summaryrefslogtreecommitdiff
path: root/arch/arm/mach-tegra/edp.c
blob: c222eea487e29492b9885d7cb981631c52671580 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
/*
 * arch/arm/mach-tegra/edp.c
 *
 * Copyright (c) 2011-2013, NVIDIA CORPORATION. All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/edp.h>

#include <mach/edp.h>
#include <mach/hardware.h>

#include "fuse.h"
#include "dvfs.h"
#include "clock.h"
#include "cpu-tegra.h"

#define FREQ_STEP 12750000
#define OVERRIDE_DEFAULT 6000

static struct tegra_edp_limits *edp_limits;
static int edp_limits_size;
static unsigned int regulator_cur;
/* Value to subtract from regulator current limit */
static unsigned int edp_reg_override_mA = OVERRIDE_DEFAULT;

static const unsigned int *system_edp_limits;

static struct tegra_system_edp_entry *power_edp_limits;
static int power_edp_limits_size;

/*
 * "Safe entry" to be used when no match for speedo_id /
 * regulator_cur is found; must be the last one
 */
static struct tegra_edp_limits edp_default_limits[] = {
	{85, {1000000, 1000000, 1000000, 1000000} },
};

static struct tegra_system_edp_entry power_edp_default_limits[] = {
	{0, 20, {1000000, 1000000, 1000000, 1000000} },
};

/* Constants for EDP calculations */
static const int temperatures[] = { /* degree celcius (C) */
	23, 40, 50, 60, 70, 74, 78, 82, 86, 90, 94, 98, 102,
};

static const int power_cap_levels[] = { /* milliwatts (mW) */
	  500,  1000,  1500,  2000,  2500,  3000,  3500,
	 4000,  4500,  5000,  5500,  6000,  6500,  7000,
	 7500,  8000,  8500,  9000,  9500, 10000, 10500,
	11000, 11500, 12000, 12500, 13000, 13500, 14000,
	14500, 15000, 15500, 16000, 16500, 17000
};

static struct tegra_edp_freq_voltage_table *freq_voltage_lut_saved;
static unsigned int freq_voltage_lut_size_saved;
static struct tegra_edp_freq_voltage_table *freq_voltage_lut;
static unsigned int freq_voltage_lut_size;

static inline s64 edp_pow(s64 val, int pwr)
{
	s64 retval = 1;

	while (val && pwr) {
		if (pwr & 1)
			retval *= val;
		pwr >>= 1;
		if (pwr)
			val *= val;
	}

	return retval;
}


#ifdef CONFIG_TEGRA_CPU_EDP_FIXED_LIMITS
static inline unsigned int edp_apply_fixed_limits(
				unsigned int in_freq_KHz,
				struct tegra_edp_cpu_leakage_params *params,
				unsigned int cur_effective,
				int temp_C, int n_cores_idx)
{
	unsigned int out_freq_KHz = in_freq_KHz;
	unsigned int max_cur, max_temp, max_freq;
	int i;

	/* Apply any additional fixed limits */
	for (i = 0; i < 8; i++) {
		max_cur = params->max_current_cap[i].max_cur;
		if (max_cur != 0 && cur_effective <= max_cur) {
			max_temp = params->max_current_cap[i].max_temp;
			if (max_temp != 0 && temp_C > max_temp) {
				max_freq = params->max_current_cap[i].
					max_freq[n_cores_idx];
				if (max_freq && max_freq < out_freq_KHz)
					out_freq_KHz = max_freq;
			}
		}
	}

	return out_freq_KHz;
}
#else
#define edp_apply_fixed_limits(freq, unused...)	(freq)
#endif

/*
 * Find the maximum frequency that results in dynamic and leakage current that
 * is less than the regulator current limit.
 * temp_C - valid or -EINVAL
 * power_mW - valid or -1 (infinite) or -EINVAL
 */
static unsigned int edp_calculate_maxf(
				struct tegra_edp_cpu_leakage_params *params,
				int temp_C, int power_mW,
				int iddq_mA,
				int n_cores_idx)
{
	unsigned int voltage_mV, freq_KHz = 0;
	unsigned int cur_effective = regulator_cur - edp_reg_override_mA;
	int f, i, j, k;
	s64 leakage_mA, dyn_mA, leakage_calc_step;
	s64 leakage_mW, dyn_mW;

	for (f = freq_voltage_lut_size - 1; f >= 0; f--) {
		freq_KHz = freq_voltage_lut[f].freq / 1000;
		voltage_mV = freq_voltage_lut[f].voltage_mV;

		/* Constrain Volt-Temp */
		if (params->volt_temp_cap.temperature &&
		    temp_C > params->volt_temp_cap.temperature &&
		    params->volt_temp_cap.voltage_limit_mV &&
		    voltage_mV > params->volt_temp_cap.voltage_limit_mV)
			continue;

		/* Calculate leakage current */
		leakage_mA = 0;
		for (i = 0; i <= 3; i++) {
			for (j = 0; j <= 3; j++) {
				for (k = 0; k <= 3; k++) {
					leakage_calc_step =
						params->leakage_consts_ijk
						[i][j][k] * edp_pow(iddq_mA, i);
					/* Convert (mA)^i to (A)^i */
					leakage_calc_step =
						div64_s64(leakage_calc_step,
							  edp_pow(1000, i));
					leakage_calc_step *=
						edp_pow(voltage_mV, j);
					/* Convert (mV)^j to (V)^j */
					leakage_calc_step =
						div64_s64(leakage_calc_step,
							  edp_pow(1000, j));
					leakage_calc_step *=
						edp_pow(temp_C, k);
					/* Convert (C)^k to (scaled_C)^k */
					leakage_calc_step =
						div64_s64(leakage_calc_step,
						edp_pow(params->temp_scaled,
							k));
					/* leakage_consts_ijk was scaled */
					leakage_calc_step =
						div64_s64(leakage_calc_step,
							  params->ijk_scaled);
					leakage_mA += leakage_calc_step;
				}
			}
		}

		/* set floor for leakage current */
		if (leakage_mA <= params->leakage_min)
			leakage_mA = params->leakage_min;

		leakage_mA *= params->leakage_consts_n[n_cores_idx];

		/* leakage_const_n was scaled */
		leakage_mA = div64_s64(leakage_mA, params->consts_scaled);

		/* Calculate dynamic current */
		dyn_mA = voltage_mV * freq_KHz / 1000;
		/* Convert mV to V */
		dyn_mA = div64_s64(dyn_mA, 1000);
		dyn_mA *= params->dyn_consts_n[n_cores_idx];
		/* dyn_const_n was scaled */
		dyn_mA = div64_s64(dyn_mA, params->dyn_scaled);

		if (power_mW != -1) {
			leakage_mW = leakage_mA * voltage_mV;
			dyn_mW = dyn_mA * voltage_mV;
			if (div64_s64(leakage_mW + dyn_mW, 1000) <= power_mW)
				goto end;
		} else if ((leakage_mA + dyn_mA) <= cur_effective) {
			goto end;
		}
		freq_KHz = 0;
	}

 end:
	return edp_apply_fixed_limits(freq_KHz, params,
					cur_effective, temp_C, n_cores_idx);
}

static int edp_relate_freq_voltage(struct clk *clk_cpu_g,
			unsigned int cpu_speedo_idx,
			unsigned int freq_volt_lut_size,
			struct tegra_edp_freq_voltage_table *freq_volt_lut)
{
	unsigned int i, j, freq;
	int voltage_mV;

	for (i = 0, j = 0, freq = 0;
		 i < freq_volt_lut_size;
		 i++, freq += FREQ_STEP) {

		/* Predict voltages */
		voltage_mV = tegra_dvfs_predict_millivolts(clk_cpu_g, freq);
		if (voltage_mV < 0) {
			pr_err("%s: couldn't predict voltage: freq %u; err %d",
			       __func__, freq, voltage_mV);
			return -EINVAL;
		}

		/* Cache frequency / voltage / voltage constant relationship */
		freq_volt_lut[i].freq = freq;
		freq_volt_lut[i].voltage_mV = voltage_mV;
	}
	return 0;
}

unsigned int tegra_edp_find_maxf(int volt)
{
	unsigned int i;

	for (i = 0; i < freq_voltage_lut_size_saved; i++) {
		if (freq_voltage_lut_saved[i].voltage_mV > volt)
			break;
	}
	return freq_voltage_lut[i - 1].freq;
}


static int edp_find_speedo_idx(int cpu_speedo_id, unsigned int *cpu_speedo_idx)
{
	int i, array_size;
	struct tegra_edp_cpu_leakage_params *params;

	switch (tegra_chip_id) {
	case TEGRA_CHIPID_TEGRA11:
		params = tegra11x_get_leakage_params(0, &array_size);
		break;
	case TEGRA_CHIPID_TEGRA14:
		params = tegra14x_get_leakage_params(0, &array_size);
		break;
	case TEGRA_CHIPID_TEGRA12:
		params = tegra12x_get_leakage_params(0, &array_size);
		break;
	case TEGRA_CHIPID_TEGRA3:
	case TEGRA_CHIPID_TEGRA2:
	default:
		array_size = 0;
		break;
	}

	for (i = 0; i < array_size; i++)
		if (cpu_speedo_id == params[i].cpu_speedo_id) {
			*cpu_speedo_idx = i;
			return 0;
		}

	pr_err("%s: couldn't find cpu speedo id %d in freq/voltage LUT\n",
	       __func__, cpu_speedo_id);
	return -EINVAL;
}

static int init_cpu_edp_limits_calculated(void)
{
	unsigned int max_nr_cpus = num_possible_cpus();
	unsigned int temp_idx, n_cores_idx, pwr_idx;
	unsigned int cpu_g_minf, cpu_g_maxf;
	unsigned int iddq_mA;
	unsigned int cpu_speedo_idx;
	unsigned int cap, limit;
	struct tegra_edp_limits *edp_calculated_limits;
	struct tegra_system_edp_entry *power_edp_calc_limits;
	struct tegra_edp_cpu_leakage_params *params;
	int ret;
	struct clk *clk_cpu_g = tegra_get_clock_by_name("cpu_g");
	int cpu_speedo_id = tegra_cpu_speedo_id();

	/* Determine all inputs to EDP formula */
	iddq_mA = tegra_get_cpu_iddq_value();
	iddq_mA = 1281; /* hard code for testing */
	ret = edp_find_speedo_idx(cpu_speedo_id, &cpu_speedo_idx);
	if (ret)
		return ret;

	switch (tegra_chip_id) {
	case TEGRA_CHIPID_TEGRA11:
		params = tegra11x_get_leakage_params(cpu_speedo_idx, NULL);
		break;
	case TEGRA_CHIPID_TEGRA14:
		params = tegra14x_get_leakage_params(cpu_speedo_idx, NULL);
		break;
	case TEGRA_CHIPID_TEGRA12:
		params = tegra12x_get_leakage_params(cpu_speedo_idx, NULL);
		break;
	case TEGRA_CHIPID_TEGRA3:
	case TEGRA_CHIPID_TEGRA2:
	default:
		return -EINVAL;
	}

	edp_calculated_limits = kmalloc(sizeof(struct tegra_edp_limits)
					* ARRAY_SIZE(temperatures), GFP_KERNEL);
	BUG_ON(!edp_calculated_limits);

	power_edp_calc_limits = kmalloc(sizeof(struct tegra_system_edp_entry)
				* ARRAY_SIZE(power_cap_levels), GFP_KERNEL);
	BUG_ON(!power_edp_calc_limits);

	cpu_g_minf = 0;
	cpu_g_maxf = clk_get_max_rate(clk_cpu_g);
	freq_voltage_lut_size = (cpu_g_maxf - cpu_g_minf) / FREQ_STEP + 1;
	freq_voltage_lut = kmalloc(sizeof(struct tegra_edp_freq_voltage_table)
				   * freq_voltage_lut_size, GFP_KERNEL);
	if (!freq_voltage_lut) {
		pr_err("%s: failed alloc mem for freq/voltage LUT\n", __func__);
		kfree(power_edp_calc_limits);
		kfree(edp_calculated_limits);
		return -ENOMEM;
	}

	ret = edp_relate_freq_voltage(clk_cpu_g, cpu_speedo_idx,
				freq_voltage_lut_size, freq_voltage_lut);
	if (ret) {
		kfree(power_edp_calc_limits);
		kfree(edp_calculated_limits);
		kfree(freq_voltage_lut);
		return ret;
	}

	if (freq_voltage_lut_size != freq_voltage_lut_size_saved) {
		/* release previous table if present */
		kfree(freq_voltage_lut_saved);
		/* create table to save */
		freq_voltage_lut_saved =
			kmalloc(sizeof(struct tegra_edp_freq_voltage_table) *
			freq_voltage_lut_size, GFP_KERNEL);
		if (!freq_voltage_lut_saved) {
			pr_err("%s: failed alloc mem for freq/voltage LUT\n",
				__func__);
			kfree(freq_voltage_lut);
			return -ENOMEM;
		}
		freq_voltage_lut_size_saved = freq_voltage_lut_size;
	}
	memcpy(freq_voltage_lut_saved,
		freq_voltage_lut,
		sizeof(struct tegra_edp_freq_voltage_table) *
			freq_voltage_lut_size);

	/* Calculate EDP table */
	for (n_cores_idx = 0; n_cores_idx < max_nr_cpus; n_cores_idx++) {
		for (temp_idx = 0;
		     temp_idx < ARRAY_SIZE(temperatures); temp_idx++) {
			edp_calculated_limits[temp_idx].temperature =
				temperatures[temp_idx];
			limit = edp_calculate_maxf(params,
						   temperatures[temp_idx],
						   -1,
						   iddq_mA,
						   n_cores_idx);
			if (limit == -EINVAL)
				return -EINVAL;
			/* apply safety cap if it is specified */
			if (n_cores_idx < 4) {
				cap = params->safety_cap[n_cores_idx];
				if (cap && cap < limit)
					limit = cap;
			}
			edp_calculated_limits[temp_idx].
				freq_limits[n_cores_idx] = limit;
		}

		for (pwr_idx = 0;
		     pwr_idx < ARRAY_SIZE(power_cap_levels); pwr_idx++) {
			power_edp_calc_limits[pwr_idx].power_limit_100mW =
				power_cap_levels[pwr_idx] / 100;
			limit = edp_calculate_maxf(params,
						   90,
						   power_cap_levels[pwr_idx],
						   iddq_mA,
						   n_cores_idx);
			if (limit == -EINVAL)
				return -EINVAL;
			power_edp_calc_limits[pwr_idx].
				freq_limits[n_cores_idx] = limit;
		}
	}

	/*
	 * If this is an EDP table update, need to overwrite old table.
	 * The old table's address must remain valid.
	 */
	if (edp_limits != edp_default_limits) {
		memcpy(edp_limits, edp_calculated_limits,
		       sizeof(struct tegra_edp_limits)
		       * ARRAY_SIZE(temperatures));
		kfree(edp_calculated_limits);
	}
	else {
		edp_limits = edp_calculated_limits;
		edp_limits_size = ARRAY_SIZE(temperatures);
	}

	if (power_edp_limits != power_edp_default_limits) {
		memcpy(power_edp_limits, power_edp_calc_limits,
		       sizeof(struct tegra_system_edp_entry)
		       * ARRAY_SIZE(power_cap_levels));
		kfree(power_edp_calc_limits);
	} else {
		power_edp_limits = power_edp_calc_limits;
		power_edp_limits_size = ARRAY_SIZE(power_cap_levels);
	}

	kfree(freq_voltage_lut);
	return 0;
}

void tegra_recalculate_cpu_edp_limits(void)
{
	if (tegra_chip_id != TEGRA_CHIPID_TEGRA11 &&
	    tegra_chip_id != TEGRA_CHIPID_TEGRA14 &&
	    tegra_chip_id != TEGRA_CHIPID_TEGRA12)
		return;

	if (init_cpu_edp_limits_calculated() == 0)
		return;

	/* Revert to default EDP table on error */
	edp_limits = edp_default_limits;
	edp_limits_size = ARRAY_SIZE(edp_default_limits);

	power_edp_limits = power_edp_default_limits;
	power_edp_limits_size = ARRAY_SIZE(power_edp_default_limits);
}

/*
 * Specify regulator current in mA, e.g. 5000mA
 * Use 0 for default
 */
void __init tegra_init_cpu_edp_limits(unsigned int regulator_mA)
{
	if (!regulator_mA)
		goto end;
	regulator_cur = regulator_mA + OVERRIDE_DEFAULT;

	switch (tegra_chip_id) {
	case TEGRA_CHIPID_TEGRA11:
	case TEGRA_CHIPID_TEGRA14:
	case TEGRA_CHIPID_TEGRA12:
		if (init_cpu_edp_limits_calculated() == 0)
			return;
		break;
	case TEGRA_CHIPID_TEGRA2:
	case TEGRA_CHIPID_TEGRA3:
	default:
		BUG();
		break;
	}

 end:
	edp_limits = edp_default_limits;
	edp_limits_size = ARRAY_SIZE(edp_default_limits);

	power_edp_limits = power_edp_default_limits;
	power_edp_limits_size = ARRAY_SIZE(power_edp_default_limits);
}

void tegra_get_cpu_edp_limits(const struct tegra_edp_limits **limits, int *size)
{
	*limits = edp_limits;
	*size = edp_limits_size;
}

void tegra_get_system_edp_limits(const unsigned int **limits)
{
	*limits = system_edp_limits;
}

void tegra_platform_edp_init(struct thermal_trip_info *trips,
				int *num_trips, int margin)
{
	const struct tegra_edp_limits *cpu_edp_limits;
	struct thermal_trip_info *trip_state;
	int i, cpu_edp_limits_size;

	if (!trips || !num_trips)
		return;

	/* edp capping */
	tegra_get_cpu_edp_limits(&cpu_edp_limits, &cpu_edp_limits_size);

	if (cpu_edp_limits_size > MAX_THROT_TABLE_SIZE)
		BUG();

	for (i = 0; i < cpu_edp_limits_size-1; i++) {
		trip_state = &trips[*num_trips];

		trip_state->cdev_type = "cpu_edp";
		trip_state->trip_temp =
			(cpu_edp_limits[i].temperature * 1000) - margin;
		trip_state->trip_type = THERMAL_TRIP_ACTIVE;
		trip_state->upper = trip_state->lower = i + 1;

		(*num_trips)++;

		if (*num_trips >= THERMAL_MAX_TRIPS)
			BUG();
	}
}

struct tegra_system_edp_entry *tegra_get_system_edp_entries(int *size)
{
	*size = power_edp_limits_size;
	return power_edp_limits;
}

#ifdef CONFIG_DEBUG_FS

static int edp_limit_debugfs_show(struct seq_file *s, void *data)
{
#ifdef CONFIG_CPU_FREQ
	seq_printf(s, "%u\n", tegra_get_edp_limit(NULL));
#endif
	return 0;
}

static inline void edp_show_4core_edp_table(struct seq_file *s, int th_idx)
{
	int i;

	seq_printf(s, "%6s %10s %10s %10s %10s\n",
		   " Temp.", "1-core", "2-cores", "3-cores", "4-cores");
	for (i = 0; i < edp_limits_size; i++) {
		seq_printf(s, "%c%3dC: %10u %10u %10u %10u\n",
			   i == th_idx ? '>' : ' ',
			   edp_limits[i].temperature,
			   edp_limits[i].freq_limits[0],
			   edp_limits[i].freq_limits[1],
			   edp_limits[i].freq_limits[2],
			   edp_limits[i].freq_limits[3]);
	}
}

static inline void edp_show_2core_edp_table(struct seq_file *s, int th_idx)
{
	int i;

	seq_printf(s, "%6s %10s %10s\n",
		   " Temp.", "1-core", "2-cores");
	for (i = 0; i < edp_limits_size; i++) {
		seq_printf(s, "%c%3dC: %10u %10u\n",
			   i == th_idx ? '>' : ' ',
			   edp_limits[i].temperature,
			   edp_limits[i].freq_limits[0],
			   edp_limits[i].freq_limits[1]);
	}
}

static inline void edp_show_2core_system_table(struct seq_file *s)
{
	seq_printf(s, "%10u %10u\n",
		   system_edp_limits[0],
		   system_edp_limits[1]);
}

static inline void edp_show_4core_system_table(struct seq_file *s)
{
	seq_printf(s, "%10u %10u %10u %10u\n",
		   system_edp_limits[0],
		   system_edp_limits[1],
		   system_edp_limits[2],
		   system_edp_limits[3]);
}

static int edp_debugfs_show(struct seq_file *s, void *data)
{
	unsigned int max_nr_cpus = num_possible_cpus();
	int th_idx;

	if (max_nr_cpus != 2 && max_nr_cpus != 4) {
		seq_printf(s, "Unsupported number of CPUs\n");
		return 0;
	}

#ifdef CONFIG_CPU_FREQ
	tegra_get_edp_limit(&th_idx);
#else
	th_idx = 0;
#endif

	seq_printf(s, "-- VDD_CPU %sEDP table (%umA = %umA - %umA) --\n",
		   edp_limits == edp_default_limits ? "**default** " : "",
		   regulator_cur - edp_reg_override_mA,
		   regulator_cur, edp_reg_override_mA);

	if (max_nr_cpus == 2)
		edp_show_2core_edp_table(s, th_idx);
	else if (max_nr_cpus == 4)
		edp_show_4core_edp_table(s, th_idx);

	if (system_edp_limits) {
		seq_printf(s, "\n-- System EDP table --\n");
		if (max_nr_cpus == 2)
			edp_show_2core_system_table(s);
		else if (max_nr_cpus == 4)
			edp_show_4core_system_table(s);
	}

	return 0;
}

static int edp_reg_override_show(struct seq_file *s, void *data)
{
	seq_printf(s, "Limit override: %u mA. Effective limit: %u mA\n",
		   edp_reg_override_mA, regulator_cur - edp_reg_override_mA);
	return 0;
}

static int edp_reg_override_write(struct file *file,
	const char __user *userbuf, size_t count, loff_t *ppos)
{
	char buf[32], *end;
	unsigned int edp_reg_override_mA_temp;
	unsigned int edp_reg_override_mA_prev = edp_reg_override_mA;

	if (!(tegra_chip_id == TEGRA_CHIPID_TEGRA11 ||
		tegra_chip_id == TEGRA_CHIPID_TEGRA14 ||
		tegra_chip_id == TEGRA_CHIPID_TEGRA12))
		goto override_err;

	if (sizeof(buf) <= count)
		goto override_err;

	if (copy_from_user(buf, userbuf, count))
		goto override_err;

	/* terminate buffer and trim - white spaces may be appended
	 *  at the end when invoked from shell command line */
	buf[count]='\0';
	strim(buf);

	edp_reg_override_mA_temp = simple_strtoul(buf, &end, 10);
	if (*end != '\0')
		goto override_err;

	if (edp_reg_override_mA_temp >= regulator_cur)
		goto override_err;

	if (edp_reg_override_mA == edp_reg_override_mA_temp)
		return count;

	edp_reg_override_mA = edp_reg_override_mA_temp;
	if (init_cpu_edp_limits_calculated()) {
		/* Revert to previous override value if new value fails */
		edp_reg_override_mA = edp_reg_override_mA_prev;
		goto override_err;
	}

#ifdef CONFIG_CPU_FREQ
	if (tegra_cpu_set_speed_cap(NULL)) {
		pr_err("FAILED: Set CPU freq cap with new VDD_CPU EDP table\n");
		goto override_out;
	}

	pr_info("Reinitialized VDD_CPU EDP table with regulator current limit"
			" %u mA\n", regulator_cur - edp_reg_override_mA);
#else
	pr_err("FAILED: tegra_cpu_set_speed_cap() does not exist, failed to reinitialize VDD_CPU EDP table");
#endif

	return count;

override_err:
	pr_err("FAILED: Reinitialize VDD_CPU EDP table with override \"%s\"",
	       buf);
#ifdef CONFIG_CPU_FREQ
override_out:
#endif
	return -EINVAL;
}

static int edp_debugfs_open(struct inode *inode, struct file *file)
{
	return single_open(file, edp_debugfs_show, inode->i_private);
}

static int edp_limit_debugfs_open(struct inode *inode, struct file *file)
{
	return single_open(file, edp_limit_debugfs_show, inode->i_private);
}

static int edp_reg_override_open(struct inode *inode, struct file *file)
{
	return single_open(file, edp_reg_override_show, inode->i_private);
}

static const struct file_operations edp_debugfs_fops = {
	.open		= edp_debugfs_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static const struct file_operations edp_limit_debugfs_fops = {
	.open		= edp_limit_debugfs_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static const struct file_operations edp_reg_override_debugfs_fops = {
	.open		= edp_reg_override_open,
	.read		= seq_read,
	.write		= edp_reg_override_write,
	.llseek		= seq_lseek,
	.release	= single_release,
};

#ifdef CONFIG_EDP_FRAMEWORK
static __init struct dentry *tegra_edp_debugfs_dir(void)
{
	return edp_debugfs_dir;
}
#else
static __init struct dentry *tegra_edp_debugfs_dir(void)
{
	return debugfs_create_dir("edp", NULL);
}
#endif

static int __init tegra_edp_debugfs_init(void)
{
	struct dentry *d_edp;
	struct dentry *d_edp_limit;
	struct dentry *d_edp_reg_override;
	struct dentry *edp_dir;
	struct dentry *vdd_cpu_dir;

	if (!tegra_platform_is_silicon())
		return -ENOSYS;

	edp_dir = tegra_edp_debugfs_dir();

	if (!edp_dir)
		goto edp_dir_err;

	vdd_cpu_dir = debugfs_create_dir("vdd_cpu", edp_dir);

	if (!vdd_cpu_dir)
		goto vdd_cpu_dir_err;

	d_edp = debugfs_create_file("edp", S_IRUGO, vdd_cpu_dir, NULL,
				&edp_debugfs_fops);

	if (!d_edp)
		goto edp_err;

	d_edp_limit = debugfs_create_file("edp_limit", S_IRUGO, vdd_cpu_dir,
				NULL, &edp_limit_debugfs_fops);

	if (!d_edp_limit)
		goto edp_limit_err;

	d_edp_reg_override = debugfs_create_file("edp_reg_override",
				S_IRUGO | S_IWUSR, vdd_cpu_dir, NULL,
				&edp_reg_override_debugfs_fops);

	if (!d_edp_reg_override)
		goto edp_reg_override_err;

	if (tegra_core_edp_debugfs_init(edp_dir))
		goto edp_reg_override_err;

	return 0;

edp_reg_override_err:
	debugfs_remove(d_edp_limit);
edp_limit_err:
	debugfs_remove(d_edp);
edp_err:
	debugfs_remove(vdd_cpu_dir);
vdd_cpu_dir_err:
	debugfs_remove(edp_dir);
edp_dir_err:
	return -ENOMEM;
}

late_initcall(tegra_edp_debugfs_init);
#endif /* CONFIG_DEBUG_FS */