1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
|
*ST pin controller.
Each multi-function pin is controlled, driven and routed through the
PIO multiplexing block. Each pin supports GPIO functionality (ALT0)
and multiple alternate functions(ALT1 - ALTx) that directly connect
the pin to different hardware blocks.
When a pin is in GPIO mode, Output Enable (OE), Open Drain(OD), and
Pull Up (PU) are driven by the related PIO block.
ST pinctrl driver controls PIO multiplexing block and also interacts with
gpio driver to configure a pin.
GPIO bank can have one of the two possible types of interrupt-wirings.
First type is via irqmux, single interrupt is used by multiple gpio banks. This
reduces number of overall interrupts numbers required. All these banks belong to
a single pincontroller.
_________
| |----> [gpio-bank (n) ]
| |----> [gpio-bank (n + 1)]
[irqN]-- | irq-mux |----> [gpio-bank (n + 2)]
| |----> [gpio-bank (... )]
|_________|----> [gpio-bank (n + 7)]
Second type has a dedicated interrupt per gpio bank.
[irqN]----> [gpio-bank (n)]
Pin controller node:
Required properties:
- compatible : should be "st,<SOC>-<pio-block>-pinctrl"
like st,stih415-sbc-pinctrl, st,stih415-front-pinctrl and so on.
- st,syscfg : Should be a phandle of the syscfg node.
- st,retime-pin-mask : Should be mask to specify which pins can be retimed.
If the property is not present, it is assumed that all the pins in the
bank are capable of retiming. Retiming is mainly used to improve the
IO timing margins of external synchronous interfaces.
- ranges : defines mapping between pin controller node (parent) to gpio-bank
node (children).
Optional properties:
- interrupts : Interrupt number of the irqmux. If the interrupt is shared
with other gpio banks via irqmux.
a irqline and gpio banks.
- reg : irqmux memory resource. If irqmux is present.
- reg-names : irqmux resource should be named as "irqmux".
GPIO controller/bank node.
Required properties:
- gpio-controller : Indicates this device is a GPIO controller
- #gpio-cells : Must be two.
- First cell: specifies the pin number inside the controller
- Second cell: specifies whether the pin is logically inverted.
- 0 = active high
- 1 = active low
- st,bank-name : Should be a name string for this bank as specified in
datasheet.
Optional properties:
- interrupts : Interrupt number for this gpio bank. If there is a dedicated
interrupt wired up for this gpio bank.
- interrupt-controller : Indicates this device is a interrupt controller. GPIO
bank can be an interrupt controller iff one of the interrupt type either via
irqmux or a dedicated interrupt per bank is specified.
- #interrupt-cells: the value of this property should be 2.
- First Cell: represents the external gpio interrupt number local to the
gpio interrupt space of the controller.
- Second Cell: flags to identify the type of the interrupt
- 1 = rising edge triggered
- 2 = falling edge triggered
- 3 = rising and falling edge triggered
- 4 = high level triggered
- 8 = low level triggered
for related macros look in:
include/dt-bindings/interrupt-controller/irq.h
Example:
pin-controller-sbc {
#address-cells = <1>;
#size-cells = <1>;
compatible = "st,stih415-sbc-pinctrl";
st,syscfg = <&syscfg_sbc>;
reg = <0xfe61f080 0x4>;
reg-names = "irqmux";
interrupts = <GIC_SPI 180 IRQ_TYPE_LEVEL_HIGH>;
interrupt-names = "irqmux";
ranges = <0 0xfe610000 0x5000>;
PIO0: gpio@fe610000 {
gpio-controller;
#gpio-cells = <2>;
interrupt-controller;
#interrupt-cells = <2>;
reg = <0 0x100>;
st,bank-name = "PIO0";
};
...
pin-functions nodes follow...
};
Contents of function subnode node:
----------------------
Required properties for pin configuration node:
- st,pins : Child node with list of pins with configuration.
Below is the format of how each pin conf should look like.
<bank offset mux mode rt_type rt_delay rt_clk>
Every PIO is represented with 4-7 parameters depending on retime configuration.
Each parameter is explained as below.
-bank : Should be bank phandle to which this PIO belongs.
-offset : Offset in the PIO bank.
-mux : Should be alternate function number associated this pin.
Use same numbers from datasheet.
-mode :pin configuration is selected from one of the below values.
IN
IN_PU
OUT
BIDIR
BIDIR_PU
-rt_type Retiming Configuration for the pin.
Possible retime configuration are:
------- -------------
value args
------- -------------
NICLK <delay> <clk>
ICLK_IO <delay> <clk>
BYPASS <delay>
DE_IO <delay> <clk>
SE_ICLK_IO <delay> <clk>
SE_NICLK_IO <delay> <clk>
- delay is retime delay in pico seconds as mentioned in data sheet.
- rt_clk :clk to be use for retime.
Possible values are:
CLK_A
CLK_B
CLK_C
CLK_D
Example of mmcclk pin which is a bi-direction pull pu with retime config
as non inverted clock retimed with CLK_B and delay of 0 pico seconds:
pin-controller {
...
mmc0 {
pinctrl_mmc: mmc {
st,pins {
mmcclk = <&PIO13 4 ALT4 BIDIR_PU NICLK 0 CLK_B>;
...
};
};
...
};
};
sdhci0:sdhci@fe810000{
...
interrupt-parent = <&PIO3>;
#interrupt-cells = <2>;
interrupts = <3 IRQ_TYPE_LEVEL_HIGH>; /* Interrupt line via PIO3-3 */
interrupt-names = "card-detect";
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_mmc>;
};
|