summaryrefslogtreecommitdiff
path: root/Documentation/filesystems/xfs.txt
blob: c2d44e6e117bc7e0f5014f2c734480a653fa0ada (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

The SGI XFS Filesystem
======================

XFS is a high performance journaling filesystem which originated
on the SGI IRIX platform.  It is completely multi-threaded, can
support large files and large filesystems, extended attributes,
variable block sizes, is extent based, and makes extensive use of
Btrees (directories, extents, free space) to aid both performance
and scalability.

Refer to the documentation at http://oss.sgi.com/projects/xfs/
for further details.  This implementation is on-disk compatible
with the IRIX version of XFS.


Mount Options
=============

When mounting an XFS filesystem, the following options are accepted.
For boolean mount options, the names with the (*) suffix is the
default behaviour.

  allocsize=size
	Sets the buffered I/O end-of-file preallocation size when
	doing delayed allocation writeout (default size is 64KiB).
	Valid values for this option are page size (typically 4KiB)
	through to 1GiB, inclusive, in power-of-2 increments.

	The default behaviour is for dynamic end-of-file
	preallocation size, which uses a set of heuristics to
	optimise the preallocation size based on the current
	allocation patterns within the file and the access patterns
	to the file. Specifying a fixed allocsize value turns off
	the dynamic behaviour.

  attr2
  noattr2
	The options enable/disable an "opportunistic" improvement to
	be made in the way inline extended attributes are stored
	on-disk.  When the new form is used for the first time when
	attr2 is selected (either when setting or removing extended
	attributes) the on-disk superblock feature bit field will be
	updated to reflect this format being in use.

	The default behaviour is determined by the on-disk feature
	bit indicating that attr2 behaviour is active. If either
	mount option it set, then that becomes the new default used
	by the filesystem.

	CRC enabled filesystems always use the attr2 format, and so
	will reject the noattr2 mount option if it is set.

  barrier (*)
  nobarrier
	Enables/disables the use of block layer write barriers for
	writes into the journal and for data integrity operations.
	This allows for drive level write caching to be enabled, for
	devices that support write barriers.

  discard
  nodiscard (*)
	Enable/disable the issuing of commands to let the block
	device reclaim space freed by the filesystem.  This is
	useful for SSD devices, thinly provisioned LUNs and virtual
	machine images, but may have a performance impact.

	Note: It is currently recommended that you use the fstrim
	application to discard unused blocks rather than the discard
	mount option because the performance impact of this option
	is quite severe.

  grpid/bsdgroups
  nogrpid/sysvgroups (*)
	These options define what group ID a newly created file
	gets.  When grpid is set, it takes the group ID of the
	directory in which it is created; otherwise it takes the
	fsgid of the current process, unless the directory has the
	setgid bit set, in which case it takes the gid from the
	parent directory, and also gets the setgid bit set if it is
	a directory itself.

  filestreams
	Make the data allocator use the filestreams allocation mode
	across the entire filesystem rather than just on directories
	configured to use it.

  ikeep
  noikeep (*)
	When ikeep is specified, XFS does not delete empty inode
	clusters and keeps them around on disk.  When noikeep is
	specified, empty inode clusters are returned to the free
	space pool.

  inode32
  inode64 (*)
	When inode32 is specified, it indicates that XFS limits
	inode creation to locations which will not result in inode
	numbers with more than 32 bits of significance.

	When inode64 is specified, it indicates that XFS is allowed
	to create inodes at any location in the filesystem,
	including those which will result in inode numbers occupying
	more than 32 bits of significance. 

	inode32 is provided for backwards compatibility with older
	systems and applications, since 64 bits inode numbers might
	cause problems for some applications that cannot handle
	large inode numbers.  If applications are in use which do
	not handle inode numbers bigger than 32 bits, the inode32
	option should be specified.


  largeio
  nolargeio (*)
	If "nolargeio" is specified, the optimal I/O reported in
	st_blksize by stat(2) will be as small as possible to allow
	user applications to avoid inefficient read/modify/write
	I/O.  This is typically the page size of the machine, as
	this is the granularity of the page cache.

	If "largeio" specified, a filesystem that was created with a
	"swidth" specified will return the "swidth" value (in bytes)
	in st_blksize. If the filesystem does not have a "swidth"
	specified but does specify an "allocsize" then "allocsize"
	(in bytes) will be returned instead. Otherwise the behaviour
	is the same as if "nolargeio" was specified.

  logbufs=value
	Set the number of in-memory log buffers.  Valid numbers
	range from 2-8 inclusive.

	The default value is 8 buffers.

	If the memory cost of 8 log buffers is too high on small
	systems, then it may be reduced at some cost to performance
	on metadata intensive workloads. The logbsize option below
	controls the size of each buffer and so is also relevant to
	this case.

  logbsize=value
	Set the size of each in-memory log buffer.  The size may be
	specified in bytes, or in kilobytes with a "k" suffix.
	Valid sizes for version 1 and version 2 logs are 16384 (16k)
	and 32768 (32k).  Valid sizes for version 2 logs also
	include 65536 (64k), 131072 (128k) and 262144 (256k). The
	logbsize must be an integer multiple of the log
	stripe unit configured at mkfs time.

	The default value for for version 1 logs is 32768, while the
	default value for version 2 logs is MAX(32768, log_sunit).

  logdev=device and rtdev=device
	Use an external log (metadata journal) and/or real-time device.
	An XFS filesystem has up to three parts: a data section, a log
	section, and a real-time section.  The real-time section is
	optional, and the log section can be separate from the data
	section or contained within it.

  noalign
	Data allocations will not be aligned at stripe unit
	boundaries. This is only relevant to filesystems created
	with non-zero data alignment parameters (sunit, swidth) by
	mkfs.

  norecovery
	The filesystem will be mounted without running log recovery.
	If the filesystem was not cleanly unmounted, it is likely to
	be inconsistent when mounted in "norecovery" mode.
	Some files or directories may not be accessible because of this.
	Filesystems mounted "norecovery" must be mounted read-only or
	the mount will fail.

  nouuid
	Don't check for double mounted file systems using the file
	system uuid.  This is useful to mount LVM snapshot volumes,
	and often used in combination with "norecovery" for mounting
	read-only snapshots.

  noquota
	Forcibly turns off all quota accounting and enforcement
	within the filesystem.

  uquota/usrquota/uqnoenforce/quota
	User disk quota accounting enabled, and limits (optionally)
	enforced.  Refer to xfs_quota(8) for further details.

  gquota/grpquota/gqnoenforce
	Group disk quota accounting enabled and limits (optionally)
	enforced.  Refer to xfs_quota(8) for further details.

  pquota/prjquota/pqnoenforce
	Project disk quota accounting enabled and limits (optionally)
	enforced.  Refer to xfs_quota(8) for further details.

  sunit=value and swidth=value
	Used to specify the stripe unit and width for a RAID device
	or a stripe volume.  "value" must be specified in 512-byte
	block units. These options are only relevant to filesystems
	that were created with non-zero data alignment parameters.

	The sunit and swidth parameters specified must be compatible
	with the existing filesystem alignment characteristics.  In
	general, that means the only valid changes to sunit are
	increasing it by a power-of-2 multiple. Valid swidth values
	are any integer multiple of a valid sunit value.

	Typically the only time these mount options are necessary if
	after an underlying RAID device has had it's geometry
	modified, such as adding a new disk to a RAID5 lun and
	reshaping it.

  swalloc
	Data allocations will be rounded up to stripe width boundaries
	when the current end of file is being extended and the file
	size is larger than the stripe width size.

  wsync
	When specified, all filesystem namespace operations are
	executed synchronously. This ensures that when the namespace
	operation (create, unlink, etc) completes, the change to the
	namespace is on stable storage. This is useful in HA setups
	where failover must not result in clients seeing
	inconsistent namespace presentation during or after a
	failover event.


Deprecated Mount Options
========================

None at present.


Removed Mount Options
=====================

  Name				Removed
  ----				-------
  delaylog/nodelaylog		v4.0
  ihashsize			v4.0
  irixsgid			v4.0
  osyncisdsync/osyncisosync	v4.0


sysctls
=======

The following sysctls are available for the XFS filesystem:

  fs.xfs.stats_clear		(Min: 0  Default: 0  Max: 1)
	Setting this to "1" clears accumulated XFS statistics
	in /proc/fs/xfs/stat.  It then immediately resets to "0".

  fs.xfs.xfssyncd_centisecs	(Min: 100  Default: 3000  Max: 720000)
	The interval at which the filesystem flushes metadata
	out to disk and runs internal cache cleanup routines.

  fs.xfs.filestream_centisecs	(Min: 1  Default: 3000  Max: 360000)
	The interval at which the filesystem ages filestreams cache
	references and returns timed-out AGs back to the free stream
	pool.

  fs.xfs.speculative_prealloc_lifetime
		(Units: seconds   Min: 1  Default: 300  Max: 86400)
	The interval at which the background scanning for inodes
	with unused speculative preallocation runs. The scan
	removes unused preallocation from clean inodes and releases
	the unused space back to the free pool.

  fs.xfs.error_level		(Min: 0  Default: 3  Max: 11)
	A volume knob for error reporting when internal errors occur.
	This will generate detailed messages & backtraces for filesystem
	shutdowns, for example.  Current threshold values are:

		XFS_ERRLEVEL_OFF:       0
		XFS_ERRLEVEL_LOW:       1
		XFS_ERRLEVEL_HIGH:      5

  fs.xfs.panic_mask		(Min: 0  Default: 0  Max: 255)
	Causes certain error conditions to call BUG(). Value is a bitmask;
	OR together the tags which represent errors which should cause panics:

		XFS_NO_PTAG                     0
		XFS_PTAG_IFLUSH                 0x00000001
		XFS_PTAG_LOGRES                 0x00000002
		XFS_PTAG_AILDELETE              0x00000004
		XFS_PTAG_ERROR_REPORT           0x00000008
		XFS_PTAG_SHUTDOWN_CORRUPT       0x00000010
		XFS_PTAG_SHUTDOWN_IOERROR       0x00000020
		XFS_PTAG_SHUTDOWN_LOGERROR      0x00000040
		XFS_PTAG_FSBLOCK_ZERO           0x00000080

	This option is intended for debugging only.

  fs.xfs.irix_symlink_mode	(Min: 0  Default: 0  Max: 1)
	Controls whether symlinks are created with mode 0777 (default)
	or whether their mode is affected by the umask (irix mode).

  fs.xfs.irix_sgid_inherit	(Min: 0  Default: 0  Max: 1)
	Controls files created in SGID directories.
	If the group ID of the new file does not match the effective group
	ID or one of the supplementary group IDs of the parent dir, the
	ISGID bit is cleared if the irix_sgid_inherit compatibility sysctl
	is set.

  fs.xfs.inherit_sync		(Min: 0  Default: 1  Max: 1)
	Setting this to "1" will cause the "sync" flag set
	by the xfs_io(8) chattr command on a directory to be
	inherited by files in that directory.

  fs.xfs.inherit_nodump		(Min: 0  Default: 1  Max: 1)
	Setting this to "1" will cause the "nodump" flag set
	by the xfs_io(8) chattr command on a directory to be
	inherited by files in that directory.

  fs.xfs.inherit_noatime	(Min: 0  Default: 1  Max: 1)
	Setting this to "1" will cause the "noatime" flag set
	by the xfs_io(8) chattr command on a directory to be
	inherited by files in that directory.

  fs.xfs.inherit_nosymlinks	(Min: 0  Default: 1  Max: 1)
	Setting this to "1" will cause the "nosymlinks" flag set
	by the xfs_io(8) chattr command on a directory to be
	inherited by files in that directory.

  fs.xfs.inherit_nodefrag	(Min: 0  Default: 1  Max: 1)
	Setting this to "1" will cause the "nodefrag" flag set
	by the xfs_io(8) chattr command on a directory to be
	inherited by files in that directory.

  fs.xfs.rotorstep		(Min: 1  Default: 1  Max: 256)
	In "inode32" allocation mode, this option determines how many
	files the allocator attempts to allocate in the same allocation
	group before moving to the next allocation group.  The intent
	is to control the rate at which the allocator moves between
	allocation groups when allocating extents for new files.

Deprecated Sysctls
==================

None at present.


Removed Sysctls
===============

  Name				Removed
  ----				-------
  fs.xfs.xfsbufd_centisec	v4.0
  fs.xfs.age_buffer_centisecs	v4.0


Error handling
==============

XFS can act differently according to the type of error found during its
operation. The implementation introduces the following concepts to the error
handler:

 -failure speed:
	Defines how fast XFS should propagate an error upwards when a specific
	error is found during the filesystem operation. It can propagate
	immediately, after a defined number of retries, after a set time period,
	or simply retry forever.

 -error classes:
	Specifies the subsystem the error configuration will apply to, such as
	metadata IO or memory allocation. Different subsystems will have
	different error handlers for which behaviour can be configured.

 -error handlers:
	Defines the behavior for a specific error.

The filesystem behavior during an error can be set via sysfs files. Each
error handler works independently - the first condition met by an error handler
for a specific class will cause the error to be propagated rather than reset and
retried.

The action taken by the filesystem when the error is propagated is context
dependent - it may cause a shut down in the case of an unrecoverable error,
it may be reported back to userspace, or it may even be ignored because
there's nothing useful we can with the error or anyone we can report it to (e.g.
during unmount).

The configuration files are organized into the following hierarchy for each
mounted filesystem:

  /sys/fs/xfs/<dev>/error/<class>/<error>/

Where:
  <dev>
	The short device name of the mounted filesystem. This is the same device
	name that shows up in XFS kernel error messages as "XFS(<dev>): ..."

  <class>
	The subsystem the error configuration belongs to. As of 4.9, the defined
	classes are:

		- "metadata": applies metadata buffer write IO

  <error>
	The individual error handler configurations.


Each filesystem has "global" error configuration options defined in their top
level directory:

  /sys/fs/xfs/<dev>/error/

  fail_at_unmount		(Min:  0  Default:  1  Max: 1)
	Defines the filesystem error behavior at unmount time.

	If set to a value of 1, XFS will override all other error configurations
	during unmount and replace them with "immediate fail" characteristics.
	i.e. no retries, no retry timeout. This will always allow unmount to
	succeed when there are persistent errors present.

	If set to 0, the configured retry behaviour will continue until all
	retries and/or timeouts have been exhausted. This will delay unmount
	completion when there are persistent errors, and it may prevent the
	filesystem from ever unmounting fully in the case of "retry forever"
	handler configurations.

	Note: there is no guarantee that fail_at_unmount can be set whilst an
	unmount is in progress. It is possible that the sysfs entries are
	removed by the unmounting filesystem before a "retry forever" error
	handler configuration causes unmount to hang, and hence the filesystem
	must be configured appropriately before unmount begins to prevent
	unmount hangs.

Each filesystem has specific error class handlers that define the error
propagation behaviour for specific errors. There is also a "default" error
handler defined, which defines the behaviour for all errors that don't have
specific handlers defined. Where multiple retry constraints are configuredi for
a single error, the first retry configuration that expires will cause the error
to be propagated. The handler configurations are found in the directory:

  /sys/fs/xfs/<dev>/error/<class>/<error>/

  max_retries			(Min: -1  Default: Varies  Max: INTMAX)
	Defines the allowed number of retries of a specific error before
	the filesystem will propagate the error. The retry count for a given
	error context (e.g. a specific metadata buffer) is reset every time
	there is a successful completion of the operation.

	Setting the value to "-1" will cause XFS to retry forever for this
	specific error.

	Setting the value to "0" will cause XFS to fail immediately when the
	specific error is reported.

	Setting the value to "N" (where 0 < N < Max) will make XFS retry the
	operation "N" times before propagating the error.

  retry_timeout_seconds		(Min:  -1  Default:  Varies  Max: 1 day)
	Define the amount of time (in seconds) that the filesystem is
	allowed to retry its operations when the specific error is
	found.

	Setting the value to "-1" will allow XFS to retry forever for this
	specific error.

	Setting the value to "0" will cause XFS to fail immediately when the
	specific error is reported.

	Setting the value to "N" (where 0 < N < Max) will allow XFS to retry the
	operation for up to "N" seconds before propagating the error.

Note: The default behaviour for a specific error handler is dependent on both
the class and error context. For example, the default values for
"metadata/ENODEV" are "0" rather than "-1" so that this error handler defaults
to "fail immediately" behaviour. This is done because ENODEV is a fatal,
unrecoverable error no matter how many times the metadata IO is retried.