/* * builtin-stat.c * * Builtin stat command: Give a precise performance counters summary * overview about any workload, CPU or specific PID. * * Sample output: $ perf stat ./hackbench 10 Time: 0.118 Performance counter stats for './hackbench 10': 1708.761321 task-clock # 11.037 CPUs utilized 41,190 context-switches # 0.024 M/sec 6,735 CPU-migrations # 0.004 M/sec 17,318 page-faults # 0.010 M/sec 5,205,202,243 cycles # 3.046 GHz 3,856,436,920 stalled-cycles-frontend # 74.09% frontend cycles idle 1,600,790,871 stalled-cycles-backend # 30.75% backend cycles idle 2,603,501,247 instructions # 0.50 insns per cycle # 1.48 stalled cycles per insn 484,357,498 branches # 283.455 M/sec 6,388,934 branch-misses # 1.32% of all branches 0.154822978 seconds time elapsed * * Copyright (C) 2008-2011, Red Hat Inc, Ingo Molnar * * Improvements and fixes by: * * Arjan van de Ven * Yanmin Zhang * Wu Fengguang * Mike Galbraith * Paul Mackerras * Jaswinder Singh Rajput * * Released under the GPL v2. (and only v2, not any later version) */ #include "perf.h" #include "builtin.h" #include "util/cgroup.h" #include "util/util.h" #include #include "util/parse-events.h" #include "util/pmu.h" #include "util/event.h" #include "util/evlist.h" #include "util/evsel.h" #include "util/debug.h" #include "util/color.h" #include "util/stat.h" #include "util/header.h" #include "util/cpumap.h" #include "util/thread.h" #include "util/thread_map.h" #include "util/counts.h" #include #include #include #define DEFAULT_SEPARATOR " " #define CNTR_NOT_SUPPORTED "" #define CNTR_NOT_COUNTED "" static void print_counters(struct timespec *ts, int argc, const char **argv); /* Default events used for perf stat -T */ static const char *transaction_attrs = { "task-clock," "{" "instructions," "cycles," "cpu/cycles-t/," "cpu/tx-start/," "cpu/el-start/," "cpu/cycles-ct/" "}" }; /* More limited version when the CPU does not have all events. */ static const char * transaction_limited_attrs = { "task-clock," "{" "instructions," "cycles," "cpu/cycles-t/," "cpu/tx-start/" "}" }; static struct perf_evlist *evsel_list; static struct target target = { .uid = UINT_MAX, }; typedef int (*aggr_get_id_t)(struct cpu_map *m, int cpu); static int run_count = 1; static bool no_inherit = false; static volatile pid_t child_pid = -1; static bool null_run = false; static int detailed_run = 0; static bool transaction_run; static bool big_num = true; static int big_num_opt = -1; static const char *csv_sep = NULL; static bool csv_output = false; static bool group = false; static const char *pre_cmd = NULL; static const char *post_cmd = NULL; static bool sync_run = false; static unsigned int initial_delay = 0; static unsigned int unit_width = 4; /* strlen("unit") */ static bool forever = false; static struct timespec ref_time; static struct cpu_map *aggr_map; static aggr_get_id_t aggr_get_id; static bool append_file; static const char *output_name; static int output_fd; static volatile int done = 0; static struct perf_stat_config stat_config = { .aggr_mode = AGGR_GLOBAL, .scale = true, }; static inline void diff_timespec(struct timespec *r, struct timespec *a, struct timespec *b) { r->tv_sec = a->tv_sec - b->tv_sec; if (a->tv_nsec < b->tv_nsec) { r->tv_nsec = a->tv_nsec + 1000000000L - b->tv_nsec; r->tv_sec--; } else { r->tv_nsec = a->tv_nsec - b->tv_nsec ; } } static void perf_stat__reset_stats(void) { perf_evlist__reset_stats(evsel_list); perf_stat__reset_shadow_stats(); } static int create_perf_stat_counter(struct perf_evsel *evsel) { struct perf_event_attr *attr = &evsel->attr; if (stat_config.scale) attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED | PERF_FORMAT_TOTAL_TIME_RUNNING; attr->inherit = !no_inherit; /* * Some events get initialized with sample_(period/type) set, * like tracepoints. Clear it up for counting. */ attr->sample_period = 0; attr->sample_type = 0; /* * Disabling all counters initially, they will be enabled * either manually by us or by kernel via enable_on_exec * set later. */ if (perf_evsel__is_group_leader(evsel)) { attr->disabled = 1; /* * In case of initial_delay we enable tracee * events manually. */ if (target__none(&target) && !initial_delay) attr->enable_on_exec = 1; } if (target__has_cpu(&target)) return perf_evsel__open_per_cpu(evsel, perf_evsel__cpus(evsel)); return perf_evsel__open_per_thread(evsel, evsel_list->threads); } /* * Does the counter have nsecs as a unit? */ static inline int nsec_counter(struct perf_evsel *evsel) { if (perf_evsel__match(evsel, SOFTWARE, SW_CPU_CLOCK) || perf_evsel__match(evsel, SOFTWARE, SW_TASK_CLOCK)) return 1; return 0; } /* * Read out the results of a single counter: * do not aggregate counts across CPUs in system-wide mode */ static int read_counter(struct perf_evsel *counter) { int nthreads = thread_map__nr(evsel_list->threads); int ncpus = perf_evsel__nr_cpus(counter); int cpu, thread; if (!counter->supported) return -ENOENT; if (counter->system_wide) nthreads = 1; for (thread = 0; thread < nthreads; thread++) { for (cpu = 0; cpu < ncpus; cpu++) { struct perf_counts_values *count; count = perf_counts(counter->counts, cpu, thread); if (perf_evsel__read(counter, cpu, thread, count)) return -1; } } return 0; } static void read_counters(bool close_counters) { struct perf_evsel *counter; evlist__for_each(evsel_list, counter) { if (read_counter(counter)) pr_debug("failed to read counter %s\n", counter->name); if (perf_stat_process_counter(&stat_config, counter)) pr_warning("failed to process counter %s\n", counter->name); if (close_counters) { perf_evsel__close_fd(counter, perf_evsel__nr_cpus(counter), thread_map__nr(evsel_list->threads)); } } } static void process_interval(void) { struct timespec ts, rs; read_counters(false); clock_gettime(CLOCK_MONOTONIC, &ts); diff_timespec(&rs, &ts, &ref_time); print_counters(&rs, 0, NULL); } static void enable_counters(void) { if (initial_delay) usleep(initial_delay * 1000); /* * We need to enable counters only if: * - we don't have tracee (attaching to task or cpu) * - we have initial delay configured */ if (!target__none(&target) || initial_delay) perf_evlist__enable(evsel_list); } static volatile int workload_exec_errno; /* * perf_evlist__prepare_workload will send a SIGUSR1 * if the fork fails, since we asked by setting its * want_signal to true. */ static void workload_exec_failed_signal(int signo __maybe_unused, siginfo_t *info, void *ucontext __maybe_unused) { workload_exec_errno = info->si_value.sival_int; } static int __run_perf_stat(int argc, const char **argv) { int interval = stat_config.interval; char msg[512]; unsigned long long t0, t1; struct perf_evsel *counter; struct timespec ts; size_t l; int status = 0; const bool forks = (argc > 0); if (interval) { ts.tv_sec = interval / 1000; ts.tv_nsec = (interval % 1000) * 1000000; } else { ts.tv_sec = 1; ts.tv_nsec = 0; } if (forks) { if (perf_evlist__prepare_workload(evsel_list, &target, argv, false, workload_exec_failed_signal) < 0) { perror("failed to prepare workload"); return -1; } child_pid = evsel_list->workload.pid; } if (group) perf_evlist__set_leader(evsel_list); evlist__for_each(evsel_list, counter) { if (create_perf_stat_counter(counter) < 0) { /* * PPC returns ENXIO for HW counters until 2.6.37 * (behavior changed with commit b0a873e). */ if (errno == EINVAL || errno == ENOSYS || errno == ENOENT || errno == EOPNOTSUPP || errno == ENXIO) { if (verbose) ui__warning("%s event is not supported by the kernel.\n", perf_evsel__name(counter)); counter->supported = false; if ((counter->leader != counter) || !(counter->leader->nr_members > 1)) continue; } perf_evsel__open_strerror(counter, &target, errno, msg, sizeof(msg)); ui__error("%s\n", msg); if (child_pid != -1) kill(child_pid, SIGTERM); return -1; } counter->supported = true; l = strlen(counter->unit); if (l > unit_width) unit_width = l; } if (perf_evlist__apply_filters(evsel_list, &counter)) { error("failed to set filter \"%s\" on event %s with %d (%s)\n", counter->filter, perf_evsel__name(counter), errno, strerror_r(errno, msg, sizeof(msg))); return -1; } /* * Enable counters and exec the command: */ t0 = rdclock(); clock_gettime(CLOCK_MONOTONIC, &ref_time); if (forks) { perf_evlist__start_workload(evsel_list); enable_counters(); if (interval) { while (!waitpid(child_pid, &status, WNOHANG)) { nanosleep(&ts, NULL); process_interval(); } } wait(&status); if (workload_exec_errno) { const char *emsg = strerror_r(workload_exec_errno, msg, sizeof(msg)); pr_err("Workload failed: %s\n", emsg); return -1; } if (WIFSIGNALED(status)) psignal(WTERMSIG(status), argv[0]); } else { enable_counters(); while (!done) { nanosleep(&ts, NULL); if (interval) process_interval(); } } t1 = rdclock(); update_stats(&walltime_nsecs_stats, t1 - t0); read_counters(true); return WEXITSTATUS(status); } static int run_perf_stat(int argc, const char **argv) { int ret; if (pre_cmd) { ret = system(pre_cmd); if (ret) return ret; } if (sync_run) sync(); ret = __run_perf_stat(argc, argv); if (ret) return ret; if (post_cmd) { ret = system(post_cmd); if (ret) return ret; } return ret; } static void print_running(u64 run, u64 ena) { if (csv_output) { fprintf(stat_config.output, "%s%" PRIu64 "%s%.2f", csv_sep, run, csv_sep, ena ? 100.0 * run / ena : 100.0); } else if (run != ena) { fprintf(stat_config.output, " (%.2f%%)", 100.0 * run / ena); } } static void print_noise_pct(double total, double avg) { double pct = rel_stddev_stats(total, avg); if (csv_output) fprintf(stat_config.output, "%s%.2f%%", csv_sep, pct); else if (pct) fprintf(stat_config.output, " ( +-%6.2f%% )", pct); } static void print_noise(struct perf_evsel *evsel, double avg) { struct perf_stat_evsel *ps; if (run_count == 1) return; ps = evsel->priv; print_noise_pct(stddev_stats(&ps->res_stats[0]), avg); } static void aggr_printout(struct perf_evsel *evsel, int id, int nr) { switch (stat_config.aggr_mode) { case AGGR_CORE: fprintf(stat_config.output, "S%d-C%*d%s%*d%s", cpu_map__id_to_socket(id), csv_output ? 0 : -8, cpu_map__id_to_cpu(id), csv_sep, csv_output ? 0 : 4, nr, csv_sep); break; case AGGR_SOCKET: fprintf(stat_config.output, "S%*d%s%*d%s", csv_output ? 0 : -5, id, csv_sep, csv_output ? 0 : 4, nr, csv_sep); break; case AGGR_NONE: fprintf(stat_config.output, "CPU%*d%s", csv_output ? 0 : -4, perf_evsel__cpus(evsel)->map[id], csv_sep); break; case AGGR_THREAD: fprintf(stat_config.output, "%*s-%*d%s", csv_output ? 0 : 16, thread_map__comm(evsel->threads, id), csv_output ? 0 : -8, thread_map__pid(evsel->threads, id), csv_sep); break; case AGGR_GLOBAL: case AGGR_UNSET: default: break; } } static void nsec_printout(int id, int nr, struct perf_evsel *evsel, double avg) { FILE *output = stat_config.output; double msecs = avg / 1e6; const char *fmt_v, *fmt_n; char name[25]; fmt_v = csv_output ? "%.6f%s" : "%18.6f%s"; fmt_n = csv_output ? "%s" : "%-25s"; aggr_printout(evsel, id, nr); scnprintf(name, sizeof(name), "%s%s", perf_evsel__name(evsel), csv_output ? "" : " (msec)"); fprintf(output, fmt_v, msecs, csv_sep); if (csv_output) fprintf(output, "%s%s", evsel->unit, csv_sep); else fprintf(output, "%-*s%s", unit_width, evsel->unit, csv_sep); fprintf(output, fmt_n, name); if (evsel->cgrp) fprintf(output, "%s%s", csv_sep, evsel->cgrp->name); } static void abs_printout(int id, int nr, struct perf_evsel *evsel, double avg) { FILE *output = stat_config.output; double sc = evsel->scale; const char *fmt; if (csv_output) { fmt = sc != 1.0 ? "%.2f%s" : "%.0f%s"; } else { if (big_num) fmt = sc != 1.0 ? "%'18.2f%s" : "%'18.0f%s"; else fmt = sc != 1.0 ? "%18.2f%s" : "%18.0f%s"; } aggr_printout(evsel, id, nr); fprintf(output, fmt, avg, csv_sep); if (evsel->unit) fprintf(output, "%-*s%s", csv_output ? 0 : unit_width, evsel->unit, csv_sep); fprintf(output, "%-*s", csv_output ? 0 : 25, perf_evsel__name(evsel)); if (evsel->cgrp) fprintf(output, "%s%s", csv_sep, evsel->cgrp->name); } static void printout(int id, int nr, struct perf_evsel *counter, double uval) { int cpu = cpu_map__id_to_cpu(id); if (stat_config.aggr_mode == AGGR_GLOBAL) cpu = 0; if (nsec_counter(counter)) nsec_printout(id, nr, counter, uval); else abs_printout(id, nr, counter, uval); if (!csv_output && !stat_config.interval) perf_stat__print_shadow_stats(stat_config.output, counter, uval, cpu, stat_config.aggr_mode); } static void print_aggr(char *prefix) { FILE *output = stat_config.output; struct perf_evsel *counter; int cpu, s, s2, id, nr; double uval; u64 ena, run, val; if (!(aggr_map || aggr_get_id)) return; for (s = 0; s < aggr_map->nr; s++) { id = aggr_map->map[s]; evlist__for_each(evsel_list, counter) { val = ena = run = 0; nr = 0; for (cpu = 0; cpu < perf_evsel__nr_cpus(counter); cpu++) { s2 = aggr_get_id(perf_evsel__cpus(counter), cpu); if (s2 != id) continue; val += perf_counts(counter->counts, cpu, 0)->val; ena += perf_counts(counter->counts, cpu, 0)->ena; run += perf_counts(counter->counts, cpu, 0)->run; nr++; } if (prefix) fprintf(output, "%s", prefix); if (run == 0 || ena == 0) { aggr_printout(counter, id, nr); fprintf(output, "%*s%s", csv_output ? 0 : 18, counter->supported ? CNTR_NOT_COUNTED : CNTR_NOT_SUPPORTED, csv_sep); fprintf(output, "%-*s%s", csv_output ? 0 : unit_width, counter->unit, csv_sep); fprintf(output, "%*s", csv_output ? 0 : -25, perf_evsel__name(counter)); if (counter->cgrp) fprintf(output, "%s%s", csv_sep, counter->cgrp->name); print_running(run, ena); fputc('\n', output); continue; } uval = val * counter->scale; printout(id, nr, counter, uval); if (!csv_output) print_noise(counter, 1.0); print_running(run, ena); fputc('\n', output); } } } static void print_aggr_thread(struct perf_evsel *counter, char *prefix) { FILE *output = stat_config.output; int nthreads = thread_map__nr(counter->threads); int ncpus = cpu_map__nr(counter->cpus); int cpu, thread; double uval; for (thread = 0; thread < nthreads; thread++) { u64 ena = 0, run = 0, val = 0; for (cpu = 0; cpu < ncpus; cpu++) { val += perf_counts(counter->counts, cpu, thread)->val; ena += perf_counts(counter->counts, cpu, thread)->ena; run += perf_counts(counter->counts, cpu, thread)->run; } if (prefix) fprintf(output, "%s", prefix); uval = val * counter->scale; printout(thread, 0, counter, uval); if (!csv_output) print_noise(counter, 1.0); print_running(run, ena); fputc('\n', output); } } /* * Print out the results of a single counter: * aggregated counts in system-wide mode */ static void print_counter_aggr(struct perf_evsel *counter, char *prefix) { FILE *output = stat_config.output; struct perf_stat_evsel *ps = counter->priv; double avg = avg_stats(&ps->res_stats[0]); int scaled = counter->counts->scaled; double uval; double avg_enabled, avg_running; avg_enabled = avg_stats(&ps->res_stats[1]); avg_running = avg_stats(&ps->res_stats[2]); if (prefix) fprintf(output, "%s", prefix); if (scaled == -1 || !counter->supported) { fprintf(output, "%*s%s", csv_output ? 0 : 18, counter->supported ? CNTR_NOT_COUNTED : CNTR_NOT_SUPPORTED, csv_sep); fprintf(output, "%-*s%s", csv_output ? 0 : unit_width, counter->unit, csv_sep); fprintf(output, "%*s", csv_output ? 0 : -25, perf_evsel__name(counter)); if (counter->cgrp) fprintf(output, "%s%s", csv_sep, counter->cgrp->name); print_running(avg_running, avg_enabled); fputc('\n', output); return; } uval = avg * counter->scale; printout(-1, 0, counter, uval); print_noise(counter, avg); print_running(avg_running, avg_enabled); fprintf(output, "\n"); } /* * Print out the results of a single counter: * does not use aggregated count in system-wide */ static void print_counter(struct perf_evsel *counter, char *prefix) { FILE *output = stat_config.output; u64 ena, run, val; double uval; int cpu; for (cpu = 0; cpu < perf_evsel__nr_cpus(counter); cpu++) { val = perf_counts(counter->counts, cpu, 0)->val; ena = perf_counts(counter->counts, cpu, 0)->ena; run = perf_counts(counter->counts, cpu, 0)->run; if (prefix) fprintf(output, "%s", prefix); if (run == 0 || ena == 0) { fprintf(output, "CPU%*d%s%*s%s", csv_output ? 0 : -4, perf_evsel__cpus(counter)->map[cpu], csv_sep, csv_output ? 0 : 18, counter->supported ? CNTR_NOT_COUNTED : CNTR_NOT_SUPPORTED, csv_sep); fprintf(output, "%-*s%s", csv_output ? 0 : unit_width, counter->unit, csv_sep); fprintf(output, "%*s", csv_output ? 0 : -25, perf_evsel__name(counter)); if (counter->cgrp) fprintf(output, "%s%s", csv_sep, counter->cgrp->name); print_running(run, ena); fputc('\n', output); continue; } uval = val * counter->scale; printout(cpu, 0, counter, uval); if (!csv_output) print_noise(counter, 1.0); print_running(run, ena); fputc('\n', output); } } static void print_interval(char *prefix, struct timespec *ts) { FILE *output = stat_config.output; static int num_print_interval; sprintf(prefix, "%6lu.%09lu%s", ts->tv_sec, ts->tv_nsec, csv_sep); if (num_print_interval == 0 && !csv_output) { switch (stat_config.aggr_mode) { case AGGR_SOCKET: fprintf(output, "# time socket cpus counts %*s events\n", unit_width, "unit"); break; case AGGR_CORE: fprintf(output, "# time core cpus counts %*s events\n", unit_width, "unit"); break; case AGGR_NONE: fprintf(output, "# time CPU counts %*s events\n", unit_width, "unit"); break; case AGGR_THREAD: fprintf(output, "# time comm-pid counts %*s events\n", unit_width, "unit"); break; case AGGR_GLOBAL: default: fprintf(output, "# time counts %*s events\n", unit_width, "unit"); case AGGR_UNSET: break; } } if (++num_print_interval == 25) num_print_interval = 0; } static void print_header(int argc, const char **argv) { FILE *output = stat_config.output; int i; fflush(stdout); if (!csv_output) { fprintf(output, "\n"); fprintf(output, " Performance counter stats for "); if (target.system_wide) fprintf(output, "\'system wide"); else if (target.cpu_list) fprintf(output, "\'CPU(s) %s", target.cpu_list); else if (!target__has_task(&target)) { fprintf(output, "\'%s", argv[0]); for (i = 1; i < argc; i++) fprintf(output, " %s", argv[i]); } else if (target.pid) fprintf(output, "process id \'%s", target.pid); else fprintf(output, "thread id \'%s", target.tid); fprintf(output, "\'"); if (run_count > 1) fprintf(output, " (%d runs)", run_count); fprintf(output, ":\n\n"); } } static void print_footer(void) { FILE *output = stat_config.output; if (!null_run) fprintf(output, "\n"); fprintf(output, " %17.9f seconds time elapsed", avg_stats(&walltime_nsecs_stats)/1e9); if (run_count > 1) { fprintf(output, " "); print_noise_pct(stddev_stats(&walltime_nsecs_stats), avg_stats(&walltime_nsecs_stats)); } fprintf(output, "\n\n"); } static void print_counters(struct timespec *ts, int argc, const char **argv) { int interval = stat_config.interval; struct perf_evsel *counter; char buf[64], *prefix = NULL; if (interval) print_interval(prefix = buf, ts); else print_header(argc, argv); switch (stat_config.aggr_mode) { case AGGR_CORE: case AGGR_SOCKET: print_aggr(prefix); break; case AGGR_THREAD: evlist__for_each(evsel_list, counter) print_aggr_thread(counter, prefix); break; case AGGR_GLOBAL: evlist__for_each(evsel_list, counter) print_counter_aggr(counter, prefix); break; case AGGR_NONE: evlist__for_each(evsel_list, counter) print_counter(counter, prefix); break; case AGGR_UNSET: default: break; } if (!interval && !csv_output) print_footer(); fflush(stat_config.output); } static volatile int signr = -1; static void skip_signal(int signo) { if ((child_pid == -1) || stat_config.interval) done = 1; signr = signo; /* * render child_pid harmless * won't send SIGTERM to a random * process in case of race condition * and fast PID recycling */ child_pid = -1; } static void sig_atexit(void) { sigset_t set, oset; /* * avoid race condition with SIGCHLD handler * in skip_signal() which is modifying child_pid * goal is to avoid send SIGTERM to a random * process */ sigemptyset(&set); sigaddset(&set, SIGCHLD); sigprocmask(SIG_BLOCK, &set, &oset); if (child_pid != -1) kill(child_pid, SIGTERM); sigprocmask(SIG_SETMASK, &oset, NULL); if (signr == -1) return; signal(signr, SIG_DFL); kill(getpid(), signr); } static int stat__set_big_num(const struct option *opt __maybe_unused, const char *s __maybe_unused, int unset) { big_num_opt = unset ? 0 : 1; return 0; } static const struct option stat_options[] = { OPT_BOOLEAN('T', "transaction", &transaction_run, "hardware transaction statistics"), OPT_CALLBACK('e', "event", &evsel_list, "event", "event selector. use 'perf list' to list available events", parse_events_option), OPT_CALLBACK(0, "filter", &evsel_list, "filter", "event filter", parse_filter), OPT_BOOLEAN('i', "no-inherit", &no_inherit, "child tasks do not inherit counters"), OPT_STRING('p', "pid", &target.pid, "pid", "stat events on existing process id"), OPT_STRING('t', "tid", &target.tid, "tid", "stat events on existing thread id"), OPT_BOOLEAN('a', "all-cpus", &target.system_wide, "system-wide collection from all CPUs"), OPT_BOOLEAN('g', "group", &group, "put the counters into a counter group"), OPT_BOOLEAN('c', "scale", &stat_config.scale, "scale/normalize counters"), OPT_INCR('v', "verbose", &verbose, "be more verbose (show counter open errors, etc)"), OPT_INTEGER('r', "repeat", &run_count, "repeat command and print average + stddev (max: 100, forever: 0)"), OPT_BOOLEAN('n', "null", &null_run, "null run - dont start any counters"), OPT_INCR('d', "detailed", &detailed_run, "detailed run - start a lot of events"), OPT_BOOLEAN('S', "sync", &sync_run, "call sync() before starting a run"), OPT_CALLBACK_NOOPT('B', "big-num", NULL, NULL, "print large numbers with thousands\' separators", stat__set_big_num), OPT_STRING('C', "cpu", &target.cpu_list, "cpu", "list of cpus to monitor in system-wide"), OPT_SET_UINT('A', "no-aggr", &stat_config.aggr_mode, "disable CPU count aggregation", AGGR_NONE), OPT_STRING('x', "field-separator", &csv_sep, "separator", "print counts with custom separator"), OPT_CALLBACK('G', "cgroup", &evsel_list, "name", "monitor event in cgroup name only", parse_cgroups), OPT_STRING('o', "output", &output_name, "file", "output file name"), OPT_BOOLEAN(0, "append", &append_file, "append to the output file"), OPT_INTEGER(0, "log-fd", &output_fd, "log output to fd, instead of stderr"), OPT_STRING(0, "pre", &pre_cmd, "command", "command to run prior to the measured command"), OPT_STRING(0, "post", &post_cmd, "command", "command to run after to the measured command"), OPT_UINTEGER('I', "interval-print", &stat_config.interval, "print counts at regular interval in ms (>= 10)"), OPT_SET_UINT(0, "per-socket", &stat_config.aggr_mode, "aggregate counts per processor socket", AGGR_SOCKET), OPT_SET_UINT(0, "per-core", &stat_config.aggr_mode, "aggregate counts per physical processor core", AGGR_CORE), OPT_SET_UINT(0, "per-thread", &stat_config.aggr_mode, "aggregate counts per thread", AGGR_THREAD), OPT_UINTEGER('D', "delay", &initial_delay, "ms to wait before starting measurement after program start"), OPT_END() }; static int perf_stat__get_socket(struct cpu_map *map, int cpu) { return cpu_map__get_socket(map, cpu, NULL); } static int perf_stat__get_core(struct cpu_map *map, int cpu) { return cpu_map__get_core(map, cpu, NULL); } static int cpu_map__get_max(struct cpu_map *map) { int i, max = -1; for (i = 0; i < map->nr; i++) { if (map->map[i] > max) max = map->map[i]; } return max; } static struct cpu_map *cpus_aggr_map; static int perf_stat__get_aggr(aggr_get_id_t get_id, struct cpu_map *map, int idx) { int cpu; if (idx >= map->nr) return -1; cpu = map->map[idx]; if (cpus_aggr_map->map[cpu] == -1) cpus_aggr_map->map[cpu] = get_id(map, idx); return cpus_aggr_map->map[cpu]; } static int perf_stat__get_socket_cached(struct cpu_map *map, int idx) { return perf_stat__get_aggr(perf_stat__get_socket, map, idx); } static int perf_stat__get_core_cached(struct cpu_map *map, int idx) { return perf_stat__get_aggr(perf_stat__get_core, map, idx); } static int perf_stat_init_aggr_mode(void) { int nr; switch (stat_config.aggr_mode) { case AGGR_SOCKET: if (cpu_map__build_socket_map(evsel_list->cpus, &aggr_map)) { perror("cannot build socket map"); return -1; } aggr_get_id = perf_stat__get_socket_cached; break; case AGGR_CORE: if (cpu_map__build_core_map(evsel_list->cpus, &aggr_map)) { perror("cannot build core map"); return -1; } aggr_get_id = perf_stat__get_core_cached; break; case AGGR_NONE: case AGGR_GLOBAL: case AGGR_THREAD: case AGGR_UNSET: default: break; } /* * The evsel_list->cpus is the base we operate on, * taking the highest cpu number to be the size of * the aggregation translate cpumap. */ nr = cpu_map__get_max(evsel_list->cpus); cpus_aggr_map = cpu_map__empty_new(nr + 1); return cpus_aggr_map ? 0 : -ENOMEM; } static void perf_stat__exit_aggr_mode(void) { cpu_map__put(aggr_map); cpu_map__put(cpus_aggr_map); aggr_map = NULL; cpus_aggr_map = NULL; } /* * Add default attributes, if there were no attributes specified or * if -d/--detailed, -d -d or -d -d -d is used: */ static int add_default_attributes(void) { struct perf_event_attr default_attrs[] = { { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK }, { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES }, { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS }, { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS }, { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES }, { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_FRONTEND }, { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_BACKEND }, { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS }, { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS }, { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_MISSES }, }; /* * Detailed stats (-d), covering the L1 and last level data caches: */ struct perf_event_attr detailed_attrs[] = { { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_L1D << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_L1D << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_LL << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_LL << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, }; /* * Very detailed stats (-d -d), covering the instruction cache and the TLB caches: */ struct perf_event_attr very_detailed_attrs[] = { { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_L1I << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_L1I << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_DTLB << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_DTLB << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_ITLB << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_ITLB << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, }; /* * Very, very detailed stats (-d -d -d), adding prefetch events: */ struct perf_event_attr very_very_detailed_attrs[] = { { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_L1D << 0 | (PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) | (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_L1D << 0 | (PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) | (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, }; /* Set attrs if no event is selected and !null_run: */ if (null_run) return 0; if (transaction_run) { int err; if (pmu_have_event("cpu", "cycles-ct") && pmu_have_event("cpu", "el-start")) err = parse_events(evsel_list, transaction_attrs, NULL); else err = parse_events(evsel_list, transaction_limited_attrs, NULL); if (err) { fprintf(stderr, "Cannot set up transaction events\n"); return -1; } return 0; } if (!evsel_list->nr_entries) { if (perf_evlist__add_default_attrs(evsel_list, default_attrs) < 0) return -1; } /* Detailed events get appended to the event list: */ if (detailed_run < 1) return 0; /* Append detailed run extra attributes: */ if (perf_evlist__add_default_attrs(evsel_list, detailed_attrs) < 0) return -1; if (detailed_run < 2) return 0; /* Append very detailed run extra attributes: */ if (perf_evlist__add_default_attrs(evsel_list, very_detailed_attrs) < 0) return -1; if (detailed_run < 3) return 0; /* Append very, very detailed run extra attributes: */ return perf_evlist__add_default_attrs(evsel_list, very_very_detailed_attrs); } int cmd_stat(int argc, const char **argv, const char *prefix __maybe_unused) { const char * const stat_usage[] = { "perf stat [] []", NULL }; int status = -EINVAL, run_idx; const char *mode; FILE *output = stderr; unsigned int interval; setlocale(LC_ALL, ""); evsel_list = perf_evlist__new(); if (evsel_list == NULL) return -ENOMEM; argc = parse_options(argc, argv, stat_options, stat_usage, PARSE_OPT_STOP_AT_NON_OPTION); interval = stat_config.interval; if (output_name && strcmp(output_name, "-")) output = NULL; if (output_name && output_fd) { fprintf(stderr, "cannot use both --output and --log-fd\n"); parse_options_usage(stat_usage, stat_options, "o", 1); parse_options_usage(NULL, stat_options, "log-fd", 0); goto out; } if (output_fd < 0) { fprintf(stderr, "argument to --log-fd must be a > 0\n"); parse_options_usage(stat_usage, stat_options, "log-fd", 0); goto out; } if (!output) { struct timespec tm; mode = append_file ? "a" : "w"; output = fopen(output_name, mode); if (!output) { perror("failed to create output file"); return -1; } clock_gettime(CLOCK_REALTIME, &tm); fprintf(output, "# started on %s\n", ctime(&tm.tv_sec)); } else if (output_fd > 0) { mode = append_file ? "a" : "w"; output = fdopen(output_fd, mode); if (!output) { perror("Failed opening logfd"); return -errno; } } stat_config.output = output; if (csv_sep) { csv_output = true; if (!strcmp(csv_sep, "\\t")) csv_sep = "\t"; } else csv_sep = DEFAULT_SEPARATOR; /* * let the spreadsheet do the pretty-printing */ if (csv_output) { /* User explicitly passed -B? */ if (big_num_opt == 1) { fprintf(stderr, "-B option not supported with -x\n"); parse_options_usage(stat_usage, stat_options, "B", 1); parse_options_usage(NULL, stat_options, "x", 1); goto out; } else /* Nope, so disable big number formatting */ big_num = false; } else if (big_num_opt == 0) /* User passed --no-big-num */ big_num = false; if (!argc && target__none(&target)) usage_with_options(stat_usage, stat_options); if (run_count < 0) { pr_err("Run count must be a positive number\n"); parse_options_usage(stat_usage, stat_options, "r", 1); goto out; } else if (run_count == 0) { forever = true; run_count = 1; } if ((stat_config.aggr_mode == AGGR_THREAD) && !target__has_task(&target)) { fprintf(stderr, "The --per-thread option is only available " "when monitoring via -p -t options.\n"); parse_options_usage(NULL, stat_options, "p", 1); parse_options_usage(NULL, stat_options, "t", 1); goto out; } /* * no_aggr, cgroup are for system-wide only * --per-thread is aggregated per thread, we dont mix it with cpu mode */ if (((stat_config.aggr_mode != AGGR_GLOBAL && stat_config.aggr_mode != AGGR_THREAD) || nr_cgroups) && !target__has_cpu(&target)) { fprintf(stderr, "both cgroup and no-aggregation " "modes only available in system-wide mode\n"); parse_options_usage(stat_usage, stat_options, "G", 1); parse_options_usage(NULL, stat_options, "A", 1); parse_options_usage(NULL, stat_options, "a", 1); goto out; } if (add_default_attributes()) goto out; target__validate(&target); if (perf_evlist__create_maps(evsel_list, &target) < 0) { if (target__has_task(&target)) { pr_err("Problems finding threads of monitor\n"); parse_options_usage(stat_usage, stat_options, "p", 1); parse_options_usage(NULL, stat_options, "t", 1); } else if (target__has_cpu(&target)) { perror("failed to parse CPUs map"); parse_options_usage(stat_usage, stat_options, "C", 1); parse_options_usage(NULL, stat_options, "a", 1); } goto out; } /* * Initialize thread_map with comm names, * so we could print it out on output. */ if (stat_config.aggr_mode == AGGR_THREAD) thread_map__read_comms(evsel_list->threads); if (interval && interval < 100) { if (interval < 10) { pr_err("print interval must be >= 10ms\n"); parse_options_usage(stat_usage, stat_options, "I", 1); goto out; } else pr_warning("print interval < 100ms. " "The overhead percentage could be high in some cases. " "Please proceed with caution.\n"); } if (perf_evlist__alloc_stats(evsel_list, interval)) goto out; if (perf_stat_init_aggr_mode()) goto out; /* * We dont want to block the signals - that would cause * child tasks to inherit that and Ctrl-C would not work. * What we want is for Ctrl-C to work in the exec()-ed * task, but being ignored by perf stat itself: */ atexit(sig_atexit); if (!forever) signal(SIGINT, skip_signal); signal(SIGCHLD, skip_signal); signal(SIGALRM, skip_signal); signal(SIGABRT, skip_signal); status = 0; for (run_idx = 0; forever || run_idx < run_count; run_idx++) { if (run_count != 1 && verbose) fprintf(output, "[ perf stat: executing run #%d ... ]\n", run_idx + 1); status = run_perf_stat(argc, argv); if (forever && status != -1) { print_counters(NULL, argc, argv); perf_stat__reset_stats(); } } if (!forever && status != -1 && !interval) print_counters(NULL, argc, argv); perf_stat__exit_aggr_mode(); perf_evlist__free_stats(evsel_list); out: perf_evlist__delete(evsel_list); return status; }