1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
|
/*
* arch/arm/mach-tegra/dma.c
*
* System DMA driver for NVIDIA Tegra SoCs
*
* Copyright (c) 2008-2011, NVIDIA Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/err.h>
#include <linux/irq.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <mach/dma.h>
#include <mach/irqs.h>
#include <mach/iomap.h>
#include <mach/suspend.h>
#include <mach/clk.h>
#define APB_DMA_GEN 0x000
#define GEN_ENABLE (1<<31)
#define APB_DMA_CNTRL 0x010
#define APB_DMA_IRQ_MASK 0x01c
#define APB_DMA_IRQ_MASK_SET 0x020
#define APB_DMA_CHAN_CSR 0x000
#define CSR_ENB (1<<31)
#define CSR_IE_EOC (1<<30)
#define CSR_HOLD (1<<29)
#define CSR_DIR (1<<28)
#define CSR_ONCE (1<<27)
#define CSR_FLOW (1<<21)
#define CSR_REQ_SEL_SHIFT 16
#define CSR_REQ_SEL_MASK (0x1F<<CSR_REQ_SEL_SHIFT)
#define CSR_WCOUNT_SHIFT 2
#define CSR_WCOUNT_MASK 0xFFFC
#define APB_DMA_CHAN_STA 0x004
#define STA_BUSY (1<<31)
#define STA_ISE_EOC (1<<30)
#define STA_HALT (1<<29)
#define STA_PING_PONG (1<<28)
#define STA_COUNT_SHIFT 2
#define STA_COUNT_MASK 0xFFFC
#define APB_DMA_CHAN_AHB_PTR 0x010
#define APB_DMA_CHAN_AHB_SEQ 0x014
#define AHB_SEQ_INTR_ENB (1<<31)
#define AHB_SEQ_BUS_WIDTH_SHIFT 28
#define AHB_SEQ_BUS_WIDTH_MASK (0x7<<AHB_SEQ_BUS_WIDTH_SHIFT)
#define AHB_SEQ_BUS_WIDTH_8 (0<<AHB_SEQ_BUS_WIDTH_SHIFT)
#define AHB_SEQ_BUS_WIDTH_16 (1<<AHB_SEQ_BUS_WIDTH_SHIFT)
#define AHB_SEQ_BUS_WIDTH_32 (2<<AHB_SEQ_BUS_WIDTH_SHIFT)
#define AHB_SEQ_BUS_WIDTH_64 (3<<AHB_SEQ_BUS_WIDTH_SHIFT)
#define AHB_SEQ_BUS_WIDTH_128 (4<<AHB_SEQ_BUS_WIDTH_SHIFT)
#define AHB_SEQ_DATA_SWAP (1<<27)
#define AHB_SEQ_BURST_MASK (0x7<<24)
#define AHB_SEQ_BURST_1 (4<<24)
#define AHB_SEQ_BURST_4 (5<<24)
#define AHB_SEQ_BURST_8 (6<<24)
#define AHB_SEQ_DBL_BUF (1<<19)
#define AHB_SEQ_WRAP_SHIFT 16
#define AHB_SEQ_WRAP_MASK (0x7<<AHB_SEQ_WRAP_SHIFT)
#define APB_DMA_CHAN_APB_PTR 0x018
#define APB_DMA_CHAN_APB_SEQ 0x01c
#define APB_SEQ_BUS_WIDTH_SHIFT 28
#define APB_SEQ_BUS_WIDTH_MASK (0x7<<APB_SEQ_BUS_WIDTH_SHIFT)
#define APB_SEQ_BUS_WIDTH_8 (0<<APB_SEQ_BUS_WIDTH_SHIFT)
#define APB_SEQ_BUS_WIDTH_16 (1<<APB_SEQ_BUS_WIDTH_SHIFT)
#define APB_SEQ_BUS_WIDTH_32 (2<<APB_SEQ_BUS_WIDTH_SHIFT)
#define APB_SEQ_BUS_WIDTH_64 (3<<APB_SEQ_BUS_WIDTH_SHIFT)
#define APB_SEQ_BUS_WIDTH_128 (4<<APB_SEQ_BUS_WIDTH_SHIFT)
#define APB_SEQ_DATA_SWAP (1<<27)
#define APB_SEQ_WRAP_SHIFT 16
#define APB_SEQ_WRAP_MASK (0x7<<APB_SEQ_WRAP_SHIFT)
#ifdef CONFIG_ARCH_TEGRA_2x_SOC
#define TEGRA_SYSTEM_DMA_CH_NR 16
#else
#define TEGRA_SYSTEM_DMA_CH_NR 32
#endif
#define TEGRA_SYSTEM_DMA_AVP_CH_NUM 4
#define TEGRA_SYSTEM_DMA_CH_MIN 0
#define TEGRA_SYSTEM_DMA_CH_MAX \
(TEGRA_SYSTEM_DMA_CH_NR - TEGRA_SYSTEM_DMA_AVP_CH_NUM - 1)
static struct clk *dma_clk;
const unsigned int ahb_addr_wrap_table[8] = {
0, 32, 64, 128, 256, 512, 1024, 2048
};
const unsigned int apb_addr_wrap_table[8] = {0, 1, 2, 4, 8, 16, 32, 64};
const unsigned int bus_width_table[5] = {8, 16, 32, 64, 128};
#define TEGRA_DMA_NAME_SIZE 16
struct tegra_dma_channel {
struct list_head list;
int id;
spinlock_t lock;
char name[TEGRA_DMA_NAME_SIZE];
char client_name[TEGRA_DMA_NAME_SIZE];
void __iomem *addr;
int mode;
int irq;
int req_transfer_count;
};
#define NV_DMA_MAX_CHANNELS 32
static DEFINE_MUTEX(tegra_dma_lock);
static DEFINE_SPINLOCK(enable_lock);
static DECLARE_BITMAP(channel_usage, NV_DMA_MAX_CHANNELS);
static struct tegra_dma_channel dma_channels[NV_DMA_MAX_CHANNELS];
static void tegra_dma_update_hw(struct tegra_dma_channel *ch,
struct tegra_dma_req *req);
static void tegra_dma_update_hw_partial(struct tegra_dma_channel *ch,
struct tegra_dma_req *req);
static void tegra_dma_stop(struct tegra_dma_channel *ch);
void tegra_dma_flush(struct tegra_dma_channel *ch)
{
}
EXPORT_SYMBOL(tegra_dma_flush);
void tegra_dma_dequeue(struct tegra_dma_channel *ch)
{
struct tegra_dma_req *req;
if (tegra_dma_is_empty(ch))
return;
req = list_entry(ch->list.next, typeof(*req), node);
tegra_dma_dequeue_req(ch, req);
return;
}
void tegra_dma_stop(struct tegra_dma_channel *ch)
{
u32 csr;
u32 status;
csr = readl(ch->addr + APB_DMA_CHAN_CSR);
csr &= ~CSR_IE_EOC;
writel(csr, ch->addr + APB_DMA_CHAN_CSR);
csr &= ~CSR_ENB;
writel(csr, ch->addr + APB_DMA_CHAN_CSR);
status = readl(ch->addr + APB_DMA_CHAN_STA);
if (status & STA_ISE_EOC)
writel(status, ch->addr + APB_DMA_CHAN_STA);
}
bool tegra_dma_is_stopped(struct tegra_dma_channel *ch)
{
return !!(readl(ch->addr + APB_DMA_CHAN_STA) & CSR_ENB);
}
int tegra_dma_cancel(struct tegra_dma_channel *ch)
{
unsigned long irq_flags;
spin_lock_irqsave(&ch->lock, irq_flags);
while (!list_empty(&ch->list))
list_del(ch->list.next);
tegra_dma_stop(ch);
spin_unlock_irqrestore(&ch->lock, irq_flags);
return 0;
}
static unsigned int get_channel_status(struct tegra_dma_channel *ch,
struct tegra_dma_req *req, bool is_stop_dma)
{
void __iomem *addr = IO_ADDRESS(TEGRA_APB_DMA_BASE);
unsigned int status;
if (is_stop_dma) {
/* STOP the DMA and get the transfer count.
* Getting the transfer count is tricky.
* - Globally disable DMA on all channels
* - Read the channel's status register to know the number
* of pending bytes to be transfered.
* - Stop the dma channel
* - Globally re-enable DMA to resume other transfers
*/
spin_lock(&enable_lock);
writel(0, addr + APB_DMA_GEN);
udelay(20);
status = readl(ch->addr + APB_DMA_CHAN_STA);
tegra_dma_stop(ch);
writel(GEN_ENABLE, addr + APB_DMA_GEN);
spin_unlock(&enable_lock);
if (status & STA_ISE_EOC) {
pr_err("Got Dma Int here clearing");
writel(status, ch->addr + APB_DMA_CHAN_STA);
}
req->status = TEGRA_DMA_REQ_ERROR_ABORTED;
} else {
status = readl(ch->addr + APB_DMA_CHAN_STA);
}
return status;
}
/* should be called with the channel lock held */
static unsigned int dma_active_count(struct tegra_dma_channel *ch,
struct tegra_dma_req *req, unsigned int status)
{
unsigned int to_transfer;
unsigned int req_transfer_count;
unsigned int bytes_transferred;
to_transfer = (status & STA_COUNT_MASK) >> STA_COUNT_SHIFT;
req_transfer_count = ch->req_transfer_count;
req_transfer_count += 1;
to_transfer += 1;
bytes_transferred = req_transfer_count;
if (status & STA_BUSY)
bytes_transferred -= to_transfer;
/* In continuous transfer mode, DMA only tracks the count of the
* half DMA buffer. So, if the DMA already finished half the DMA
* then add the half buffer to the completed count.
*/
if (ch->mode & TEGRA_DMA_MODE_CONTINUOUS_DOUBLE)
if (req->buffer_status == TEGRA_DMA_REQ_BUF_STATUS_HALF_FULL)
bytes_transferred += req_transfer_count;
if (status & STA_ISE_EOC)
bytes_transferred += req_transfer_count;
bytes_transferred *= 4;
return bytes_transferred;
}
int tegra_dma_dequeue_req(struct tegra_dma_channel *ch,
struct tegra_dma_req *_req)
{
struct tegra_dma_req *req = NULL;
int found = 0;
unsigned int status;
unsigned long irq_flags;
int stop = 0;
spin_lock_irqsave(&ch->lock, irq_flags);
if (list_entry(ch->list.next, struct tegra_dma_req, node) == _req)
stop = 1;
list_for_each_entry(req, &ch->list, node) {
if (req == _req) {
list_del(&req->node);
found = 1;
break;
}
}
if (!found) {
spin_unlock_irqrestore(&ch->lock, irq_flags);
return 0;
}
if (!stop)
goto skip_status;
status = get_channel_status(ch, req, true);
req->bytes_transferred = dma_active_count(ch, req, status);
if (!list_empty(&ch->list)) {
/* if the list is not empty, queue the next request */
struct tegra_dma_req *next_req;
next_req = list_entry(ch->list.next,
typeof(*next_req), node);
tegra_dma_update_hw(ch, next_req);
}
skip_status:
req->status = -TEGRA_DMA_REQ_ERROR_ABORTED;
spin_unlock_irqrestore(&ch->lock, irq_flags);
/* Callback should be called without any lock */
req->complete(req);
return 0;
}
EXPORT_SYMBOL(tegra_dma_dequeue_req);
bool tegra_dma_is_empty(struct tegra_dma_channel *ch)
{
unsigned long irq_flags;
bool is_empty;
spin_lock_irqsave(&ch->lock, irq_flags);
if (list_empty(&ch->list))
is_empty = true;
else
is_empty = false;
spin_unlock_irqrestore(&ch->lock, irq_flags);
return is_empty;
}
EXPORT_SYMBOL(tegra_dma_is_empty);
bool tegra_dma_is_req_inflight(struct tegra_dma_channel *ch,
struct tegra_dma_req *_req)
{
unsigned long irq_flags;
struct tegra_dma_req *req;
spin_lock_irqsave(&ch->lock, irq_flags);
list_for_each_entry(req, &ch->list, node) {
if (req == _req) {
spin_unlock_irqrestore(&ch->lock, irq_flags);
return true;
}
}
spin_unlock_irqrestore(&ch->lock, irq_flags);
return false;
}
EXPORT_SYMBOL(tegra_dma_is_req_inflight);
int tegra_dma_get_transfer_count(struct tegra_dma_channel *ch,
struct tegra_dma_req *req, bool is_stop_dma)
{
unsigned int status;
unsigned long irq_flags;
int bytes_transferred = 0;
if (IS_ERR_OR_NULL(ch))
BUG();
spin_lock_irqsave(&ch->lock, irq_flags);
if (list_entry(ch->list.next, struct tegra_dma_req, node) != req) {
spin_unlock_irqrestore(&ch->lock, irq_flags);
pr_debug("The dma request is not the head req\n");
return req->bytes_transferred;
}
if (req->status != TEGRA_DMA_REQ_INFLIGHT) {
spin_unlock_irqrestore(&ch->lock, irq_flags);
pr_debug("The dma request is not running\n");
return req->bytes_transferred;
}
status = get_channel_status(ch, req, is_stop_dma);
bytes_transferred = dma_active_count(ch, req, status);
spin_unlock_irqrestore(&ch->lock, irq_flags);
return bytes_transferred;
}
EXPORT_SYMBOL(tegra_dma_get_transfer_count);
int tegra_dma_enqueue_req(struct tegra_dma_channel *ch,
struct tegra_dma_req *req)
{
unsigned long irq_flags;
struct tegra_dma_req *_req;
int start_dma = 0;
if (req->size > TEGRA_DMA_MAX_TRANSFER_SIZE ||
req->source_addr & 0x3 || req->dest_addr & 0x3) {
pr_err("Invalid DMA request for channel %d\n", ch->id);
return -EINVAL;
}
spin_lock_irqsave(&ch->lock, irq_flags);
list_for_each_entry(_req, &ch->list, node) {
if (req == _req) {
spin_unlock_irqrestore(&ch->lock, irq_flags);
return -EEXIST;
}
}
req->bytes_transferred = 0;
req->status = 0;
/* STATUS_EMPTY just means the DMA hasn't processed the buf yet. */
req->buffer_status = TEGRA_DMA_REQ_BUF_STATUS_EMPTY;
if (list_empty(&ch->list))
start_dma = 1;
list_add_tail(&req->node, &ch->list);
if (start_dma)
tegra_dma_update_hw(ch, req);
/* Check to see if this request needs to be pushed immediately.
* For continuous single-buffer DMA:
* The first buffer is always in-flight. The 2nd buffer should
* also be in-flight. The 3rd buffer becomes in-flight when the
* first is completed in the interrupt.
*/
else if (ch->mode & TEGRA_DMA_MODE_CONTINUOUS_SINGLE) {
struct tegra_dma_req *first_req, *second_req;
first_req = list_entry(ch->list.next,
typeof(*first_req), node);
second_req = list_entry(first_req->node.next,
typeof(*second_req), node);
if (second_req == req) {
unsigned long status =
readl(ch->addr + APB_DMA_CHAN_STA);
if (!(status & STA_ISE_EOC))
tegra_dma_update_hw_partial(ch, req);
/* Handle the case where the IRQ fired while we're
* writing the interrupts.
*/
if (status & STA_ISE_EOC) {
/* Interrupt fired, let the IRQ stop/restart
* the DMA with this buffer in a clean way.
*/
req->status = TEGRA_DMA_REQ_SUCCESS;
}
}
}
spin_unlock_irqrestore(&ch->lock, irq_flags);
return 0;
}
EXPORT_SYMBOL(tegra_dma_enqueue_req);
static void tegra_dma_dump_channel_usage(void)
{
int i;
pr_info("DMA channel allocation dump:\n");
for (i = TEGRA_SYSTEM_DMA_CH_MIN; i <= TEGRA_SYSTEM_DMA_CH_MAX; i++) {
struct tegra_dma_channel *ch = &dma_channels[i];
pr_warn("dma %d used by %s\n", i, ch->client_name);
}
return;
}
struct tegra_dma_channel *tegra_dma_allocate_channel(int mode,
const char namefmt[], ...)
{
int channel;
struct tegra_dma_channel *ch = NULL;
va_list args;
mutex_lock(&tegra_dma_lock);
/* first channel is the shared channel */
if (mode & TEGRA_DMA_SHARED) {
channel = TEGRA_SYSTEM_DMA_CH_MIN;
} else {
channel = find_first_zero_bit(channel_usage,
ARRAY_SIZE(dma_channels));
if (channel >= ARRAY_SIZE(dma_channels)) {
pr_err("%s: failed to allocate a DMA channel",
__func__);
tegra_dma_dump_channel_usage();
goto out;
}
}
__set_bit(channel, channel_usage);
ch = &dma_channels[channel];
ch->mode = mode;
va_start(args, namefmt);
vsnprintf(ch->client_name, sizeof(ch->client_name),
namefmt, args);
va_end(args);
out:
mutex_unlock(&tegra_dma_lock);
return ch;
}
EXPORT_SYMBOL(tegra_dma_allocate_channel);
void tegra_dma_free_channel(struct tegra_dma_channel *ch)
{
if (ch->mode & TEGRA_DMA_SHARED)
return;
tegra_dma_cancel(ch);
mutex_lock(&tegra_dma_lock);
__clear_bit(ch->id, channel_usage);
memset(ch->client_name, 0, sizeof(ch->client_name));
mutex_unlock(&tegra_dma_lock);
}
EXPORT_SYMBOL(tegra_dma_free_channel);
static void tegra_dma_update_hw_partial(struct tegra_dma_channel *ch,
struct tegra_dma_req *req)
{
u32 apb_ptr;
u32 ahb_ptr;
u32 csr;
if (req->to_memory) {
apb_ptr = req->source_addr;
ahb_ptr = req->dest_addr;
} else {
apb_ptr = req->dest_addr;
ahb_ptr = req->source_addr;
}
writel(apb_ptr, ch->addr + APB_DMA_CHAN_APB_PTR);
writel(ahb_ptr, ch->addr + APB_DMA_CHAN_AHB_PTR);
if (ch->mode & TEGRA_DMA_MODE_CONTINUOUS_DOUBLE)
ch->req_transfer_count = (req->size >> 3) - 1;
else
ch->req_transfer_count = (req->size >> 2) - 1;
csr = readl(ch->addr + APB_DMA_CHAN_CSR);
csr &= ~CSR_WCOUNT_MASK;
csr |= ch->req_transfer_count << CSR_WCOUNT_SHIFT;
writel(csr, ch->addr + APB_DMA_CHAN_CSR);
req->status = TEGRA_DMA_REQ_INFLIGHT;
return;
}
static void tegra_dma_update_hw(struct tegra_dma_channel *ch,
struct tegra_dma_req *req)
{
int ahb_addr_wrap;
int apb_addr_wrap;
int ahb_bus_width;
int apb_bus_width;
int index;
u32 ahb_seq;
u32 apb_seq;
u32 ahb_ptr;
u32 apb_ptr;
u32 csr;
csr = CSR_IE_EOC | CSR_FLOW;
ahb_seq = AHB_SEQ_INTR_ENB;
switch (req->req_sel) {
case TEGRA_DMA_REQ_SEL_SL2B1:
case TEGRA_DMA_REQ_SEL_SL2B2:
case TEGRA_DMA_REQ_SEL_SL2B3:
case TEGRA_DMA_REQ_SEL_SL2B4:
#if !defined(CONFIG_ARCH_TEGRA_2x_SOC)
case TEGRA_DMA_REQ_SEL_SL2B5:
case TEGRA_DMA_REQ_SEL_SL2B6:
case TEGRA_DMA_REQ_SEL_APBIF_CH0:
case TEGRA_DMA_REQ_SEL_APBIF_CH1:
case TEGRA_DMA_REQ_SEL_APBIF_CH2:
case TEGRA_DMA_REQ_SEL_APBIF_CH3:
#endif
case TEGRA_DMA_REQ_SEL_SPI:
/* For spi/slink the burst size based on transfer size
* i.e. if multiple of 32 bytes then busrt is
* 8 word else if multiple of 16 bytes then burst is
* 4 word else burst size is 1 word */
if (req->size & 0xF)
ahb_seq |= AHB_SEQ_BURST_1;
else if ((req->size >> 4) & 0x1)
ahb_seq |= AHB_SEQ_BURST_4;
else
ahb_seq |= AHB_SEQ_BURST_8;
break;
#if defined(CONFIG_ARCH_TEGRA_2x_SOC)
case TEGRA_DMA_REQ_SEL_I2S_2:
case TEGRA_DMA_REQ_SEL_I2S_1:
case TEGRA_DMA_REQ_SEL_SPD_I:
case TEGRA_DMA_REQ_SEL_UI_I:
case TEGRA_DMA_REQ_SEL_I2S2_2:
case TEGRA_DMA_REQ_SEL_I2S2_1:
/* For ARCH_2x i2s/spdif burst size is 4 word */
ahb_seq |= AHB_SEQ_BURST_4;
break;
#endif
default:
ahb_seq |= AHB_SEQ_BURST_1;
break;
}
apb_seq = 0;
csr |= req->req_sel << CSR_REQ_SEL_SHIFT;
ch->req_transfer_count = (req->size >> 2) - 1;
/* One shot mode is always single buffered. Continuous mode could
* support either.
*/
if (ch->mode & TEGRA_DMA_MODE_ONESHOT) {
csr |= CSR_ONCE;
} else if (ch->mode & TEGRA_DMA_MODE_CONTINUOUS_DOUBLE) {
ahb_seq |= AHB_SEQ_DBL_BUF;
/* We want an interrupt halfway through, then on the
* completion. The double buffer means 2 interrupts
* pass before the DMA HW latches a new AHB_PTR etc.
*/
ch->req_transfer_count = (req->size >> 3) - 1;
}
csr |= ch->req_transfer_count << CSR_WCOUNT_SHIFT;
if (req->to_memory) {
apb_ptr = req->source_addr;
ahb_ptr = req->dest_addr;
apb_addr_wrap = req->source_wrap;
ahb_addr_wrap = req->dest_wrap;
apb_bus_width = req->source_bus_width;
ahb_bus_width = req->dest_bus_width;
} else {
csr |= CSR_DIR;
apb_ptr = req->dest_addr;
ahb_ptr = req->source_addr;
apb_addr_wrap = req->dest_wrap;
ahb_addr_wrap = req->source_wrap;
apb_bus_width = req->dest_bus_width;
ahb_bus_width = req->source_bus_width;
}
apb_addr_wrap >>= 2;
ahb_addr_wrap >>= 2;
/* set address wrap for APB size */
index = 0;
do {
if (apb_addr_wrap_table[index] == apb_addr_wrap)
break;
index++;
} while (index < ARRAY_SIZE(apb_addr_wrap_table));
BUG_ON(index == ARRAY_SIZE(apb_addr_wrap_table));
apb_seq |= index << APB_SEQ_WRAP_SHIFT;
/* set address wrap for AHB size */
index = 0;
do {
if (ahb_addr_wrap_table[index] == ahb_addr_wrap)
break;
index++;
} while (index < ARRAY_SIZE(ahb_addr_wrap_table));
BUG_ON(index == ARRAY_SIZE(ahb_addr_wrap_table));
ahb_seq |= index << AHB_SEQ_WRAP_SHIFT;
for (index = 0; index < ARRAY_SIZE(bus_width_table); index++) {
if (bus_width_table[index] == ahb_bus_width)
break;
}
BUG_ON(index == ARRAY_SIZE(bus_width_table));
ahb_seq |= index << AHB_SEQ_BUS_WIDTH_SHIFT;
for (index = 0; index < ARRAY_SIZE(bus_width_table); index++) {
if (bus_width_table[index] == apb_bus_width)
break;
}
BUG_ON(index == ARRAY_SIZE(bus_width_table));
apb_seq |= index << APB_SEQ_BUS_WIDTH_SHIFT;
writel(csr, ch->addr + APB_DMA_CHAN_CSR);
writel(apb_seq, ch->addr + APB_DMA_CHAN_APB_SEQ);
writel(apb_ptr, ch->addr + APB_DMA_CHAN_APB_PTR);
writel(ahb_seq, ch->addr + APB_DMA_CHAN_AHB_SEQ);
writel(ahb_ptr, ch->addr + APB_DMA_CHAN_AHB_PTR);
csr |= CSR_ENB;
writel(csr, ch->addr + APB_DMA_CHAN_CSR);
req->status = TEGRA_DMA_REQ_INFLIGHT;
}
static void handle_oneshot_dma(struct tegra_dma_channel *ch)
{
struct tegra_dma_req *req;
unsigned long irq_flags;
spin_lock_irqsave(&ch->lock, irq_flags);
if (list_empty(&ch->list)) {
spin_unlock_irqrestore(&ch->lock, irq_flags);
return;
}
req = list_entry(ch->list.next, typeof(*req), node);
if (req) {
list_del(&req->node);
req->bytes_transferred = req->size;
req->status = TEGRA_DMA_REQ_SUCCESS;
spin_unlock_irqrestore(&ch->lock, irq_flags);
/* Callback should be called without any lock */
pr_debug("%s: transferred %d bytes\n", __func__,
req->bytes_transferred);
req->complete(req);
spin_lock_irqsave(&ch->lock, irq_flags);
}
if (!list_empty(&ch->list)) {
req = list_entry(ch->list.next, typeof(*req), node);
/* the complete function we just called may have enqueued
another req, in which case dma has already started */
if (req->status != TEGRA_DMA_REQ_INFLIGHT)
tegra_dma_update_hw(ch, req);
}
spin_unlock_irqrestore(&ch->lock, irq_flags);
}
static void handle_continuous_dbl_dma(struct tegra_dma_channel *ch)
{
struct tegra_dma_req *req;
struct tegra_dma_req *next_req;
unsigned long irq_flags;
spin_lock_irqsave(&ch->lock, irq_flags);
if (list_empty(&ch->list)) {
spin_unlock_irqrestore(&ch->lock, irq_flags);
return;
}
req = list_entry(ch->list.next, typeof(*req), node);
if (req) {
if (req->buffer_status == TEGRA_DMA_REQ_BUF_STATUS_EMPTY) {
bool is_dma_ping_complete;
is_dma_ping_complete =
!!(readl(ch->addr + APB_DMA_CHAN_STA) &
STA_PING_PONG);
if (req->to_memory)
is_dma_ping_complete = !is_dma_ping_complete;
/* Out of sync - Release current buffer */
if (!is_dma_ping_complete) {
req->buffer_status =
TEGRA_DMA_REQ_BUF_STATUS_FULL;
req->bytes_transferred = req->size;
req->status = TEGRA_DMA_REQ_SUCCESS;
tegra_dma_stop(ch);
if (!list_is_last(&req->node, &ch->list)) {
next_req = list_entry(req->node.next,
typeof(*next_req), node);
tegra_dma_update_hw(ch, next_req);
}
list_del(&req->node);
/* DMA lock is NOT held when callbak is
* called. */
spin_unlock_irqrestore(&ch->lock, irq_flags);
req->complete(req);
return;
}
/* Load the next request into the hardware, if
* available. */
if (!list_is_last(&req->node, &ch->list)) {
next_req = list_entry(req->node.next,
typeof(*next_req), node);
tegra_dma_update_hw_partial(ch, next_req);
}
req->buffer_status = TEGRA_DMA_REQ_BUF_STATUS_HALF_FULL;
req->bytes_transferred = req->size >> 1;
/* DMA lock is NOT held when callback is called */
spin_unlock_irqrestore(&ch->lock, irq_flags);
if (likely(req->threshold))
req->threshold(req);
return;
} else if (req->buffer_status ==
TEGRA_DMA_REQ_BUF_STATUS_HALF_FULL) {
/* Callback when the buffer is completely full (i.e on
* the second interrupt */
req->buffer_status = TEGRA_DMA_REQ_BUF_STATUS_FULL;
req->bytes_transferred = req->size;
req->status = TEGRA_DMA_REQ_SUCCESS;
if (list_is_last(&req->node, &ch->list))
tegra_dma_stop(ch);
else {
/* It may be possible that req came after
* half dma complete so it need to start
* immediately */
next_req = list_entry(req->node.next,
typeof(*next_req), node);
if (next_req->status !=
TEGRA_DMA_REQ_INFLIGHT) {
tegra_dma_stop(ch);
tegra_dma_update_hw(ch, next_req);
}
}
list_del(&req->node);
/* DMA lock is NOT held when callbak is called */
spin_unlock_irqrestore(&ch->lock, irq_flags);
req->complete(req);
return;
} else {
tegra_dma_stop(ch);
/* Dma should be stop much earlier */
BUG();
}
}
spin_unlock_irqrestore(&ch->lock, irq_flags);
}
static void handle_continuous_sngl_dma(struct tegra_dma_channel *ch)
{
struct tegra_dma_req *req;
struct tegra_dma_req *next_req;
struct tegra_dma_req *next_next_req;
unsigned long irq_flags;
spin_lock_irqsave(&ch->lock, irq_flags);
if (list_empty(&ch->list)) {
tegra_dma_stop(ch);
spin_unlock_irqrestore(&ch->lock, irq_flags);
pr_err("%s: No requests in the list.\n", __func__);
return;
}
req = list_entry(ch->list.next, typeof(*req), node);
if (!req || (req->buffer_status == TEGRA_DMA_REQ_BUF_STATUS_FULL)) {
tegra_dma_stop(ch);
spin_unlock_irqrestore(&ch->lock, irq_flags);
pr_err("%s: DMA complete irq without corresponding req\n",
__func__);
return;
}
/* Handle the case when buffer is completely full */
req->bytes_transferred = req->size;
req->buffer_status = TEGRA_DMA_REQ_BUF_STATUS_FULL;
req->status = TEGRA_DMA_REQ_SUCCESS;
if (list_is_last(&req->node, &ch->list)) {
pr_debug("%s: stop\n", __func__);
tegra_dma_stop(ch);
} else {
/* The next entry should have already been queued and is now
* in the middle of xfer. We can then write the next->next one
* if it exists.
*/
next_req = list_entry(req->node.next, typeof(*next_req), node);
if (next_req->status != TEGRA_DMA_REQ_INFLIGHT) {
pr_debug("%s: interrupt during enqueue\n", __func__);
tegra_dma_stop(ch);
tegra_dma_update_hw(ch, next_req);
} else if (!list_is_last(&next_req->node, &ch->list)) {
next_next_req = list_entry(next_req->node.next,
typeof(*next_next_req), node);
tegra_dma_update_hw_partial(ch, next_next_req);
}
}
list_del(&req->node);
spin_unlock_irqrestore(&ch->lock, irq_flags);
req->complete(req);
}
static irqreturn_t dma_isr(int irq, void *data)
{
struct tegra_dma_channel *ch = data;
unsigned long status;
status = readl(ch->addr + APB_DMA_CHAN_STA);
if (status & STA_ISE_EOC)
writel(status, ch->addr + APB_DMA_CHAN_STA);
else {
pr_warning("Got a spurious ISR for DMA channel %d\n", ch->id);
return IRQ_HANDLED;
}
if (ch->mode & TEGRA_DMA_MODE_ONESHOT)
handle_oneshot_dma(ch);
else if (ch->mode & TEGRA_DMA_MODE_CONTINUOUS_DOUBLE)
handle_continuous_dbl_dma(ch);
else if (ch->mode & TEGRA_DMA_MODE_CONTINUOUS_SINGLE)
handle_continuous_sngl_dma(ch);
else
pr_err("Bad channel mode for DMA ISR to handle\n");
return IRQ_HANDLED;
}
int __init tegra_dma_init(void)
{
int ret = 0;
int i;
unsigned int irq;
void __iomem *addr;
dma_clk = clk_get_sys("apbdma", "apbdma");
if (!IS_ERR_OR_NULL(dma_clk)) {
clk_enable(dma_clk);
tegra_periph_reset_assert(dma_clk);
udelay(10);
tegra_periph_reset_deassert(dma_clk);
udelay(10);
}
addr = IO_ADDRESS(TEGRA_APB_DMA_BASE);
writel(GEN_ENABLE, addr + APB_DMA_GEN);
writel(0, addr + APB_DMA_CNTRL);
writel(0xFFFFFFFFul >> (31 - TEGRA_SYSTEM_DMA_CH_MAX),
addr + APB_DMA_IRQ_MASK_SET);
memset(channel_usage, 0, sizeof(channel_usage));
memset(dma_channels, 0, sizeof(dma_channels));
/* Reserve all the channels we are not supposed to touch */
for (i = 0; i < TEGRA_SYSTEM_DMA_CH_MIN; i++)
__set_bit(i, channel_usage);
for (i = TEGRA_SYSTEM_DMA_CH_MIN; i <= TEGRA_SYSTEM_DMA_CH_MAX; i++) {
struct tegra_dma_channel *ch = &dma_channels[i];
__clear_bit(i, channel_usage);
ch->id = i;
snprintf(ch->name, TEGRA_DMA_NAME_SIZE, "dma_channel_%d", i);
memset(ch->client_name, 0, sizeof(ch->client_name));
ch->addr = IO_ADDRESS(TEGRA_APB_DMA_CH0_BASE +
TEGRA_APB_DMA_CH0_SIZE * i);
spin_lock_init(&ch->lock);
INIT_LIST_HEAD(&ch->list);
#ifndef CONFIG_ARCH_TEGRA_2x_SOC
if (i >= 16)
irq = INT_APB_DMA_CH16 + i - 16;
else
#endif
irq = INT_APB_DMA_CH0 + i;
ret = request_irq(irq, dma_isr, 0, dma_channels[i].name, ch);
if (ret) {
pr_err("Failed to register IRQ %d for DMA %d\n",
irq, i);
goto fail;
}
ch->irq = irq;
}
/* mark the shared channel allocated */
__set_bit(TEGRA_SYSTEM_DMA_CH_MIN, channel_usage);
for (i = TEGRA_SYSTEM_DMA_CH_MAX+1; i < NV_DMA_MAX_CHANNELS; i++)
__set_bit(i, channel_usage);
return ret;
fail:
writel(0, addr + APB_DMA_GEN);
for (i = TEGRA_SYSTEM_DMA_CH_MIN; i <= TEGRA_SYSTEM_DMA_CH_MAX; i++) {
struct tegra_dma_channel *ch = &dma_channels[i];
if (ch->irq)
free_irq(ch->irq, ch);
}
return ret;
}
#ifdef CONFIG_PM
static u32 apb_dma[5*TEGRA_SYSTEM_DMA_CH_NR + 3];
void tegra_dma_suspend(void)
{
void __iomem *addr = IO_ADDRESS(TEGRA_APB_DMA_BASE);
u32 *ctx = apb_dma;
int i;
*ctx++ = readl(addr + APB_DMA_GEN);
*ctx++ = readl(addr + APB_DMA_CNTRL);
*ctx++ = readl(addr + APB_DMA_IRQ_MASK);
for (i = 0; i < TEGRA_SYSTEM_DMA_CH_NR; i++) {
addr = IO_ADDRESS(TEGRA_APB_DMA_CH0_BASE +
TEGRA_APB_DMA_CH0_SIZE * i);
*ctx++ = readl(addr + APB_DMA_CHAN_CSR);
*ctx++ = readl(addr + APB_DMA_CHAN_AHB_PTR);
*ctx++ = readl(addr + APB_DMA_CHAN_AHB_SEQ);
*ctx++ = readl(addr + APB_DMA_CHAN_APB_PTR);
*ctx++ = readl(addr + APB_DMA_CHAN_APB_SEQ);
}
}
void tegra_dma_resume(void)
{
void __iomem *addr = IO_ADDRESS(TEGRA_APB_DMA_BASE);
u32 *ctx = apb_dma;
int i;
writel(*ctx++, addr + APB_DMA_GEN);
writel(*ctx++, addr + APB_DMA_CNTRL);
writel(*ctx++, addr + APB_DMA_IRQ_MASK);
for (i = 0; i < TEGRA_SYSTEM_DMA_CH_NR; i++) {
addr = IO_ADDRESS(TEGRA_APB_DMA_CH0_BASE +
TEGRA_APB_DMA_CH0_SIZE * i);
writel(*ctx++, addr + APB_DMA_CHAN_CSR);
writel(*ctx++, addr + APB_DMA_CHAN_AHB_PTR);
writel(*ctx++, addr + APB_DMA_CHAN_AHB_SEQ);
writel(*ctx++, addr + APB_DMA_CHAN_APB_PTR);
writel(*ctx++, addr + APB_DMA_CHAN_APB_SEQ);
}
}
#endif
#ifdef CONFIG_DEBUG_FS
#include <linux/debugfs.h>
#include <linux/seq_file.h>
static int dbg_dma_show(struct seq_file *s, void *unused)
{
int i;
void __iomem *addr = IO_ADDRESS(TEGRA_APB_DMA_BASE);
seq_printf(s, " APBDMA global register\n");
seq_printf(s, "DMA_GEN: 0x%08x\n", __raw_readl(addr + APB_DMA_GEN));
seq_printf(s, "DMA_CNTRL: 0x%08x\n", __raw_readl(addr + APB_DMA_CNTRL));
seq_printf(s, "IRQ_MASK: 0x%08x\n",
__raw_readl(addr + APB_DMA_IRQ_MASK));
for (i = 0; i < TEGRA_SYSTEM_DMA_CH_NR; i++) {
addr = IO_ADDRESS(TEGRA_APB_DMA_CH0_BASE +
TEGRA_APB_DMA_CH0_SIZE * i);
seq_printf(s, " APBDMA channel %02d register\n", i);
seq_printf(s, "0x00: 0x%08x 0x%08x 0x%08x 0x%08x\n",
__raw_readl(addr + 0x0),
__raw_readl(addr + 0x4),
__raw_readl(addr + 0x8),
__raw_readl(addr + 0xC));
seq_printf(s, "0x10: 0x%08x 0x%08x 0x%08x 0x%08x\n",
__raw_readl(addr + 0x10),
__raw_readl(addr + 0x14),
__raw_readl(addr + 0x18),
__raw_readl(addr + 0x1C));
}
seq_printf(s, "\nAPB DMA users\n");
seq_printf(s, "-------------\n");
for (i = TEGRA_SYSTEM_DMA_CH_MIN; i <= TEGRA_SYSTEM_DMA_CH_MAX; i++) {
struct tegra_dma_channel *ch = &dma_channels[i];
if (strlen(ch->client_name) > 0)
seq_printf(s, "dma %d -> %s\n", i, ch->client_name);
}
return 0;
}
static int dbg_dma_open(struct inode *inode, struct file *file)
{
return single_open(file, dbg_dma_show, &inode->i_private);
}
static const struct file_operations debug_fops = {
.open = dbg_dma_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int __init tegra_dma_debuginit(void)
{
(void) debugfs_create_file("tegra_dma", S_IRUGO,
NULL, NULL, &debug_fops);
return 0;
}
late_initcall(tegra_dma_debuginit);
#endif
|