1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
|
/*
* arch/arm/mach-tegra/power-t2.c
*
* CPU shutdown routines for Tegra 2 SoCs
*
* Copyright (c) 2010, NVIDIA Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "power.h"
extern void NvPrivAp20MaskIrq(unsigned int irq);
extern void NvPrivAp20UnmaskIrq(unsigned int irq);
extern int enter_power_state(PowerState state, unsigned int proc_id);
extern void prepare_for_wb0(void);
extern NvU32* perform_context_operation(PowerModuleContext Context);
void cpu_ap20_do_lp2(void);
void resume(unsigned int state);
static NvU32 select_wakeup_pll(void);
void enable_pll(PowerPll pll, NvBool enable);
void enable_plls(NvBool enable);
void do_suspend_prep(void);
void reset_cpu(unsigned int cpu, unsigned int reset);
extern NvRmDeviceHandle s_hRmGlobal;
uintptr_t g_resume = 0, g_contextSavePA = 0, g_contextSaveVA = 0;
NvU32 g_modifiedPlls;
NvU32 g_wakeupCcbp = 0, g_NumActiveCPUs, g_Sync = 0, g_ArmPerif = 0;
NvU32 g_enterLP2PA = 0;
NvU32 g_localTimerLoadRegister, g_localTimerCntrlRegister;
NvU32 g_coreSightClock, g_currentCcbp;
void cpu_ap20_do_lp0(void)
{
//NOTE: Once we enter this routine, there is no way to avert a LP0.
//If there is a potential interrupt waiting, we will enter LP0
//and exit immediately as soon the PMC samples it and the
//power good timer expires.
NvU32 Reg;
NvOdmPmuProperty PmuProperty;
NvBool HasPmuProperty = NvOdmQueryGetPmuProperty(&PmuProperty);
//Inform RM about entry to LP0 state
NvRmPrivPowerSetState(s_hRmGlobal, NvRmPowerState_LP0);
if (HasPmuProperty && PmuProperty.CombinedPowerReq)
{
//Enable core power request, and tristate CPU power request outputs
//(both requests are active, so there are no glitches as long as
//proper external pu/pd are set)
Reg = NV_REGR(s_hRmGlobal, NvRmModuleID_Pmif, 0,
APBDEV_PMC_CNTRL_0);
Reg = NV_FLD_SET_DRF_DEF(APBDEV_PMC, CNTRL, PWRREQ_OE, ENABLE, Reg);
NV_REGW(s_hRmGlobal, NvRmModuleID_Pmif, 0,
APBDEV_PMC_CNTRL_0, Reg);
// FIXME: do we need an explicit delay?
Reg = NV_REGR(s_hRmGlobal, NvRmModuleID_Pmif, 0,
APBDEV_PMC_CNTRL_0);
Reg = NV_FLD_SET_DRF_DEF(APBDEV_PMC, CNTRL, CPUPWRREQ_OE, DISABLE, Reg);
}
// Enter low power LP0 mode
prepare_for_wb0();
//TODO: Shadow required state here
if (HasPmuProperty && PmuProperty.CombinedPowerReq)
{
//Enable CPU power request and tristate core power request outputs
//(both requests are active, so there are no glitches as long as
//proper external pu/pd are set)
Reg = NV_REGR(s_hRmGlobal, NvRmModuleID_Pmif, 0,
APBDEV_PMC_CNTRL_0);
Reg = NV_FLD_SET_DRF_DEF(APBDEV_PMC, CNTRL, CPUPWRREQ_OE, ENABLE, Reg);
NV_REGW(s_hRmGlobal, NvRmModuleID_Pmif, 0,
APBDEV_PMC_CNTRL_0, Reg);
// FIXME: do we need an explicit delay ?
Reg = NV_REGR(s_hRmGlobal, NvRmModuleID_Pmif, 0,
APBDEV_PMC_CNTRL_0);
Reg = NV_FLD_SET_DRF_DEF(APBDEV_PMC, CNTRL, PWRREQ_OE, DISABLE, Reg);
NV_REGW(s_hRmGlobal, NvRmModuleID_Pmif, 0,
APBDEV_PMC_CNTRL_0, Reg);
}
//Restore the saved module(s) context
//Interrupt, gpio, pin mux, clock management etc
perform_context_operation(PowerModuleContext_Restore);
}
void cpu_ap20_do_lp2(void)
{
NvU32 irq, moduleId;
unsigned int proc_id = smp_processor_id();
moduleId = NVRM_MODULE_ID(NvRmModuleID_SysStatMonitor, 0);
irq = NvRmGetIrqForLogicalInterrupt(s_hRmGlobal, moduleId, 0);
//Save our context ptrs to scratch regs
NV_REGW(s_hRmGlobal, NvRmModuleID_Pmif, 0,
APBDEV_PMC_SCRATCH1_0, g_resume);
NV_REGW(s_hRmGlobal, NvRmModuleID_Pmif, 0,
APBDEV_PMC_SCRATCH37_0, g_contextSavePA);
//Only CPU0 must execute the actual suspend operations
//CPU1 must be in the reset state before we continue LP2
if (!proc_id)
{
//Disable the Statistics interrupt
NvPrivAp20MaskIrq(irq);
do_suspend_prep();
}
//Do LP2
enter_power_state(POWER_STATE_LP2, proc_id);
if (!proc_id)
{
//We're back
NvPrivAp20UnmaskIrq(irq);
g_NumActiveCPUs = num_online_cpus();
//We're back
//Delay if needed
if (g_modifiedPlls & PowerPllC)
enable_pll(PowerPllC, NV_TRUE);
if (g_modifiedPlls & PowerPllM)
enable_pll(PowerPllM, NV_TRUE);
if (g_modifiedPlls & PowerPllP)
enable_pll(PowerPllP, NV_TRUE);
if (g_modifiedPlls & PowerPllX)
enable_pll(PowerPllX, NV_TRUE);
NvOsWaitUS(300);
//Restore burst policy
NV_REGW(s_hRmGlobal, NvRmPrivModuleID_ClockAndReset, 0,
CLK_RST_CONTROLLER_CCLK_BURST_POLICY_0, g_currentCcbp);
//Restore the CoreSight clock source.
NV_REGW(s_hRmGlobal, NvRmPrivModuleID_ClockAndReset, 0,
CLK_RST_CONTROLLER_CLK_SOURCE_CSITE_0, g_coreSightClock);
}
}
static NvU32 select_wakeup_pll(void)
{
NvU32 Reg = 0; // Scratch register
NvU32 CpuState; // CPU run state
NvU32 Ccbp; // CPU clock burst policy
NvU32 CurrentCcbp; // CPU clock burst policy
NvU32 PllMask; // Mask of possible PLLs
NvU32 Pll; // Wakeup PLL
//Get the current CPU burst policy.
CurrentCcbp = NV_REGR(s_hRmGlobal, NvRmPrivModuleID_ClockAndReset, 0,
CLK_RST_CONTROLLER_CCLK_BURST_POLICY_0);
Ccbp = CurrentCcbp;
//Assume wakeup will be same as current.
g_wakeupCcbp = Ccbp;
//Extract the current burst policy system state.
CpuState = NV_DRF_VAL(CLK_RST_CONTROLLER, CCLK_BURST_POLICY,
CPU_STATE, Ccbp);
switch (CpuState)
{
case CLK_RST_CONTROLLER_CCLK_BURST_POLICY_0_CPU_STATE_STDBY:
// Running on the 32KHz oscillator.
return CurrentCcbp;
case CLK_RST_CONTROLLER_CCLK_BURST_POLICY_0_CPU_STATE_IDLE:
// Extract the 'idle' state clock source.
Reg = NV_DRF_VAL(CLK_RST_CONTROLLER, CCLK_BURST_POLICY,
CWAKEUP_IDLE_SOURCE, Ccbp);
break;
case CLK_RST_CONTROLLER_CCLK_BURST_POLICY_0_CPU_STATE_RUN:
// Extract the 'run' state clock source.
Reg = NV_DRF_VAL(CLK_RST_CONTROLLER, CCLK_BURST_POLICY,
CWAKEUP_RUN_SOURCE, Ccbp);
break;
case CLK_RST_CONTROLLER_CCLK_BURST_POLICY_0_CPU_STATE_IRQ:
// Extract the 'IRQ' state clock source.
Reg = NV_DRF_VAL(CLK_RST_CONTROLLER, CCLK_BURST_POLICY,
CWAKEUP_IRQ_SOURCE, Ccbp);
break;
case CLK_RST_CONTROLLER_CCLK_BURST_POLICY_0_CPU_STATE_FIQ:
// Extract the 'FIQ' state clock source.
Reg = NV_DRF_VAL(CLK_RST_CONTROLLER, CCLK_BURST_POLICY,
CWAKEUP_FIQ_SOURCE, Ccbp);
break;
default:
break;
}
// Are we running on PLL-X right now?
if (Reg != CLK_RST_CONTROLLER_CCLK_BURST_POLICY_0_CWAKEUP_IRQ_SOURCE_PLLX_OUT0)
{
// No. Whatever PLL we're running on now will be there when we wake up.
return CurrentCcbp;
}
// We're running on PLL-X now. When the CPU complex is powered down, PLL-X
// will be reset. Add PLL-X to the list of PLLs that need to be restarted.
g_modifiedPlls |= PowerPllX;
// Get the possible PLL clock sources for the CPU complex. Don't consider
// any PLLs that were turned off and of course PLL-X is not a possibility.
PllMask = (PowerPllC | PowerPllP | PowerPllM) & ~g_modifiedPlls;
// Pick a PLL source for the CPU complex so that we don't have to
// run on the oscillator which is soooo slooooow.
Pll = CLK_RST_CONTROLLER_CCLK_BURST_POLICY_0_CWAKEUP_RUN_SOURCE_CLKM;
// Will there be a running PLL for the CPU when we wake up?
if (PllMask)
{
// First choice is to run on PLL-M? Will it be available?
if (PllMask & PowerPllM)
{
// Is it running now?
Reg = NV_REGR(s_hRmGlobal, NvRmPrivModuleID_ClockAndReset, 0,
CLK_RST_CONTROLLER_PLLM_BASE_0);
if (NV_DRF_VAL(CLK_RST_CONTROLLER, PLLM_BASE, PLLM_ENABLE, Reg))
{
// Yes. Switch to PLL-M now so we're be on it when we get back.
Pll = CLK_RST_CONTROLLER_CCLK_BURST_POLICY_0_CWAKEUP_RUN_SOURCE_PLLM_OUT0;
goto SetWakeupSource;
}
}
// Next choice is to run on PLL-P? Will it be available?
if (PllMask & PowerPllP)
{
// Is it running now?
Reg = NV_REGR(s_hRmGlobal, NvRmPrivModuleID_ClockAndReset,
0, CLK_RST_CONTROLLER_PLLP_BASE_0);
if (NV_DRF_VAL(CLK_RST_CONTROLLER, PLLP_BASE, PLLP_ENABLE, Reg))
{
Pll = CLK_RST_CONTROLLER_CCLK_BURST_POLICY_0_CWAKEUP_RUN_SOURCE_PLLP_OUT0;
goto SetWakeupSource;
}
}
// Next choice is to run on PLL-C? Will it be available?
if (PllMask & PowerPllC)
{
// Is it running now?
Reg = NV_REGR(s_hRmGlobal, NvRmPrivModuleID_ClockAndReset, 0,
CLK_RST_CONTROLLER_PLLC_BASE_0);
if (NV_DRF_VAL(CLK_RST_CONTROLLER, PLLC_BASE, PLLC_ENABLE, Reg))
{
Pll = CLK_RST_CONTROLLER_CCLK_BURST_POLICY_0_CWAKEUP_RUN_SOURCE_PLLC_OUT0;
goto SetWakeupSource;
}
}
}
SetWakeupSource:
switch (CpuState)
{
case CLK_RST_CONTROLLER_CCLK_BURST_POLICY_0_CPU_STATE_IDLE:
// Extract the 'idle' state clock source.
Ccbp = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, CCLK_BURST_POLICY,
CWAKEUP_IDLE_SOURCE, Pll, Ccbp);
break;
case CLK_RST_CONTROLLER_CCLK_BURST_POLICY_0_CPU_STATE_RUN:
// Extract the 'run' state clock source.
Ccbp = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, CCLK_BURST_POLICY,
CWAKEUP_RUN_SOURCE, Pll, Ccbp);
break;
case CLK_RST_CONTROLLER_CCLK_BURST_POLICY_0_CPU_STATE_IRQ:
// Extract the 'IRQ' state clock source.
Ccbp = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, CCLK_BURST_POLICY,
CWAKEUP_IRQ_SOURCE, Pll, Ccbp);
break;
case CLK_RST_CONTROLLER_CCLK_BURST_POLICY_0_CPU_STATE_FIQ:
// Extract the 'FIQ' state clock source.
Ccbp = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, CCLK_BURST_POLICY,
CWAKEUP_FIQ_SOURCE, Pll, Ccbp);
break;
default:
break;
}
// Return the wakeup source.
g_wakeupCcbp = Ccbp;
return CurrentCcbp;
}
void enable_pll(PowerPll pll, NvBool enable)
{
NvU32 reg;
switch(pll)
{
case PowerPllM:
reg = NV_REGR(s_hRmGlobal, NvRmPrivModuleID_ClockAndReset,
0, CLK_RST_CONTROLLER_PLLM_BASE_0);
reg = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, PLLM_BASE,
PLLM_ENABLE, (enable ? 1 : 0), reg);
NV_REGW(s_hRmGlobal, NvRmPrivModuleID_ClockAndReset,
0, CLK_RST_CONTROLLER_PLLM_BASE_0, reg);
break;
case PowerPllC:
reg = NV_REGR(s_hRmGlobal, NvRmPrivModuleID_ClockAndReset,
0, CLK_RST_CONTROLLER_PLLC_BASE_0);
reg = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, PLLC_BASE,
PLLC_ENABLE, (enable ? 1 : 0), reg);
NV_REGW(s_hRmGlobal, NvRmPrivModuleID_ClockAndReset,
0, CLK_RST_CONTROLLER_PLLC_BASE_0, reg);
break;
case PowerPllP:
reg = NV_REGR(s_hRmGlobal, NvRmPrivModuleID_ClockAndReset,
0, CLK_RST_CONTROLLER_PLLP_BASE_0);
reg = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, PLLP_BASE,
PLLP_ENABLE, (enable ? 1 : 0), reg);
NV_REGW(s_hRmGlobal, NvRmPrivModuleID_ClockAndReset, 0,
CLK_RST_CONTROLLER_PLLP_BASE_0, reg);
break;
case PowerPllA:
reg = NV_REGR(s_hRmGlobal, NvRmPrivModuleID_ClockAndReset,
0, CLK_RST_CONTROLLER_PLLA_BASE_0);
reg = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, PLLA_BASE,
PLLA_ENABLE, (enable ? 1 : 0), reg);
NV_REGW(s_hRmGlobal, NvRmPrivModuleID_ClockAndReset,
0, CLK_RST_CONTROLLER_PLLA_BASE_0, reg);
break;
default:
break;
}
}
void enable_plls(NvBool enable)
{
NvU32 dfsPllFlags = NvRmPrivGetDfsFlags(s_hRmGlobal);
g_modifiedPlls = 0;
//DFS tells us which PLLs are safe to turn off
if (dfsPllFlags & NvRmDfsStatusFlags_StopPllC0)
{
enable_pll(PowerPllC, NV_FALSE);
g_modifiedPlls |= PowerPllC;
}
//pllp
if ((dfsPllFlags & NvRmDfsStatusFlags_StopPllP0) &&
(dfsPllFlags & NvRmDfsStatusFlags_StopPllA0))
{
enable_pll(PowerPllP, NV_FALSE);
g_modifiedPlls |= PowerPllP;
}
//pllm
if (dfsPllFlags & NvRmDfsStatusFlags_StopPllM0)
{
enable_pll(PowerPllM, NV_FALSE);
g_modifiedPlls |= PowerPllM;
}
//pllx - DFS currently doesn't signal this, but it doesn't matter
//We're going to turn it off anyway
if (dfsPllFlags & NvRmDfsStatusFlags_StopPllX0)
{
}
}
void do_suspend_prep(void)
{
NvU32 reg;
//Enable CPU power request output
reg = NV_REGR(s_hRmGlobal, NvRmModuleID_Pmif, 0, APBDEV_PMC_CNTRL_0);
reg = NV_FLD_SET_DRF_DEF(APBDEV_PMC, CNTRL, CPUPWRREQ_OE, ENABLE, reg);
NV_REGW(s_hRmGlobal, NvRmModuleID_Pmif, 0, APBDEV_PMC_CNTRL_0, reg);
//Save the CoreSight stuff
g_coreSightClock = NV_REGR(s_hRmGlobal, NvRmPrivModuleID_ClockAndReset,
0, CLK_RST_CONTROLLER_CLK_SOURCE_CSITE_0);
reg = NV_DRF_DEF(CLK_RST_CONTROLLER, CLK_SOURCE_CSITE,
CSITE_CLK_SRC, CLK_M);
NV_REGW(s_hRmGlobal, NvRmPrivModuleID_ClockAndReset, 0,
CLK_RST_CONTROLLER_CLK_SOURCE_CSITE_0, reg);
//Turn off necessary PLLs
enable_plls(NV_FALSE);
//Select the wakeup pll
g_currentCcbp = select_wakeup_pll();
}
void reset_cpu(unsigned int cpu, unsigned int reset)
{
NvU32 reg;
if (reset)
{
reg = NV_DRF_DEF(FLOW_CTLR, HALT_CPU1_EVENTS, MODE,
FLOW_MODE_WAITEVENT);
if (cpu)
{
NV_REGW(s_hRmGlobal, NvRmModuleID_FlowCtrl, 0,
FLOW_CTLR_HALT_CPU1_EVENTS_0, reg);
}
else
{
NV_REGW(s_hRmGlobal, NvRmModuleID_FlowCtrl, 0,
FLOW_CTLR_HALT_CPU_EVENTS_0, reg);
}
// Place CPUn into reset.
reg = NV_DRF_NUM(CLK_RST_CONTROLLER, RST_CPU_CMPLX_SET, SET_CPURESET0, 1)
| NV_DRF_NUM(CLK_RST_CONTROLLER, RST_CPU_CMPLX_SET, SET_DBGRESET0, 1)
| NV_DRF_NUM(CLK_RST_CONTROLLER, RST_CPU_CMPLX_SET, SET_DERESET0, 1);
reg <<= cpu;
NV_REGW(s_hRmGlobal, NvRmPrivModuleID_ClockAndReset, 0,
CLK_RST_CONTROLLER_RST_CPU_CMPLX_SET_0, reg);
}
else
{
reg = NV_DRF_DEF(FLOW_CTLR, HALT_CPU1_EVENTS, MODE,
FLOW_MODE_NONE);
if (cpu)
{
NV_REGW(s_hRmGlobal, NvRmModuleID_FlowCtrl, 0,
FLOW_CTLR_HALT_CPU1_EVENTS_0, reg);
}
else
{
NV_REGW(s_hRmGlobal, NvRmModuleID_FlowCtrl, 0,
FLOW_CTLR_HALT_CPU_EVENTS_0, reg);
}
// Take CPUn out of reset.
reg = NV_DRF_NUM(CLK_RST_CONTROLLER, RST_CPU_CMPLX_CLR, CLR_CPURESET0, 1)
| NV_DRF_NUM(CLK_RST_CONTROLLER, RST_CPU_CMPLX_CLR, CLR_DBGRESET0, 1)
| NV_DRF_NUM(CLK_RST_CONTROLLER, RST_CPU_CMPLX_CLR, CLR_DERESET0, 1);
reg <<= cpu;
NV_REGW(s_hRmGlobal, NvRmPrivModuleID_ClockAndReset, 0,
CLK_RST_CONTROLLER_RST_CPU_CMPLX_CLR_0, reg);
}
}
unsigned int check_for_cpu1_reset(void)
{
volatile NvU32 reg;
reg = NV_REGR(s_hRmGlobal, NvRmPrivModuleID_ClockAndReset, 0,
CLK_RST_CONTROLLER_RST_CPU_CMPLX_SET_0);
reg = reg & 0x2;
return reg;
}
void save_local_timers(void)
{
volatile NvU32 *reg = (volatile NvU32 *)(g_ArmPerif+0x600);
volatile NvU32 spin = 0;
while (spin);
g_localTimerLoadRegister = reg[0];
g_localTimerCntrlRegister = reg[2];
}
void restore_local_timers(void)
{
volatile NvU32 *reg = (volatile NvU32 *)(g_ArmPerif+0x600);
volatile NvU32 spin = 0;
while (spin);
reg[0] = g_localTimerLoadRegister;
reg[2] = g_localTimerCntrlRegister;
}
|