; } static snd_pcm_uframes_t fsl_easrc_dma_pcm_pointer( struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct fsl_easrc_context *ctx = runtime->private_data; return bytes_to_frames(substream->runtime, ctx->pos); } static const struct snd_pcm_ops fsl_easrc_dma_pcm_ops = { .ioctl = snd_pcm_lib_ioctl, .hw_params = fsl_easrc_dma_hw_params, .hw_free = fsl_easrc_dma_hw_free, .trigger = fsl_easrc_dma_trigger, .open = fsl_easrc_dma_startup, .close = fsl_easrc_dma_shutdown, .pointer = fsl_easrc_dma_pcm_pointer, }; static int fsl_easrc_dma_pcm_new(struct snd_soc_pcm_runtime *rtd) { struct snd_card *card = rtd->card->snd_card; struct snd_pcm_substream *substream; struct snd_pcm *pcm = rtd->pcm; int ret, i; ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(32)); if (ret) { dev_err(card->dev, "failed to set DMA mask\n"); return ret; } for (i = SNDRV_PCM_STREAM_PLAYBACK; i <= SNDRV_PCM_STREAM_LAST; i++) { substream = pcm->streams[i].substream; if (!substream) continue; ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->card->dev, FSL_ASRC_DMABUF_SIZE, &substream->dma_buffer); if (ret) { dev_err(card->dev, "failed to allocate DMA buffer\n"); goto err; } } return 0; err: if (--i == 0 && pcm->streams[i].substream) snd_dma_free_pages(&pcm->streams[i].substream->dma_buffer); return ret; } static void fsl_easrc_dma_pcm_free(struct snd_pcm *pcm) { struct snd_pcm_substream *substream; int i; for (i = SNDRV_PCM_STREAM_PLAYBACK; i <= SNDRV_PCM_STREAM_LAST; i++) { substream = pcm->streams[i].substream; if (!substream) continue; snd_dma_free_pages(&substream->dma_buffer); substream->dma_buffer.area = NULL; substream->dma_buffer.addr = 0; } } struct snd_soc_component_driver fsl_easrc_dma_component = { .name = DRV_NAME, .ops = &fsl_easrc_dma_pcm_ops, .pcm_new = fsl_easrc_dma_pcm_new, .pcm_free = fsl_easrc_dma_pcm_free, }; EXPORT_SYMBOL_GPL(fsl_easrc_dma_component);