1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
|
/*
* arch/arm/mach-tegra/pm-t3.c
*
* Tegra3 SOC-specific power and cluster management
*
* Copyright (c) 2009-2012, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/clockchips.h>
#include <mach/gpio.h>
#include <mach/iomap.h>
#include <mach/irqs.h>
#include <mach/io_dpd.h>
#include <asm/cpu_pm.h>
#include <asm/hardware/gic.h>
#include <trace/events/power.h>
#include "clock.h"
#include "cpuidle.h"
#include "pm.h"
#include "sleep.h"
#include "tegra3_emc.h"
#include "dvfs.h"
#ifdef CONFIG_TEGRA_CLUSTER_CONTROL
#define CAR_CCLK_BURST_POLICY \
(IO_ADDRESS(TEGRA_CLK_RESET_BASE) + 0x20)
#define CAR_SUPER_CCLK_DIVIDER \
(IO_ADDRESS(TEGRA_CLK_RESET_BASE) + 0x24)
#define CAR_CCLKG_BURST_POLICY \
(IO_ADDRESS(TEGRA_CLK_RESET_BASE) + 0x368)
#define CAR_SUPER_CCLKG_DIVIDER \
(IO_ADDRESS(TEGRA_CLK_RESET_BASE) + 0x36C)
#define CAR_CCLKLP_BURST_POLICY \
(IO_ADDRESS(TEGRA_CLK_RESET_BASE) + 0x370)
#define PLLX_DIV2_BYPASS_LP (1<<16)
#define CAR_SUPER_CCLKLP_DIVIDER \
(IO_ADDRESS(TEGRA_CLK_RESET_BASE) + 0x374)
#define CAR_BOND_OUT_V \
(IO_ADDRESS(TEGRA_CLK_RESET_BASE) + 0x390)
#define CAR_BOND_OUT_V_CPU_G (1<<0)
#define CAR_BOND_OUT_V_CPU_LP (1<<1)
#define CAR_CLK_ENB_V_SET \
(IO_ADDRESS(TEGRA_CLK_RESET_BASE) + 0x440)
#define CAR_CLK_ENB_V_CPU_G (1<<0)
#define CAR_CLK_ENB_V_CPU_LP (1<<1)
#define CAR_RST_CPUG_CMPLX_SET \
(IO_ADDRESS(TEGRA_CLK_RESET_BASE) + 0x450)
#define CAR_RST_CPUG_CMPLX_CLR \
(IO_ADDRESS(TEGRA_CLK_RESET_BASE) + 0x454)
#define CAR_RST_CPULP_CMPLX_SET \
(IO_ADDRESS(TEGRA_CLK_RESET_BASE) + 0x458)
#define CAR_RST_CPULP_CMPLX_CLR \
(IO_ADDRESS(TEGRA_CLK_RESET_BASE) + 0x45C)
#define CAR_CLK_CPUG_CMPLX_SET \
(IO_ADDRESS(TEGRA_CLK_RESET_BASE) + 0x460)
#define CAR_CLK_CPUG_CMPLX_CLR \
(IO_ADDRESS(TEGRA_CLK_RESET_BASE) + 0x464)
#define CAR_CLK_CPULP_CMPLX_SET \
(IO_ADDRESS(TEGRA_CLK_RESET_BASE) + 0x468)
#define CAR_CLK_CPULP_CMPLX_CLR \
(IO_ADDRESS(TEGRA_CLK_RESET_BASE) + 0x46C)
#define CPU_CLOCK(cpu) (0x1<<(8+cpu))
#define CPU_RESET(cpu) (0x1111ul<<(cpu))
#define PLLX_FO_G (1<<28)
#define PLLX_FO_LP (1<<29)
#define CLK_RST_CONTROLLER_PLLX_MISC_0 \
(IO_ADDRESS(TEGRA_CLK_RESET_BASE) + 0xE4)
static int cluster_switch_prolog_clock(unsigned int flags)
{
u32 reg;
u32 CclkBurstPolicy;
u32 SuperCclkDivier;
/* Read the bond out register containing the G and LP CPUs. */
reg = readl(CAR_BOND_OUT_V);
/* Sync G-PLLX divider bypass with LP (no effect on G, just to prevent
LP settings overwrite by save/restore code */
CclkBurstPolicy = ~PLLX_DIV2_BYPASS_LP & readl(CAR_CCLKG_BURST_POLICY);
CclkBurstPolicy |= PLLX_DIV2_BYPASS_LP & readl(CAR_CCLKLP_BURST_POLICY);
writel(CclkBurstPolicy, CAR_CCLKG_BURST_POLICY);
/* Switching to G? */
if (flags & TEGRA_POWER_CLUSTER_G) {
/* Do the G CPUs exist? */
if (reg & CAR_BOND_OUT_V_CPU_G)
return -ENXIO;
/* Keep G CPU clock policy set by upper laayer, with the
exception of the transition via LP1 */
if (flags & TEGRA_POWER_SDRAM_SELFREFRESH) {
/* In LP1 power mode come up on CLKM (oscillator) */
CclkBurstPolicy = readl(CAR_CCLKG_BURST_POLICY);
CclkBurstPolicy &= ~0xF;
SuperCclkDivier = 0;
writel(CclkBurstPolicy, CAR_CCLKG_BURST_POLICY);
writel(SuperCclkDivier, CAR_SUPER_CCLKG_DIVIDER);
}
/* Hold G CPUs 1-3 in reset after the switch */
reg = CPU_RESET(1) | CPU_RESET(2) | CPU_RESET(3);
writel(reg, CAR_RST_CPUG_CMPLX_SET);
/* Take G CPU 0 out of reset after the switch */
reg = CPU_RESET(0);
writel(reg, CAR_RST_CPUG_CMPLX_CLR);
/* Disable the clocks on G CPUs 1-3 after the switch */
reg = CPU_CLOCK(1) | CPU_CLOCK(2) | CPU_CLOCK(3);
writel(reg, CAR_CLK_CPUG_CMPLX_SET);
/* Enable the clock on G CPU 0 after the switch */
reg = CPU_CLOCK(0);
writel(reg, CAR_CLK_CPUG_CMPLX_CLR);
/* Enable the G CPU complex clock after the switch */
reg = CAR_CLK_ENB_V_CPU_G;
writel(reg, CAR_CLK_ENB_V_SET);
}
/* Switching to LP? */
else if (flags & TEGRA_POWER_CLUSTER_LP) {
/* Does the LP CPU exist? */
if (reg & CAR_BOND_OUT_V_CPU_LP)
return -ENXIO;
/* Keep LP CPU clock policy set by upper layer, with the
exception of the transition via LP1 */
if (flags & TEGRA_POWER_SDRAM_SELFREFRESH) {
/* In LP1 power mode come up on CLKM (oscillator) */
CclkBurstPolicy = readl(CAR_CCLKLP_BURST_POLICY);
CclkBurstPolicy &= ~0xF;
SuperCclkDivier = 0;
writel(CclkBurstPolicy, CAR_CCLKLP_BURST_POLICY);
writel(SuperCclkDivier, CAR_SUPER_CCLKLP_DIVIDER);
}
/* Take the LP CPU ut of reset after the switch */
reg = CPU_RESET(0);
writel(reg, CAR_RST_CPULP_CMPLX_CLR);
/* Enable the clock on the LP CPU after the switch */
reg = CPU_CLOCK(0);
writel(reg, CAR_CLK_CPULP_CMPLX_CLR);
/* Enable the LP CPU complex clock after the switch */
reg = CAR_CLK_ENB_V_CPU_LP;
writel(reg, CAR_CLK_ENB_V_SET);
}
return 0;
}
static inline void enable_pllx_cluster_port(void)
{
u32 val = readl(CLK_RST_CONTROLLER_PLLX_MISC_0);
val &= (is_lp_cluster()?(~PLLX_FO_G):(~PLLX_FO_LP));
writel(val, CLK_RST_CONTROLLER_PLLX_MISC_0);
}
static inline void disable_pllx_cluster_port(void)
{
u32 val = readl(CLK_RST_CONTROLLER_PLLX_MISC_0);
val |= (is_lp_cluster()?PLLX_FO_G:PLLX_FO_LP);
writel(val, CLK_RST_CONTROLLER_PLLX_MISC_0);
}
void tegra_cluster_switch_prolog(unsigned int flags)
{
unsigned int target_cluster = flags & TEGRA_POWER_CLUSTER_MASK;
unsigned int current_cluster = is_lp_cluster()
? TEGRA_POWER_CLUSTER_LP
: TEGRA_POWER_CLUSTER_G;
u32 reg;
/* Read the flow controler CSR register and clear the CPU switch
and immediate flags. If an actual CPU switch is to be performed,
re-write the CSR register with the desired values. */
reg = readl(FLOW_CTRL_CPU_CSR(0));
reg &= ~(FLOW_CTRL_CPU_CSR_IMMEDIATE_WAKE |
FLOW_CTRL_CPU_CSR_SWITCH_CLUSTER);
/* Program flow controller for immediate wake if requested */
if (flags & TEGRA_POWER_CLUSTER_IMMEDIATE)
reg |= FLOW_CTRL_CPU_CSR_IMMEDIATE_WAKE;
/* Do nothing if no switch actions requested */
if (!target_cluster)
goto done;
if ((current_cluster != target_cluster) ||
(flags & TEGRA_POWER_CLUSTER_FORCE)) {
if (current_cluster != target_cluster) {
// Set up the clocks for the target CPU.
if (cluster_switch_prolog_clock(flags)) {
/* The target CPU does not exist */
goto done;
}
/* Set up the flow controller to switch CPUs. */
reg |= FLOW_CTRL_CPU_CSR_SWITCH_CLUSTER;
/* Enable target port of PLL_X */
enable_pllx_cluster_port();
}
}
done:
writel(reg, FLOW_CTRL_CPU_CSR(0));
}
static void cluster_switch_epilog_actlr(void)
{
u32 actlr;
/* TLB maintenance broadcast bit (FW) is stubbed out on LP CPU (reads
as zero, writes ignored). Hence, it is not preserved across G=>LP=>G
switch by CPU save/restore code, but SMP bit is restored correctly.
Synchronize these two bits here after LP=>G transition. Note that
only CPU0 core is powered on before and after the switch. See also
bug 807595. */
__asm__("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
if (actlr & (0x1 << 6)) {
actlr |= 0x1;
__asm__("mcr p15, 0, %0, c1, c0, 1\n" : : "r" (actlr));
}
}
static void cluster_switch_epilog_gic(void)
{
unsigned int max_irq, i;
void __iomem *gic_base = IO_ADDRESS(TEGRA_ARM_INT_DIST_BASE);
/* Reprogram the interrupt affinity because the on the LP CPU,
the interrupt distributor affinity regsiters are stubbed out
by ARM (reads as zero, writes ignored). So when the LP CPU
context save code runs, the affinity registers will read
as all zero. This causes all interrupts to be effectively
disabled when back on the G CPU because they aren't routable
to any CPU. See bug 667720 for details. */
max_irq = readl(gic_base + GIC_DIST_CTR) & 0x1f;
max_irq = (max_irq + 1) * 32;
for (i = 32; i < max_irq; i += 4) {
u32 val = 0x01010101;
#ifdef CONFIG_GIC_SET_MULTIPLE_CPUS
unsigned int irq;
for (irq = i; irq < (i + 4); irq++) {
struct cpumask mask;
struct irq_desc *desc = irq_to_desc(irq);
if (desc && desc->affinity_hint &&
desc->irq_data.affinity) {
if (cpumask_and(&mask, desc->affinity_hint,
desc->irq_data.affinity))
val |= (*cpumask_bits(&mask) & 0xff) <<
((irq & 3) * 8);
}
}
#endif
writel(val, gic_base + GIC_DIST_TARGET + i * 4 / 4);
}
}
void tegra_cluster_switch_epilog(unsigned int flags)
{
u32 reg;
/* Make sure the switch and immediate flags are cleared in
the flow controller to prevent undesirable side-effects
for future users of the flow controller. */
reg = readl(FLOW_CTRL_CPU_CSR(0));
reg &= ~(FLOW_CTRL_CPU_CSR_IMMEDIATE_WAKE |
FLOW_CTRL_CPU_CSR_SWITCH_CLUSTER);
writel(reg, FLOW_CTRL_CPU_CSR(0));
/* Perform post-switch LP=>G clean-up */
if (!is_lp_cluster()) {
cluster_switch_epilog_actlr();
cluster_switch_epilog_gic();
}
/* Disable unused port of PLL_X */
disable_pllx_cluster_port();
#if DEBUG_CLUSTER_SWITCH
{
/* FIXME: clock functions below are taking mutex */
struct clk *c = tegra_get_clock_by_name(
is_lp_cluster() ? "cpu_lp" : "cpu_g");
DEBUG_CLUSTER(("%s: %s freq %lu\r\n", __func__,
is_lp_cluster() ? "LP" : "G", clk_get_rate(c)));
}
#endif
}
int tegra_cluster_control(unsigned int us, unsigned int flags)
{
static ktime_t last_g2lp;
unsigned int target_cluster = flags & TEGRA_POWER_CLUSTER_MASK;
unsigned int current_cluster = is_lp_cluster()
? TEGRA_POWER_CLUSTER_LP
: TEGRA_POWER_CLUSTER_G;
unsigned long irq_flags;
if ((target_cluster == TEGRA_POWER_CLUSTER_MASK) || !target_cluster)
return -EINVAL;
if (num_online_cpus() > 1)
return -EBUSY;
if ((current_cluster == target_cluster)
&& !(flags & TEGRA_POWER_CLUSTER_FORCE))
return -EEXIST;
if (target_cluster == TEGRA_POWER_CLUSTER_G)
if (!is_g_cluster_present())
return -EPERM;
trace_power_start(POWER_PSTATE, target_cluster, 0);
if (flags & TEGRA_POWER_CLUSTER_IMMEDIATE)
us = 0;
DEBUG_CLUSTER(("%s(LP%d): %s->%s %s %s %d\r\n", __func__,
(flags & TEGRA_POWER_SDRAM_SELFREFRESH) ? 1 : 2,
is_lp_cluster() ? "LP" : "G",
(target_cluster == TEGRA_POWER_CLUSTER_G) ? "G" : "LP",
(flags & TEGRA_POWER_CLUSTER_IMMEDIATE) ? "immediate" : "",
(flags & TEGRA_POWER_CLUSTER_FORCE) ? "force" : "",
us));
local_irq_save(irq_flags);
if (current_cluster != target_cluster && !timekeeping_suspended) {
ktime_t now = ktime_get();
if (target_cluster == TEGRA_POWER_CLUSTER_G) {
s64 t = ktime_to_us(ktime_sub(now, last_g2lp));
s64 t_off = tegra_cpu_power_off_time();
if (t_off > t)
udelay((unsigned int)(t_off - t));
tegra_dvfs_rail_on(tegra_cpu_rail, now);
} else {
last_g2lp = now;
tegra_dvfs_rail_off(tegra_cpu_rail, now);
}
}
if (flags & TEGRA_POWER_SDRAM_SELFREFRESH) {
if (us)
tegra_lp2_set_trigger(us);
tegra_cluster_switch_prolog(flags);
tegra_suspend_dram(TEGRA_SUSPEND_LP1, flags);
tegra_cluster_switch_epilog(flags);
if (us)
tegra_lp2_set_trigger(0);
} else {
int cpu = 0;
tegra_set_cpu_in_lp2(0);
cpu_pm_enter();
if (!timekeeping_suspended)
clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER,
&cpu);
tegra_idle_lp2_last(0, flags);
if (!timekeeping_suspended)
clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT,
&cpu);
cpu_pm_exit();
tegra_clear_cpu_in_lp2(0);
}
local_irq_restore(irq_flags);
DEBUG_CLUSTER(("%s: %s\r\n", __func__, is_lp_cluster() ? "LP" : "G"));
return 0;
}
#endif
#ifdef CONFIG_PM_SLEEP
void tegra_lp0_suspend_mc(void)
{
/* Since memory frequency after LP0 is restored to boot rate
mc timing is saved during init, not on entry to LP0. Keep
this hook just in case, anyway */
}
void tegra_lp0_resume_mc(void)
{
tegra_mc_timing_restore();
}
void tegra_lp0_cpu_mode(bool enter)
{
static bool entered_on_g = false;
unsigned int flags;
if (enter)
entered_on_g = !is_lp_cluster();
if (entered_on_g) {
flags = enter ? TEGRA_POWER_CLUSTER_LP : TEGRA_POWER_CLUSTER_G;
flags |= TEGRA_POWER_CLUSTER_IMMEDIATE;
tegra_cluster_control(0, flags);
pr_info("Tegra: switched to %s cluster\n", enter ? "LP" : "G");
}
}
#endif
#define IO_DPD_INFO(_name, _index, _bit) \
{ \
.name = _name, \
.io_dpd_reg_index = _index, \
.io_dpd_bit = _bit, \
}
/* PMC IO DPD register offsets */
#define APBDEV_PMC_IO_DPD_REQ_0 0x1b8
#define APBDEV_PMC_IO_DPD_STATUS_0 0x1bc
#define APBDEV_PMC_SEL_DPD_TIM_0 0x1c8
#define APBDEV_DPD_ENABLE_LSB 30
#define APBDEV_DPD2_ENABLE_LSB 5
#define PMC_DPD_SAMPLE 0x20
struct tegra_io_dpd tegra_list_io_dpd[] = {
/* sd dpd bits in dpd2 register */
IO_DPD_INFO("sdhci-tegra.0", 1, 1), /* SDMMC1 */
IO_DPD_INFO("sdhci-tegra.2", 1, 2), /* SDMMC3 */
#if !defined(CONFIG_MACH_APALIS_T30) && !defined(CONFIG_MACH_COLIBRI_T30)
/* Hack: fix eMMC detection */
IO_DPD_INFO("sdhci-tegra.3", 1, 3), /* SDMMC4 */
#endif
};
/* we want to cleanup bootloader io dpd setting in kernel */
static void __iomem *pmc = IO_ADDRESS(TEGRA_PMC_BASE);
#ifdef CONFIG_PM_SLEEP
struct tegra_io_dpd *tegra_io_dpd_get(struct device *dev)
{
int i;
const char *name = dev ? dev_name(dev) : NULL;
if (name) {
for (i = 0; i < ARRAY_SIZE(tegra_list_io_dpd); i++) {
if (!(strncmp(tegra_list_io_dpd[i].name, name,
strlen(name)))) {
return &tegra_list_io_dpd[i];
}
}
}
dev_info(dev, "Error: tegra3 io dpd not supported for %s\n",
((name) ? name : "NULL"));
return NULL;
}
static DEFINE_SPINLOCK(tegra_io_dpd_lock);
void tegra_io_dpd_enable(struct tegra_io_dpd *hnd)
{
unsigned int enable_mask;
unsigned int dpd_status;
unsigned int dpd_enable_lsb;
if ((!hnd)) {
pr_warn("SD IO DPD handle NULL in %s\n", __func__);
return;
}
spin_lock(&tegra_io_dpd_lock);
dpd_enable_lsb = (hnd->io_dpd_reg_index) ? APBDEV_DPD2_ENABLE_LSB :
APBDEV_DPD_ENABLE_LSB;
writel(0x1, pmc + PMC_DPD_SAMPLE);
writel(0x10, pmc + APBDEV_PMC_SEL_DPD_TIM_0);
enable_mask = ((1 << hnd->io_dpd_bit) | (2 << dpd_enable_lsb));
writel(enable_mask, pmc + (APBDEV_PMC_IO_DPD_REQ_0 +
hnd->io_dpd_reg_index * 8));
udelay(1);
dpd_status = readl(pmc + (APBDEV_PMC_IO_DPD_STATUS_0 +
hnd->io_dpd_reg_index * 8));
if (!(dpd_status & (1 << hnd->io_dpd_bit)))
pr_info("Error: dpd%d enable failed, status=%#x\n",
(hnd->io_dpd_reg_index + 1), dpd_status);
/* Sample register must be reset before next sample operation */
writel(0x0, pmc + PMC_DPD_SAMPLE);
spin_unlock(&tegra_io_dpd_lock);
return;
}
void tegra_io_dpd_disable(struct tegra_io_dpd *hnd)
{
unsigned int enable_mask;
unsigned int dpd_status;
unsigned int dpd_enable_lsb;
if ((!hnd)) {
pr_warn("SD IO DPD handle NULL in %s\n", __func__);
return;
}
spin_lock(&tegra_io_dpd_lock);
dpd_enable_lsb = (hnd->io_dpd_reg_index) ? APBDEV_DPD2_ENABLE_LSB :
APBDEV_DPD_ENABLE_LSB;
enable_mask = ((1 << hnd->io_dpd_bit) | (1 << dpd_enable_lsb));
writel(enable_mask, pmc + (APBDEV_PMC_IO_DPD_REQ_0 +
hnd->io_dpd_reg_index * 8));
dpd_status = readl(pmc + (APBDEV_PMC_IO_DPD_STATUS_0 +
hnd->io_dpd_reg_index * 8));
if (dpd_status & (1 << hnd->io_dpd_bit))
pr_info("Error: dpd%d disable failed, status=%#x\n",
(hnd->io_dpd_reg_index + 1), dpd_status);
spin_unlock(&tegra_io_dpd_lock);
return;
}
static void tegra_io_dpd_delayed_disable(struct work_struct *work)
{
struct tegra_io_dpd *hnd = container_of(
to_delayed_work(work), struct tegra_io_dpd, delay_dpd);
tegra_io_dpd_disable(hnd);
hnd->need_delay_dpd = 0;
}
int tegra_io_dpd_init(void)
{
int i;
for (i = 0;
i < (sizeof(tegra_list_io_dpd) / sizeof(struct tegra_io_dpd));
i++) {
INIT_DELAYED_WORK(&(tegra_list_io_dpd[i].delay_dpd),
tegra_io_dpd_delayed_disable);
mutex_init(&(tegra_list_io_dpd[i].delay_lock));
tegra_list_io_dpd[i].need_delay_dpd = 0;
}
return 0;
}
#else
int tegra_io_dpd_init(void)
{
return 0;
}
void tegra_io_dpd_enable(struct tegra_io_dpd *hnd)
{
}
void tegra_io_dpd_disable(struct tegra_io_dpd *hnd)
{
}
struct tegra_io_dpd *tegra_io_dpd_get(struct device *dev)
{
return NULL;
}
#endif
EXPORT_SYMBOL(tegra_io_dpd_get);
EXPORT_SYMBOL(tegra_io_dpd_enable);
EXPORT_SYMBOL(tegra_io_dpd_disable);
EXPORT_SYMBOL(tegra_io_dpd_init);
struct io_dpd_reg_info {
u32 req_reg_off;
u8 dpd_code_lsb;
};
static struct io_dpd_reg_info t3_io_dpd_req_regs[] = {
{0x1b8, 30},
{0x1c0, 5},
};
/* io dpd off request code */
#define IO_DPD_CODE_OFF 1
/* cleans io dpd settings from bootloader during kernel init */
void tegra_bl_io_dpd_cleanup()
{
int i;
unsigned int dpd_mask;
unsigned int dpd_status;
pr_info("Clear bootloader IO dpd settings\n");
/* clear all dpd requests from bootloader */
for (i = 0; i < ARRAY_SIZE(t3_io_dpd_req_regs); i++) {
dpd_mask = ((1 << t3_io_dpd_req_regs[i].dpd_code_lsb) - 1);
dpd_mask |= (IO_DPD_CODE_OFF <<
t3_io_dpd_req_regs[i].dpd_code_lsb);
writel(dpd_mask, pmc + t3_io_dpd_req_regs[i].req_reg_off);
/* dpd status register is next to req reg in tegra3 */
dpd_status = readl(pmc +
(t3_io_dpd_req_regs[i].req_reg_off + 4));
}
return;
}
EXPORT_SYMBOL(tegra_bl_io_dpd_cleanup);
|