1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
|
/*
* Copyright 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
*/
/*
* The code contained herein is licensed under the GNU General Public
* License. You may obtain a copy of the GNU General Public License
* Version 2 or later at the following locations:
*
* http://www.opensource.org/licenses/gpl-license.html
* http://www.gnu.org/copyleft/gpl.html
*/
/*!
* @file bus_freq.c
*
* @brief A common API for the Freescale Semiconductor i.MXC CPUfreq module
* and DVFS CORE module.
*
* The APIs are for setting bus frequency to low or high.
*
* @ingroup PM
*/
#include <asm/io.h>
#include <linux/sched.h>
#include <linux/proc_fs.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/iram_alloc.h>
#include <linux/mutex.h>
#include <mach/hardware.h>
#include <mach/clock.h>
#include <mach/mxc_dvfs.h>
#include <mach/sdram_autogating.h>
#include <asm/mach/map.h>
#include <asm/cacheflush.h>
#include <asm/tlb.h>
#include "crm_regs.h"
#define LP_LOW_VOLTAGE 1050000
#define LP_NORMAL_VOLTAGE 1250000
#define LP_APM_CLK 24000000
#define NAND_LP_APM_CLK 12000000
#define AXI_A_NORMAL_CLK 166250000
#define AXI_A_CLK_NORMAL_DIV 4
#define AXI_B_CLK_NORMAL_DIV 5
#define AHB_CLK_NORMAL_DIV AXI_B_CLK_NORMAL_DIV
#define EMI_SLOW_CLK_NORMAL_DIV AXI_B_CLK_NORMAL_DIV
#define NFC_CLK_NORMAL_DIV 4
#define SPIN_DELAY 1000000 /* in nanoseconds */
#define HW_QOS_DISABLE 0x70
#define HW_QOS_DISABLE_SET 0x74
DEFINE_SPINLOCK(ddr_freq_lock);
static unsigned long lp_normal_rate;
static unsigned long lp_med_rate;
static unsigned long ddr_normal_rate;
static unsigned long ddr_low_rate;
static struct clk *ddr_clk;
static struct clk *pll1_sw_clk;
static struct clk *pll1;
static struct clk *pll2;
static struct clk *pll3;
static struct clk *pll4;
static struct clk *main_bus_clk;
static struct clk *axi_a_clk;
static struct clk *axi_b_clk;
static struct clk *cpu_clk;
static struct clk *ddr_hf_clk;
static struct clk *ahb_clk;
static struct clk *ddr_clk;
static struct clk *periph_apm_clk;
static struct clk *lp_apm;
static struct clk *osc;
static struct clk *gpc_dvfs_clk;
static struct clk *emi_garb_clk;
static void __iomem *pll1_base;
static void __iomem *pll4_base;
static void __iomem *qosc_base;
struct regulator *pll_regulator;
struct regulator *lp_regulator;
int low_bus_freq_mode;
int high_bus_freq_mode;
int bus_freq_scaling_initialized;
char *gp_reg_id = "SW1";
char *lp_reg_id = "SW2";
static struct cpu_wp *cpu_wp_tbl;
static struct device *busfreq_dev;
static int busfreq_suspended;
static int cpu_podf;
/* True if bus_frequency is scaled not using DVFS-PER */
int bus_freq_scaling_is_active;
int cpu_wp_nr;
int lp_high_freq;
int lp_med_freq;
static int lp_voltage;
struct workqueue_struct *voltage_wq;
static struct work_struct voltage_change_handler;
struct completion voltage_change_cmpl;
void enter_lpapm_mode_mx50(void);
void enter_lpapm_mode_mx51(void);
void exit_lpapm_mode_mx50(void);
void exit_lpapm_mode_mx51(void);
void *ddr_freq_change_iram_base;
void (*change_ddr_freq)(void *ccm_addr, void *databahn_addr, u32 freq) = NULL;
extern void mx50_ddr_freq_change(u32 ccm_base,
u32 databahn_addr, u32 freq);
extern int dvfs_core_is_active;
extern struct cpu_wp *(*get_cpu_wp)(int *wp);
extern void __iomem *ccm_base;
extern void __iomem *databahn_base;
struct dvfs_wp dvfs_core_setpoint[] = {
{33, 8, 33, 10, 10, 0x08},
{26, 0, 33, 20, 10, 0x08},
{28, 8, 33, 20, 30, 0x08},
{29, 0, 33, 20, 10, 0x08},};
static DEFINE_SPINLOCK(voltage_lock);
static void voltage_work_handler(struct work_struct *work)
{
if (lp_regulator != NULL) {
u32 ret = 0;
ret = regulator_set_voltage(lp_regulator,
lp_voltage, lp_voltage);
udelay(400);
if (ret < 0) {
printk(KERN_ERR "COULD NOT SET LP VOLTAGE!!!!!!\n");
return;
}
}
complete_all(&voltage_change_cmpl);
}
int set_low_bus_freq(void)
{
u32 reg;
struct timespec nstimeofday;
struct timespec curtime;
if (busfreq_suspended)
return 0;
if (bus_freq_scaling_initialized) {
/* can not enter low bus freq, when cpu is in highest freq */
if (clk_get_rate(cpu_clk) >
cpu_wp_tbl[cpu_wp_nr - 1].cpu_rate) {
return 0;
}
stop_dvfs_per();
stop_sdram_autogating();
if (!cpu_is_mx53()) {
if (cpu_is_mx50())
enter_lpapm_mode_mx50();
else
enter_lpapm_mode_mx51();
} else if (cpu_is_mx53()) {
/*Change the DDR freq to 133Mhz. */
clk_set_rate(ddr_hf_clk,
clk_round_rate(ddr_hf_clk, ddr_low_rate));
/* move cpu clk to pll2, 400 / 3 = 133Mhz for cpu */
clk_set_parent(pll1_sw_clk, pll2);
cpu_podf = __raw_readl(MXC_CCM_CACRR);
reg = __raw_readl(MXC_CCM_CDHIPR);
if ((reg & MXC_CCM_CDHIPR_ARM_PODF_BUSY) == 0)
__raw_writel(0x2, MXC_CCM_CACRR);
else
printk(KERN_DEBUG "ARM_PODF still in busy!!!!\n");
/* ahb = 400/8, axi_b = 400/8, axi_a = 133*/
reg = __raw_readl(MXC_CCM_CBCDR);
reg &= ~(MXC_CCM_CBCDR_AXI_A_PODF_MASK
| MXC_CCM_CBCDR_AXI_B_PODF_MASK
| MXC_CCM_CBCDR_AHB_PODF_MASK);
reg |= (2 << MXC_CCM_CBCDR_AXI_A_PODF_OFFSET
| 7 << MXC_CCM_CBCDR_AXI_B_PODF_OFFSET
| 7 << MXC_CCM_CBCDR_AHB_PODF_OFFSET);
__raw_writel(reg, MXC_CCM_CBCDR);
getnstimeofday(&nstimeofday);
while (__raw_readl(MXC_CCM_CDHIPR) &
(MXC_CCM_CDHIPR_AXI_A_PODF_BUSY |
MXC_CCM_CDHIPR_AXI_B_PODF_BUSY |
MXC_CCM_CDHIPR_AHB_PODF_BUSY)) {
getnstimeofday(&curtime);
if (curtime.tv_nsec - nstimeofday.tv_nsec
> SPIN_DELAY)
panic("low bus freq set rate error\n");
}
/* keep this infront of propagating */
low_bus_freq_mode = 1;
high_bus_freq_mode = 0;
if (clk_get_usecount(pll1) == 0) {
reg = __raw_readl(pll1_base + MXC_PLL_DP_CTL);
reg &= ~MXC_PLL_DP_CTL_UPEN;
__raw_writel(reg, pll1_base + MXC_PLL_DP_CTL);
}
if (clk_get_usecount(pll4) == 0) {
reg = __raw_readl(pll4_base + MXC_PLL_DP_CTL);
reg &= ~MXC_PLL_DP_CTL_UPEN;
__raw_writel(reg, pll4_base + MXC_PLL_DP_CTL);
}
}
}
return 0;
}
void enter_lpapm_mode_mx50()
{
u32 reg;
unsigned long flags;
spin_lock_irqsave(&ddr_freq_lock, flags);
local_flush_tlb_all();
flush_cache_all();
/* Disable all masters from accessing the DDR. */
reg = __raw_readl(qosc_base + HW_QOS_DISABLE);
reg |= 0xFFE;
__raw_writel(reg, qosc_base + HW_QOS_DISABLE_SET);
udelay(10);
/* Set the DDR to run from 24MHz.
* Need to source the DDR from the SYS_CLK after
* setting it into self-refresh mode. This code needs to run from iRAM.
*/
change_ddr_freq(ccm_base, databahn_base, LP_APM_CLK);
/* Enable all masters to access the DDR. */
reg = __raw_readl(qosc_base + HW_QOS_DISABLE);
reg = 0x0;
__raw_writel(reg, qosc_base + HW_QOS_DISABLE);
udelay(100);
/* Set the parent of main_bus_clk to be PLL3 */
clk_set_parent(main_bus_clk, pll3);
/* Set the AHB dividers to be 2.
* Set the dividers so that clock rates
* are not greater than current clock rate.
*/
reg = __raw_readl(MXC_CCM_CBCDR);
reg &= ~(MXC_CCM_CBCDR_AXI_A_PODF_MASK
| MXC_CCM_CBCDR_AXI_B_PODF_MASK
| MXC_CCM_CBCDR_AHB_PODF_MASK
| MX50_CCM_CBCDR_WEIM_PODF_MASK);
reg |= (1 << MXC_CCM_CBCDR_AXI_A_PODF_OFFSET
| 1 << MXC_CCM_CBCDR_AXI_B_PODF_OFFSET
| 1 << MXC_CCM_CBCDR_AHB_PODF_OFFSET
| 0 << MX50_CCM_CBCDR_WEIM_PODF_OFFSET);
__raw_writel(reg, MXC_CCM_CBCDR);
while (__raw_readl(MXC_CCM_CDHIPR) & 0x0F)
udelay(10);
low_bus_freq_mode = 1;
high_bus_freq_mode = 0;
/* Set the source of main_bus_clk to be lp-apm. */
clk_set_parent(main_bus_clk, lp_apm);
/* Set the AHB dividers to be 1. */
/* Set the dividers to be 1, so the clock rates
* are at 24Mhz
*/
reg = __raw_readl(MXC_CCM_CBCDR);
reg &= ~(MXC_CCM_CBCDR_AXI_A_PODF_MASK
| MXC_CCM_CBCDR_AXI_B_PODF_MASK
| MXC_CCM_CBCDR_AHB_PODF_MASK
| MX50_CCM_CBCDR_WEIM_PODF_MASK);
reg |= (0 << MXC_CCM_CBCDR_AXI_A_PODF_OFFSET
| 0 << MXC_CCM_CBCDR_AXI_B_PODF_OFFSET
| 0 << MXC_CCM_CBCDR_AHB_PODF_OFFSET
| 0 << MX50_CCM_CBCDR_WEIM_PODF_OFFSET);
__raw_writel(reg, MXC_CCM_CBCDR);
while (__raw_readl(MXC_CCM_CDHIPR) & 0x0F)
udelay(10);
spin_unlock_irqrestore(&ddr_freq_lock, flags);
spin_lock_irqsave(&voltage_lock, flags);
lp_voltage = LP_LOW_VOLTAGE;
INIT_COMPLETION(voltage_change_cmpl);
queue_work(voltage_wq, &voltage_change_handler);
spin_unlock_irqrestore(&voltage_lock, flags);
if (clk_get_usecount(pll1_sw_clk) == 1) {
/* Relock PLL1 to 160MHz. */
clk_set_parent(pll1_sw_clk, pll2);
/* Set the divider to ARM_PODF to 3. */
__raw_writel(0x02, MXC_CCM_CACRR);
clk_set_rate(pll1, 160000000);
clk_set_parent(pll1_sw_clk, pll1);
/* Set the divider to ARM_PODF to 1. */
__raw_writel(0x0, MXC_CCM_CACRR);
}
udelay(100);
}
void enter_lpapm_mode_mx51()
{
u32 reg;
/* Set PLL3 to 133Mhz if no-one is using it. */
if (clk_get_usecount(pll3) == 0) {
u32 pll3_rate = clk_get_rate(pll3);
clk_enable(pll3);
clk_set_rate(pll3, clk_round_rate(pll3, 133000000));
/*Change the DDR freq to 133Mhz. */
clk_set_rate(ddr_hf_clk,
clk_round_rate(ddr_hf_clk, ddr_low_rate));
/* Set the parent of Periph_apm_clk to be PLL3 */
clk_set_parent(periph_apm_clk, pll3);
clk_set_parent(main_bus_clk, periph_apm_clk);
/* Set the dividers to be 1, so the clock rates
* are at 133MHz.
*/
reg = __raw_readl(MXC_CCM_CBCDR);
reg &= ~(MXC_CCM_CBCDR_AXI_A_PODF_MASK
| MXC_CCM_CBCDR_AXI_B_PODF_MASK
| MXC_CCM_CBCDR_AHB_PODF_MASK
| MXC_CCM_CBCDR_EMI_PODF_MASK
| MXC_CCM_CBCDR_NFC_PODF_OFFSET);
reg |= (0 << MXC_CCM_CBCDR_AXI_A_PODF_OFFSET
| 0 << MXC_CCM_CBCDR_AXI_B_PODF_OFFSET
| 0 << MXC_CCM_CBCDR_AHB_PODF_OFFSET
| 0 << MXC_CCM_CBCDR_EMI_PODF_OFFSET
| 3 << MXC_CCM_CBCDR_NFC_PODF_OFFSET);
__raw_writel(reg, MXC_CCM_CBCDR);
clk_enable(emi_garb_clk);
while (__raw_readl(MXC_CCM_CDHIPR) & 0x1F)
udelay(10);
clk_disable(emi_garb_clk);
/* Set the source of Periph_APM_Clock to be lp-apm. */
clk_set_parent(periph_apm_clk, lp_apm);
/* Set PLL3 back to original rate. */
clk_set_rate(pll3, clk_round_rate(pll3, pll3_rate));
clk_disable(pll3);
}
}
int set_high_bus_freq(int high_bus_freq)
{
u32 reg;
struct timespec nstimeofday;
struct timespec curtime;
if (bus_freq_scaling_initialized) {
stop_sdram_autogating();
if (low_bus_freq_mode) {
/* Relock PLL3 to 133MHz */
if (!cpu_is_mx53()) {
if (cpu_is_mx50())
exit_lpapm_mode_mx50();
else
exit_lpapm_mode_mx51();
} else {
/* move cpu clk to pll1 */
reg = __raw_readl(MXC_CCM_CDHIPR);
if ((reg & MXC_CCM_CDHIPR_ARM_PODF_BUSY) == 0)
__raw_writel(cpu_podf & 0x7,
MXC_CCM_CACRR);
else
printk(KERN_DEBUG
"ARM_PODF still in busy!!!!\n");
clk_set_parent(pll1_sw_clk, pll1);
/* ahb = 400/3, axi_b = 400/3, axi_a = 400*/
reg = __raw_readl(MXC_CCM_CBCDR);
reg &= ~(MXC_CCM_CBCDR_AXI_A_PODF_MASK
| MXC_CCM_CBCDR_AXI_B_PODF_MASK
| MXC_CCM_CBCDR_AHB_PODF_MASK);
reg |= (0 << MXC_CCM_CBCDR_AXI_A_PODF_OFFSET
| 2 << MXC_CCM_CBCDR_AXI_B_PODF_OFFSET
| 2 << MXC_CCM_CBCDR_AHB_PODF_OFFSET);
__raw_writel(reg, MXC_CCM_CBCDR);
getnstimeofday(&nstimeofday);
while (__raw_readl(MXC_CCM_CDHIPR) &
(MXC_CCM_CDHIPR_AXI_A_PODF_BUSY |
MXC_CCM_CDHIPR_AXI_B_PODF_BUSY |
MXC_CCM_CDHIPR_AHB_PODF_BUSY)) {
getnstimeofday(&curtime);
if (curtime.tv_nsec
- nstimeofday.tv_nsec
> SPIN_DELAY)
panic("bus freq error\n");
}
/* keep this infront of propagating */
low_bus_freq_mode = 1;
high_bus_freq_mode = 0;
/*Change the DDR freq to mormal_rate*/
clk_set_rate(ddr_hf_clk,
clk_round_rate(ddr_hf_clk, ddr_normal_rate));
}
start_dvfs_per();
}
if (bus_freq_scaling_is_active) {
/*
* If the CPU freq is 800MHz, set the bus to the high
* setpoint (133MHz) and DDR to 200MHz.
*/
if (clk_get_rate(cpu_clk) !=
cpu_wp_tbl[cpu_wp_nr - 1].cpu_rate)
high_bus_freq = 1;
if (((clk_get_rate(ahb_clk) == lp_med_rate)
&& lp_high_freq) || high_bus_freq) {
/* Set to the high setpoint. */
high_bus_freq_mode = 1;
clk_set_rate(ahb_clk,
clk_round_rate(ahb_clk, lp_normal_rate));
clk_set_rate(ddr_hf_clk,
clk_round_rate(ddr_hf_clk, ddr_normal_rate));
}
if (!lp_high_freq && !high_bus_freq) {
/* Set to the medium setpoint. */
high_bus_freq_mode = 0;
low_bus_freq_mode = 0;
clk_set_rate(ddr_hf_clk,
clk_round_rate(ddr_hf_clk, ddr_low_rate));
clk_set_rate(ahb_clk,
clk_round_rate(ahb_clk, lp_med_rate));
}
}
start_sdram_autogating();
}
return 0;
}
void exit_lpapm_mode_mx50()
{
u32 reg;
unsigned long flags;
if (clk_get_usecount(pll1_sw_clk) == 1) {
/* Relock PLL1 to 800MHz. */
clk_set_parent(pll1_sw_clk, pll2);
/* Set the divider to ARM_PODF to 3, cpu is at 160MHz. */
__raw_writel(0x02, MXC_CCM_CACRR);
clk_set_rate(pll1, 800000000);
clk_set_parent(pll1_sw_clk, pll1);
/* Set the divider to ARM_PODF to 5. */
__raw_writel(0x4, MXC_CCM_CACRR);
}
if (!completion_done(&voltage_change_cmpl))
wait_for_completion_interruptible(&voltage_change_cmpl);
spin_lock_irqsave(&voltage_lock, flags);
if (lp_voltage != LP_NORMAL_VOLTAGE) {
INIT_COMPLETION(voltage_change_cmpl);
lp_voltage = LP_NORMAL_VOLTAGE;
if (!queue_work(voltage_wq, &voltage_change_handler))
printk(KERN_ERR "WORK_NOT_ADDED\n");
spin_unlock_irqrestore(&voltage_lock, flags);
wait_for_completion_interruptible(&voltage_change_cmpl);
} else {
spin_unlock_irqrestore(&voltage_lock, flags);
if (!completion_done(&voltage_change_cmpl))
wait_for_completion_interruptible(&voltage_change_cmpl);
}
spin_lock_irqsave(&ddr_freq_lock, flags);
if (!low_bus_freq_mode) {
spin_unlock_irqrestore(&ddr_freq_lock, flags);
return;
}
/* Temporarily set the dividers when the source is PLL3.
* No clock rate is above 133MHz.
*/
reg = __raw_readl(MXC_CCM_CBCDR);
reg &= ~(MXC_CCM_CBCDR_AXI_A_PODF_MASK
| MXC_CCM_CBCDR_AXI_B_PODF_MASK
| MXC_CCM_CBCDR_AHB_PODF_MASK
| MX50_CCM_CBCDR_WEIM_PODF_MASK);
reg |= (1 << MXC_CCM_CBCDR_AXI_A_PODF_OFFSET
|1 << MXC_CCM_CBCDR_AXI_B_PODF_OFFSET
|1 << MXC_CCM_CBCDR_AHB_PODF_OFFSET
|0 << MX50_CCM_CBCDR_WEIM_PODF_OFFSET);
__raw_writel(reg, MXC_CCM_CBCDR);
while (__raw_readl(MXC_CCM_CDHIPR) & 0xF)
udelay(10);
clk_set_parent(main_bus_clk, pll3);
/* Set the dividers to the default dividers */
reg = __raw_readl(MXC_CCM_CBCDR);
reg &= ~(MXC_CCM_CBCDR_AXI_A_PODF_MASK
| MXC_CCM_CBCDR_AXI_B_PODF_MASK
| MXC_CCM_CBCDR_AHB_PODF_MASK
| MX50_CCM_CBCDR_WEIM_PODF_MASK);
reg |= (0 << MXC_CCM_CBCDR_AXI_A_PODF_OFFSET
|1 << MXC_CCM_CBCDR_AXI_B_PODF_OFFSET
|2 << MXC_CCM_CBCDR_AHB_PODF_OFFSET
|0 << MX50_CCM_CBCDR_WEIM_PODF_OFFSET);
__raw_writel(reg, MXC_CCM_CBCDR);
while (__raw_readl(MXC_CCM_CDHIPR) & 0xF)
udelay(10);
low_bus_freq_mode = 0;
high_bus_freq_mode = 1;
/*Set the main_bus_clk parent to be PLL2. */
clk_set_parent(main_bus_clk, pll2);
/* Disable all masters from accessing the DDR. */
reg = __raw_readl(qosc_base + HW_QOS_DISABLE);
reg |= 0xFFE;
__raw_writel(reg, qosc_base + HW_QOS_DISABLE_SET);
udelay(10);
local_flush_tlb_all();
flush_cache_all();
/* Set the DDR to default freq.
*/
change_ddr_freq(ccm_base, databahn_base, ddr_normal_rate);
/* Enable all masters to access the DDR. */
reg = __raw_readl(qosc_base + HW_QOS_DISABLE);
reg = 0x0;
__raw_writel(reg, qosc_base + HW_QOS_DISABLE);
spin_unlock_irqrestore(&ddr_freq_lock, flags);
udelay(100);
}
void exit_lpapm_mode_mx51()
{
u32 reg;
/* Temporarily Set the dividers is PLL3.
* No clock rate is above 133MHz.
*/
reg = __raw_readl(MXC_CCM_CBCDR);
reg &= ~(MXC_CCM_CBCDR_AXI_A_PODF_MASK
| MXC_CCM_CBCDR_AXI_B_PODF_MASK
| MXC_CCM_CBCDR_AHB_PODF_MASK
| MXC_CCM_CBCDR_EMI_PODF_MASK
| MXC_CCM_CBCDR_NFC_PODF_OFFSET);
reg |= (1 << MXC_CCM_CBCDR_AXI_A_PODF_OFFSET
| 1 << MXC_CCM_CBCDR_AXI_B_PODF_OFFSET
| 1 << MXC_CCM_CBCDR_AHB_PODF_OFFSET
| 1 << MXC_CCM_CBCDR_EMI_PODF_OFFSET
| 3 << MXC_CCM_CBCDR_NFC_PODF_OFFSET);
__raw_writel(reg, MXC_CCM_CBCDR);
clk_enable(emi_garb_clk);
while (__raw_readl(MXC_CCM_CDHIPR) & 0x1F)
udelay(10);
clk_disable(emi_garb_clk);
clk_set_parent(periph_apm_clk, pll3);
/* Set the dividers to the default dividers */
reg = __raw_readl(MXC_CCM_CBCDR);
reg &= ~(MXC_CCM_CBCDR_AXI_A_PODF_MASK
| MXC_CCM_CBCDR_AXI_B_PODF_MASK
| MXC_CCM_CBCDR_AHB_PODF_MASK
| MXC_CCM_CBCDR_EMI_PODF_MASK
| MXC_CCM_CBCDR_NFC_PODF_OFFSET);
reg |= (3 << MXC_CCM_CBCDR_AXI_A_PODF_OFFSET
| 4 << MXC_CCM_CBCDR_AXI_B_PODF_OFFSET
| 4 << MXC_CCM_CBCDR_AHB_PODF_OFFSET
| 4 << MXC_CCM_CBCDR_EMI_PODF_OFFSET
| 3 << MXC_CCM_CBCDR_NFC_PODF_OFFSET);
__raw_writel(reg, MXC_CCM_CBCDR);
clk_enable(emi_garb_clk);
while (__raw_readl(MXC_CCM_CDHIPR) & 0x1F)
udelay(10);
low_bus_freq_mode = 0;
high_bus_freq_mode = 1;
clk_disable(emi_garb_clk);
/*Set the main_bus_clk parent to be PLL2. */
clk_set_parent(main_bus_clk, pll2);
/*Change the DDR freq to 200MHz*/
clk_set_rate(ddr_hf_clk,
clk_round_rate(ddr_hf_clk, ddr_normal_rate));
}
int low_freq_bus_used(void)
{
if ((lp_high_freq == 0)
&& (lp_med_freq == 0))
return 1;
else
return 0;
}
void setup_pll(void)
{
}
static ssize_t bus_freq_scaling_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
if (bus_freq_scaling_is_active)
return sprintf(buf, "Bus frequency scaling is enabled\n");
else
return sprintf(buf, "Bus frequency scaling is disabled\n");
}
static ssize_t bus_freq_scaling_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u32 reg;
if (strncmp(buf, "1", 1) == 0) {
if (dvfs_per_active()) {
printk(KERN_INFO "bus frequency scaling cannot be\
enabled when DVFS-PER is active\n");
return size;
}
/* Initialize DVFS-PODF to 0. */
reg = __raw_readl(MXC_CCM_CDCR);
reg &= ~MXC_CCM_CDCR_PERIPH_CLK_DVFS_PODF_MASK;
__raw_writel(reg, MXC_CCM_CDCR);
clk_set_parent(main_bus_clk, pll2);
bus_freq_scaling_is_active = 1;
set_high_bus_freq(0);
} else if (strncmp(buf, "0", 1) == 0) {
if (bus_freq_scaling_is_active)
set_high_bus_freq(1);
bus_freq_scaling_is_active = 0;
}
return size;
}
static int busfreq_suspend(struct platform_device *pdev, pm_message_t message)
{
if (low_bus_freq_mode)
set_high_bus_freq(1);
busfreq_suspended = 1;
return 0;
}
static int busfreq_resume(struct platform_device *pdev)
{
busfreq_suspended = 0;
return 0;
}
static DEVICE_ATTR(enable, 0644, bus_freq_scaling_enable_show,
bus_freq_scaling_enable_store);
/*!
* This is the probe routine for the bus frequency driver.
*
* @param pdev The platform device structure
*
* @return The function returns 0 on success
*
*/
static int __devinit busfreq_probe(struct platform_device *pdev)
{
int err = 0;
unsigned long pll2_rate, pll1_rate;
unsigned long iram_paddr;
pll1_base = ioremap(MX53_BASE_ADDR(PLL1_BASE_ADDR), SZ_4K);
if (cpu_is_mx53())
pll4_base = ioremap(MX53_BASE_ADDR(PLL4_BASE_ADDR), SZ_4K);
busfreq_dev = &pdev->dev;
main_bus_clk = clk_get(NULL, "main_bus_clk");
if (IS_ERR(main_bus_clk)) {
printk(KERN_DEBUG "%s: failed to get main_bus_clk\n",
__func__);
return PTR_ERR(main_bus_clk);
}
pll1_sw_clk = clk_get(NULL, "pll1_sw_clk");
if (IS_ERR(pll1_sw_clk)) {
printk(KERN_DEBUG "%s: failed to get pll1_sw_clk\n", __func__);
return PTR_ERR(pll1_sw_clk);
}
pll1 = clk_get(NULL, "pll1_main_clk");
if (IS_ERR(pll1)) {
printk(KERN_DEBUG "%s: failed to get pll1\n", __func__);
return PTR_ERR(pll1);
}
pll2 = clk_get(NULL, "pll2");
if (IS_ERR(pll2)) {
printk(KERN_DEBUG "%s: failed to get pll2\n", __func__);
return PTR_ERR(pll2);
}
pll3 = clk_get(NULL, "pll3");
if (IS_ERR(pll3)) {
printk(KERN_DEBUG "%s: failed to get pll3\n", __func__);
return PTR_ERR(pll3);
}
if (cpu_is_mx53()) {
pll4 = clk_get(NULL, "pll4");
if (IS_ERR(pll4)) {
printk(KERN_DEBUG "%s: failed to get pll4\n", __func__);
return PTR_ERR(pll4);
}
}
axi_a_clk = clk_get(NULL, "axi_a_clk");
if (IS_ERR(axi_a_clk)) {
printk(KERN_DEBUG "%s: failed to get axi_a_clk\n",
__func__);
return PTR_ERR(axi_a_clk);
}
axi_b_clk = clk_get(NULL, "axi_b_clk");
if (IS_ERR(axi_b_clk)) {
printk(KERN_DEBUG "%s: failed to get axi_b_clk\n",
__func__);
return PTR_ERR(axi_b_clk);
}
ddr_clk = clk_get(NULL, "ddr_clk");
if (IS_ERR(ddr_clk)) {
printk(KERN_DEBUG "%s: failed to get ddr_clk\n",
__func__);
return PTR_ERR(ddr_clk);
}
ddr_hf_clk = clk_get_parent(ddr_clk);
if (IS_ERR(ddr_hf_clk)) {
printk(KERN_DEBUG "%s: failed to get ddr_hf_clk\n",
__func__);
return PTR_ERR(ddr_hf_clk);
}
ahb_clk = clk_get(NULL, "ahb_clk");
if (IS_ERR(ahb_clk)) {
printk(KERN_DEBUG "%s: failed to get ahb_clk\n",
__func__);
return PTR_ERR(ahb_clk);
}
cpu_clk = clk_get(NULL, "cpu_clk");
if (IS_ERR(cpu_clk)) {
printk(KERN_DEBUG "%s: failed to get cpu_clk\n",
__func__);
return PTR_ERR(cpu_clk);
}
if (cpu_is_mx51())
emi_garb_clk = clk_get(NULL, "emi_intr_clk.1");
else if (cpu_is_mx53())
emi_garb_clk = clk_get(NULL, "emi_intr_clk.1");
else
emi_garb_clk = clk_get(NULL, "ocram_clk");
if (IS_ERR(emi_garb_clk)) {
printk(KERN_DEBUG "%s: failed to get emi_garb_clk\n",
__func__);
return PTR_ERR(emi_garb_clk);
}
if (cpu_is_mx51() || cpu_is_mx53()) {
periph_apm_clk = clk_get(NULL, "periph_apm_clk");
if (IS_ERR(periph_apm_clk)) {
printk(KERN_DEBUG "%s: failed to get periph_apm_clk\n",
__func__);
return PTR_ERR(periph_apm_clk);
}
}
lp_apm = clk_get(NULL, "lp_apm");
if (IS_ERR(lp_apm)) {
printk(KERN_DEBUG "%s: failed to get lp_apm\n",
__func__);
return PTR_ERR(lp_apm);
}
gpc_dvfs_clk = clk_get(NULL, "gpc_dvfs_clk");
if (IS_ERR(gpc_dvfs_clk)) {
printk(KERN_DEBUG "%s: failed to get gpc_dvfs_clk\n", __func__);
return PTR_ERR(gpc_dvfs_clk);
}
err = sysfs_create_file(&busfreq_dev->kobj, &dev_attr_enable.attr);
if (err) {
printk(KERN_ERR
"Unable to register sysdev entry for BUSFREQ");
return err;
}
pll1_rate = clk_get_rate(pll1_sw_clk);
pll2_rate = clk_get_rate(pll2);
if (pll2_rate == 665000000) {
/* for mx51 */
lp_normal_rate = pll2_rate / 5;
lp_med_rate = pll2_rate / 8;
ddr_normal_rate = pll1_rate / 4; /* 200M */
ddr_low_rate = pll1_rate / 6; /* 133M */
} else if (pll2_rate == 600000000) {
/* for mx53 evk rev.A */
lp_normal_rate = pll2_rate / 5;
lp_med_rate = pll2_rate / 8;
ddr_normal_rate = pll2_rate / 2;
ddr_low_rate = pll2_rate / 2;
} else if (pll2_rate == 400000000) {
/* for mx53 evk rev.B */
lp_normal_rate = pll2_rate / 3;
lp_med_rate = pll2_rate / 5;
if (cpu_is_mx53()) {
ddr_normal_rate = pll2_rate / 1;
ddr_low_rate = pll2_rate / 3;
} else if (cpu_is_mx50()) {
ddr_normal_rate = clk_get_rate(ddr_clk);
ddr_low_rate = LP_APM_CLK;
}
}
if (cpu_is_mx50()) {
u32 reg;
iram_alloc(SZ_8K, &iram_paddr);
/* Need to remap the area here since we want the memory region
to be executable. */
ddr_freq_change_iram_base = __arm_ioremap(iram_paddr,
SZ_8K, MT_HIGH_VECTORS);
memcpy(ddr_freq_change_iram_base, mx50_ddr_freq_change, SZ_8K);
change_ddr_freq = (void *)ddr_freq_change_iram_base;
lp_regulator = regulator_get(NULL, "SW2");
if (IS_ERR(lp_regulator)) {
printk(KERN_DEBUG
"%s: failed to get lp regulator\n", __func__);
return PTR_ERR(lp_regulator);
}
qosc_base = ioremap(QOSC_BASE_ADDR, SZ_4K);
/* Enable the QoSC */
reg = __raw_readl(qosc_base);
reg &= ~0xC0000000;
__raw_writel(reg, qosc_base);
voltage_wq = create_rt_workqueue("voltage_change");
INIT_WORK(&voltage_change_handler, voltage_work_handler);
init_completion(&voltage_change_cmpl);
}
cpu_wp_tbl = get_cpu_wp(&cpu_wp_nr);
low_bus_freq_mode = 0;
high_bus_freq_mode = 1;
bus_freq_scaling_is_active = 0;
bus_freq_scaling_initialized = 1;
return 0;
}
static struct platform_driver busfreq_driver = {
.driver = {
.name = "busfreq",
},
.probe = busfreq_probe,
.suspend = busfreq_suspend,
.resume = busfreq_resume,
};
/*!
* Initialise the busfreq_driver.
*
* @return The function always returns 0.
*/
static int __init busfreq_init(void)
{
if (platform_driver_register(&busfreq_driver) != 0) {
printk(KERN_ERR "busfreq_driver register failed\n");
return -ENODEV;
}
printk(KERN_INFO "Bus freq driver module loaded\n");
return 0;
}
static void __exit busfreq_cleanup(void)
{
sysfs_remove_file(&busfreq_dev->kobj, &dev_attr_enable.attr);
/* Unregister the device structure */
platform_driver_unregister(&busfreq_driver);
bus_freq_scaling_initialized = 0;
}
module_init(busfreq_init);
module_exit(busfreq_cleanup);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("BusFreq driver");
MODULE_LICENSE("GPL");
|