summaryrefslogtreecommitdiff
path: root/arch/arm/mach-tegra/idle-t2.c
blob: 0c37b0686f4e5cd8141603e8d8be05e76995b376 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
/*
 * arch/arm/mach-tegra/idle-t2.c
 *
 * CPU hotplug support for Tegra SoCs
 *
 * Copyright (c) 2009, NVIDIA Corporation.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

#include "ap20/arapbpm.h"
#include "nvrm_module.h"
#include "ap20/arflow_ctlr.h"
#include "nvbootargs.h"
#include "nvrm_memmgr.h"
#include "mach/power.h"
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/wakelock.h>
#include <linux/tick.h>
#include "nvos.h"

extern NvRmDeviceHandle s_hRmGlobal;
extern void cpu_ap20_do_lp2(void);
extern void cpu_ap20_do_lp1(void);
extern void cpu_ap20_do_lp0(void);
extern void resume(unsigned int state);
extern uintptr_t g_resume, g_contextSavePA, g_contextSaveVA;
extern uintptr_t g_iramContextSaveVA;
extern NvU32 g_ArmPerif;
extern NvU32 g_enterLP2PA;
extern volatile void *g_pPMC, *g_pAHB, *g_pCLK_RST_CONTROLLER, *g_pRtc;
extern volatile void *g_pEMC, *g_pMC, *g_pAPB_MISC, *g_pIRAM, *g_pTimerus;

#ifdef CONFIG_WAKELOCK
extern struct wake_lock main_wake_lock;
#endif

// Debug-only: set to zero to disable use of flow-controller based idling
#define CPU_CONTEXT_SAVE_AREA_SIZE 4096
#define TEMP_SAVE_AREA_SIZE 16
#define ENABLE_LP2 1
#define LP2_PADDING_FACTOR	2
#define LP2_ROUNDTRIP_TIME_US	2500ul
//Let Max LP2 time wait be 71 min (Almost a wrap around)
#define LP2_MAX_WAIT_TIME_US	(71*60*1000000ul)

#if NV_KBC_INTERRUPT_WORKAROUND
volatile void *g_pKBC;
#endif

// When non-zero, collects and prints aggregate statistics about idle times
static volatile NvU8 *s_pFlowCtrl = NULL;

void cpu_ap20_do_idle(void);
void mach_tegra_reset(void);
void mach_tegra_idle(void);
extern void enter_lp2(NvU32, NvU32);
extern void exit_power_state(void);
extern void module_context_init(void);
extern void power_lp0_init(void);
extern void tegra_lp2_set_trigger(unsigned long);
NvRmMemHandle s_hWarmboot = NULL;
NvU32 g_AvpWarmbootEntry;
NvU32 g_IramPA = 0;

void __init NvAp20InitFlowController(void);

void __init NvAp20InitFlowController(void)
{
    NvU32 len;
    NvRmPhysAddr pa;
    volatile NvU8 *pTempFc, *pTempArmPerif;
    NvBootArgsWarmboot WarmbootArgs;

    NvRmModuleGetBaseAddress(s_hRmGlobal,
        NVRM_MODULE_ID(NvRmModuleID_FlowCtrl, 0), &pa, &len);

    if (NvRmPhysicalMemMap(pa, len, NVOS_MEM_READ_WRITE,
            NvOsMemAttribute_Uncached, (void**)&pTempFc)!=NvSuccess)
    {
        printk(KERN_INFO "failed to map flow controller; "
               " DVFS will not function correctly as a result\n");
        return;
    }

    NvRmModuleGetBaseAddress(s_hRmGlobal,
        NVRM_MODULE_ID(NvRmPrivModuleID_ArmPerif, 0), &pa, &len);

    if (NvRmPhysicalMemMap(pa, len, NVOS_MEM_READ_WRITE,
            NvOsMemAttribute_Uncached, (void**)&pTempArmPerif)!=NvSuccess)
    {
        printk(KERN_INFO "failed to map Arm Perif; DVFS will not function"
               " correctly as a result\n");
        return;
    }

    NvRmModuleGetBaseAddress(s_hRmGlobal,
        NVRM_MODULE_ID(NvRmModuleID_Pmif, 0), &pa, &len);

    if (NvRmPhysicalMemMap(pa, len, NVOS_MEM_READ_WRITE,
            NvOsMemAttribute_Uncached, (void**)&g_pPMC)!=NvSuccess)
    {
        printk(KERN_INFO "failed to map pmif; DVFS will not function"
               " correctly as a result\n");
        return;
    }

    NvRmModuleGetBaseAddress(s_hRmGlobal,
        NVRM_MODULE_ID(NvRmPrivModuleID_Ahb_Arb_Ctrl, 0), &pa, &len);

    if (NvRmPhysicalMemMap(pa, len, NVOS_MEM_READ_WRITE,
            NvOsMemAttribute_Uncached, (void**)&g_pAHB)!=NvSuccess)
    {
        printk(KERN_INFO "failed to map ahb; DVFS will not function"
               " correctly as a result\n");
        return;
    }

    NvRmModuleGetBaseAddress(s_hRmGlobal,
        NVRM_MODULE_ID(NvRmPrivModuleID_ClockAndReset, 0), &pa, &len);

    if (NvRmPhysicalMemMap(pa, len, NVOS_MEM_READ_WRITE,
            NvOsMemAttribute_Uncached,
            (void**)&g_pCLK_RST_CONTROLLER)!=NvSuccess)
    {
        printk(KERN_INFO "failed to map car; DVFS will not function"
               " correctly as a result\n");
        return;
    }

    NvRmModuleGetBaseAddress(s_hRmGlobal,
        NVRM_MODULE_ID(NvRmPrivModuleID_ExternalMemoryController, 0),
            &pa, &len);

    if (NvRmPhysicalMemMap(pa, len, NVOS_MEM_READ_WRITE,
            NvOsMemAttribute_Uncached,
            (void**)&g_pEMC)!=NvSuccess)
    {
        printk(KERN_INFO "failed to map emc; DVFS will not function"
               " correctly as a result\n");
        return;
    }

    NvRmModuleGetBaseAddress(s_hRmGlobal,
        NVRM_MODULE_ID(NvRmPrivModuleID_MemoryController, 0), &pa, &len);

    if (NvRmPhysicalMemMap(pa, len, NVOS_MEM_READ_WRITE,
            NvOsMemAttribute_Uncached,
            (void**)&g_pMC)!=NvSuccess)
    {
        printk(KERN_INFO "failed to map mc; DVFS will not function"
               " correctly as a result\n");
        return;
    }

    NvRmModuleGetBaseAddress(s_hRmGlobal,
        NVRM_MODULE_ID(NvRmModuleID_Misc, 0), &pa, &len);

    if (NvRmPhysicalMemMap(pa, len, NVOS_MEM_READ_WRITE,
            NvOsMemAttribute_Uncached,
            (void**)&g_pAPB_MISC)!=NvSuccess)
    {
        printk(KERN_INFO "failed to map misc; DVFS will not function"
               " correctly as a result\n");
        return;
    }

    NvRmModuleGetBaseAddress(s_hRmGlobal,
        NVRM_MODULE_ID(NvRmPrivModuleID_Iram, 0), &g_IramPA, &len);

    if (NvRmPhysicalMemMap(g_IramPA, len, NVOS_MEM_READ_WRITE,
            NvOsMemAttribute_Uncached,
            (void**)&g_pIRAM)!=NvSuccess)
    {
        printk(KERN_INFO "failed to map iram; DVFS will not function"
               " correctly as a result\n");
        return;
    }

    NvRmModuleGetBaseAddress(s_hRmGlobal,
        NVRM_MODULE_ID(NvRmModuleID_TimerUs, 0), &pa, &len);

    if (NvRmPhysicalMemMap(pa, len, NVOS_MEM_READ_WRITE,
            NvOsMemAttribute_Uncached,
            (void**)&g_pTimerus)!=NvSuccess)
    {
        printk(KERN_INFO "failed to map timerus; DVFS will not function"
               " correctly as a result\n");
        return;
    }

    NvRmModuleGetBaseAddress(s_hRmGlobal,
        NVRM_MODULE_ID(NvRmModuleID_Rtc, 0), &pa, &len);

    if (NvRmPhysicalMemMap(pa, len, NVOS_MEM_READ_WRITE,
            NvOsMemAttribute_Uncached,
            (void**)&g_pRtc)!=NvSuccess)
    {
        printk(KERN_INFO "failed to map rtc; DVFS will not function"
               " correctly as a result\n");
        return;
    }

#if NV_KBC_INTERRUPT_WORKAROUND
    NvRmModuleGetBaseAddress(s_hRmGlobal,
        NVRM_MODULE_ID(NvRmModuleID_Kbc, 0), &pa, &len);

    if (NvRmPhysicalMemMap(pa, len, NVOS_MEM_READ_WRITE,
            NvOsMemAttribute_Uncached,
            (void**)&g_pKBC)!=NvSuccess)
    {
        return;
    }
#endif
    s_pFlowCtrl = pTempFc;
    g_ArmPerif = (NvU32)pTempArmPerif;

    /* Get physical and virtual addresses for a bunch of things
     * 1) The resume address physical - we have to come back here with MMU off
     * 2) The context save physical address - We need to save a bunch of
     * stuff here
     */
    g_resume = virt_to_phys((void*)exit_power_state);
    g_contextSaveVA =
        (uintptr_t)kmalloc(CPU_CONTEXT_SAVE_AREA_SIZE, GFP_ATOMIC);
    g_iramContextSaveVA =
        (uintptr_t)kmalloc(AVP_CONTEXT_SAVE_AREA_SIZE, GFP_ATOMIC);
    g_contextSavePA = virt_to_phys((void*)g_contextSaveVA);
    g_enterLP2PA = virt_to_phys((void*)enter_lp2);

    NvOsBootArgGet(NvBootArgKey_WarmBoot,
        &WarmbootArgs, sizeof(NvBootArgsWarmboot));
    if (NvRmMemHandleClaimPreservedHandle(s_hRmGlobal,
        WarmbootArgs.MemHandleKey, &s_hWarmboot))
    {
        printk("Could not locate Warm booloader!\n");
    }
    else
    {
        g_AvpWarmbootEntry = NvRmMemPin(s_hWarmboot);
    }

    module_context_init();
    power_lp0_init();
}

/*
 *  cpu_ap20_do_idle()
 *
 *  Idle the processor (eg, wait for interrupt).
 *
 *  IRQs are already disabled.
 */
void cpu_ap20_do_idle(void)
{
    unsigned int tmp = 0;
    volatile uint32_t *addr = 0;

    dsb();

    if (likely(s_pFlowCtrl))
    {
        /*
         *  Trigger the "stats monitor" to count the CPU idle cycles.
         */
        if (smp_processor_id())
        {
            addr = (volatile uint32_t*)(s_pFlowCtrl + FLOW_CTLR_HALT_CPU1_EVENTS_0);
        } else
        {
            addr = (volatile uint32_t*)(s_pFlowCtrl + FLOW_CTLR_HALT_CPU_EVENTS_0);
        }

        tmp = NV_DRF_DEF(FLOW_CTLR, HALT_CPU1_EVENTS, MODE, FLOW_MODE_WAITEVENT)
            | NV_DRF_NUM(FLOW_CTLR, HALT_CPU1_EVENTS, JTAG, 1);

        NV_WRITE32(addr, tmp);
        tmp = NV_READ32(addr);
    }

    // Wait for any interrupt
    __asm__ volatile ("wfi");

    if (addr)
    {
        /*
         * Signal "stats monitor" to stop counting the idle cycles.
         */
        tmp = NV_DRF_DEF(FLOW_CTLR, HALT_CPU1_EVENTS, MODE, FLOW_MODE_NONE);
        NV_WRITE32(addr, tmp);
        tmp = NV_READ32(addr);
    }
}

void mach_tegra_idle(void)
{
	bool lp2_ok = true;
	unsigned long sleep_time;

#ifdef CONFIG_WAKELOCK
	if (!main_wake_lock.flags || has_wake_lock(WAKE_LOCK_IDLE))
		lp2_ok = false;
#endif

#if !ENABLE_LP2
	lp2_ok = false;
#endif

	if (!s_pFlowCtrl || num_online_cpus()>1 || !s_hRmGlobal ||
	    !(NvRmPrivGetDfsFlags(s_hRmGlobal) & NvRmDfsStatusFlags_Pause))
		lp2_ok = false;

	if (lp2_ok) {
		struct tick_sched *ts =
			tick_get_tick_sched(smp_processor_id());
		if (!ts->tick_stopped)
			lp2_ok = false;
	}

        if (lp2_ok) {
		unsigned long now, sleep_jiffies;

		now = (unsigned long)get_jiffies_64();
		sleep_jiffies = get_next_timer_interrupt(now) - now;

		if (sleep_jiffies > 1) {
			sleep_time = jiffies_to_usecs(sleep_jiffies - 1);

			sleep_time = min_t(unsigned long, sleep_time,
				LP2_MAX_WAIT_TIME_US);

			if (sleep_time <=
				(LP2_ROUNDTRIP_TIME_US*LP2_PADDING_FACTOR))
				lp2_ok = false;
		} else
			lp2_ok = false;
	}

	if (lp2_ok) {
		sleep_time -= LP2_ROUNDTRIP_TIME_US;
		tegra_lp2_set_trigger(sleep_time);
		cpu_ap20_do_lp2();
		tegra_lp2_set_trigger(0);

		/* add the actual amount of time spent in lp2 to the timers */
		sleep_time = NV_REGR(s_hRmGlobal, NvRmModuleID_Pmif,
			0, APBDEV_PMC_SCRATCH39_0);
		sleep_time -= NV_REGR(s_hRmGlobal, NvRmModuleID_Pmif,
			0, APBDEV_PMC_SCRATCH38_0);

		// jiffies += usecs_to_jiffies(sleep_time);
		// jiffies updated by tick_nohz_restart_sched_tick() after exit
		NvRmPrivSetLp2TimeUS(s_hRmGlobal, sleep_time);
	} else
		cpu_ap20_do_idle();

}

void mach_tegra_reset(void)
{
    NvU32 reg;

    reg = NV_DRF_DEF(APBDEV_PMC, CNTRL, MAIN_RST, ENABLE);
    NV_REGW(s_hRmGlobal, NvRmModuleID_Pmif, 0, APBDEV_PMC_CNTRL_0, reg);
}