summaryrefslogtreecommitdiff
path: root/arch/arm/mach-tegra/tegra11_soctherm.c
blob: 351bb854b7e5c0ea8acb69faa2a182b0ee48fc68 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
/*
 * arch/arm/mach-tegra/tegra11_soctherm.c
 *
 * Copyright (c) 2011-2014, NVIDIA CORPORATION. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/debugfs.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/gpio.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/cpufreq.h>
#include <linux/seq_file.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/irqdomain.h>
#include <linux/slab.h>
#include <linux/suspend.h>
#include <linux/uaccess.h>
#include <linux/thermal.h>
#include <linux/platform_data/thermal_sensors.h>
#include <linux/pid_thermal_gov.h>
#include <linux/bug.h>
#include <linux/tegra-fuse.h>
#include <linux/tegra-pmc.h>
#include <linux/regulator/consumer.h>

#include "iomap.h"
#include "tegra11_soctherm.h"
#include "gpio-names.h"
#include "common.h"
#include "dvfs.h"

static const int MAX_HIGH_TEMP = 127000;
static const int MIN_LOW_TEMP = -127000;

/* Min temp granularity specified as X in 2^X.
 * -1: Hi precision option: 2^-1 = 0.5C (T12x onwards)
 *  0: Lo precision option: 2^0  = 1.0C
 */
#ifdef CONFIG_ARCH_TEGRA_12x_SOC
static const int precision = -1; /* Use high precision on T12x */
#else
static const int precision; /* default 0 -> low precision */
#endif

#define LOWER_PRECISION_FOR_CONV(val)	((!precision) ? ((val)*2) : (val))
#define LOWER_PRECISION_FOR_TEMP(val)	((!precision) ? ((val)/2) : (val))
#define PRECISION_IS_LOWER()		((!precision))
#define PRECISION_TO_STR()		((!precision) ? "Lo" : "Hi")

#define TS_TSENSE_REGS_SIZE		0x20
#define TS_TSENSE_REG_OFFSET(reg, ts)	((reg) + ((ts) * TS_TSENSE_REGS_SIZE))

#define TS_THERM_LVL_REGS_SIZE		0x20
#define TS_THERM_GRP_REGS_SIZE		0x04
#define TS_THERM_REG_OFFSET(rg, lv, gr)	((rg) + ((lv) * TS_THERM_LVL_REGS_SIZE)\
					+ ((gr) * TS_THERM_GRP_REGS_SIZE))

#define CTL_LVL0_CPU0			0x0
#define CTL_LVL0_CPU0_UP_THRESH_SHIFT	17
#define CTL_LVL0_CPU0_UP_THRESH_MASK	0xff
#define CTL_LVL0_CPU0_DN_THRESH_SHIFT	9
#define CTL_LVL0_CPU0_DN_THRESH_MASK	0xff
#define CTL_LVL0_CPU0_EN_SHIFT		8
#define CTL_LVL0_CPU0_EN_MASK		0x1
#define CTL_LVL0_CPU0_CPU_THROT_SHIFT	5
#define CTL_LVL0_CPU0_CPU_THROT_MASK	0x3
#define CTL_LVL0_CPU0_CPU_THROT_LIGHT	0x1
#define CTL_LVL0_CPU0_CPU_THROT_HEAVY	0x2
#define CTL_LVL0_CPU0_GPU_THROT_SHIFT	3
#define CTL_LVL0_CPU0_GPU_THROT_MASK	0x3
#define CTL_LVL0_CPU0_GPU_THROT_LIGHT	0x1
#define CTL_LVL0_CPU0_GPU_THROT_HEAVY	0x2
#define CTL_LVL0_CPU0_MEM_THROT_SHIFT	2
#define CTL_LVL0_CPU0_MEM_THROT_MASK	0x1
#define CTL_LVL0_CPU0_STATUS_SHIFT	0
#define CTL_LVL0_CPU0_STATUS_MASK	0x3

#define THERMTRIP			0x80
#define THERMTRIP_ANY_EN_SHIFT		28
#define THERMTRIP_ANY_EN_MASK		0x1
#define THERMTRIP_MEM_EN_SHIFT		27
#define THERMTRIP_MEM_EN_MASK		0x1
#define THERMTRIP_GPU_EN_SHIFT		26
#define THERMTRIP_GPU_EN_MASK		0x1
#define THERMTRIP_CPU_EN_SHIFT		25
#define THERMTRIP_CPU_EN_MASK		0x1
#define THERMTRIP_TSENSE_EN_SHIFT	24
#define THERMTRIP_TSENSE_EN_MASK	0x1
#define THERMTRIP_GPUMEM_THRESH_SHIFT	16
#define THERMTRIP_GPUMEM_THRESH_MASK	0xff
#define THERMTRIP_CPU_THRESH_SHIFT	8
#define THERMTRIP_CPU_THRESH_MASK	0xff
#define THERMTRIP_TSENSE_THRESH_SHIFT	0
#define THERMTRIP_TSENSE_THRESH_MASK	0xff

#define TS_CPU0_CONFIG0				0xc0
#define TS_CPU0_CONFIG0_TALL_SHIFT		8
#define TS_CPU0_CONFIG0_TALL_MASK		0xfffff
#define TS_CPU0_CONFIG0_TCALC_OVER_SHIFT	4
#define TS_CPU0_CONFIG0_TCALC_OVER_MASK		0x1
#define TS_CPU0_CONFIG0_OVER_SHIFT		3
#define TS_CPU0_CONFIG0_OVER_MASK		0x1
#define TS_CPU0_CONFIG0_CPTR_OVER_SHIFT		2
#define TS_CPU0_CONFIG0_CPTR_OVER_MASK		0x1
#define TS_CPU0_CONFIG0_STOP_SHIFT		0
#define TS_CPU0_CONFIG0_STOP_MASK		0x1

#define TS_CPU0_CONFIG1			0xc4
#define TS_CPU0_CONFIG1_EN_SHIFT	31
#define TS_CPU0_CONFIG1_EN_MASK		0x1
#define TS_CPU0_CONFIG1_TIDDQ_SHIFT	15
#define TS_CPU0_CONFIG1_TIDDQ_MASK	0x3f
#define TS_CPU0_CONFIG1_TEN_COUNT_SHIFT	24
#define TS_CPU0_CONFIG1_TEN_COUNT_MASK	0x3f
#define TS_CPU0_CONFIG1_TSAMPLE_SHIFT	0
#define TS_CPU0_CONFIG1_TSAMPLE_MASK	0x3ff

#define TS_CPU0_CONFIG2			0xc8
#define TS_CPU0_CONFIG2_THERM_A_SHIFT	16
#define TS_CPU0_CONFIG2_THERM_A_MASK	0xffff
#define TS_CPU0_CONFIG2_THERM_B_SHIFT	0
#define TS_CPU0_CONFIG2_THERM_B_MASK	0xffff

#define TS_CPU0_STATUS0			0xcc
#define TS_CPU0_STATUS0_VALID_SHIFT	31
#define TS_CPU0_STATUS0_VALID_MASK	0x1
#define TS_CPU0_STATUS0_CAPTURE_SHIFT	0
#define TS_CPU0_STATUS0_CAPTURE_MASK	0xffff

#define TS_CPU0_STATUS1				0xd0
#define TS_CPU0_STATUS1_TEMP_VALID_SHIFT	31
#define TS_CPU0_STATUS1_TEMP_VALID_MASK		0x1
#define TS_CPU0_STATUS1_TEMP_SHIFT		0
#define TS_CPU0_STATUS1_TEMP_MASK		0xffff

#define TS_CPU0_STATUS2			0xd4

#define TS_PDIV				0x1c0
#define TS_PDIV_CPU_SHIFT		12
#define TS_PDIV_CPU_MASK		0xf
#define TS_PDIV_GPU_SHIFT		8
#define TS_PDIV_GPU_MASK		0xf
#define TS_PDIV_MEM_SHIFT		4
#define TS_PDIV_MEM_MASK		0xf
#define TS_PDIV_PLLX_SHIFT		0
#define TS_PDIV_PLLX_MASK		0xf

#define TS_HOTSPOT_OFF			0x1c4
#define TS_HOTSPOT_OFF_CPU_SHIFT	16
#define TS_HOTSPOT_OFF_CPU_MASK		0xff
#define TS_HOTSPOT_OFF_GPU_SHIFT	8
#define TS_HOTSPOT_OFF_GPU_MASK		0xff
#define TS_HOTSPOT_OFF_MEM_SHIFT	0
#define TS_HOTSPOT_OFF_MEM_MASK		0xff

#define TS_TEMP1			0x1c8
#define TS_TEMP1_CPU_TEMP_SHIFT		16
#define TS_TEMP1_CPU_TEMP_MASK		0xffff
#define TS_TEMP1_GPU_TEMP_SHIFT		0
#define TS_TEMP1_GPU_TEMP_MASK		0xffff

#define TS_TEMP2			0x1cc
#define TS_TEMP2_MEM_TEMP_SHIFT		16
#define TS_TEMP2_MEM_TEMP_MASK		0xffff
#define TS_TEMP2_PLLX_TEMP_SHIFT	0
#define TS_TEMP2_PLLX_TEMP_MASK		0xffff

#define TS_TEMP_SW_OVERRIDE		0x1d8

#define TH_INTR_STATUS			0x84
#define TH_INTR_ENABLE			0x88
#define TH_INTR_DISABLE			0x8c

#define LOCK_CTL			0x90

#define TH_INTR_POS_MD3_SHIFT		31
#define TH_INTR_POS_MD3_MASK		0x1
#define TH_INTR_POS_MU3_SHIFT		30
#define TH_INTR_POS_MU3_MASK		0x1
#define TH_INTR_POS_MD2_SHIFT		29
#define TH_INTR_POS_MD2_MASK		0x1
#define TH_INTR_POS_MU2_SHIFT		28
#define TH_INTR_POS_MU2_MASK		0x1
#define TH_INTR_POS_MD1_SHIFT		27
#define TH_INTR_POS_MD1_MASK		0x1
#define TH_INTR_POS_MU1_SHIFT		26
#define TH_INTR_POS_MU1_MASK		0x1
#define TH_INTR_POS_MD0_SHIFT		25
#define TH_INTR_POS_MD0_MASK		0x1
#define TH_INTR_POS_MU0_SHIFT		24
#define TH_INTR_POS_MU0_MASK		0x1
#define TH_INTR_POS_GD3_SHIFT		23
#define TH_INTR_POS_GD3_MASK		0x1
#define TH_INTR_POS_GU3_SHIFT		22
#define TH_INTR_POS_GU3_MASK		0x1
#define TH_INTR_POS_GD2_SHIFT		21
#define TH_INTR_POS_GD2_MASK		0x1
#define TH_INTR_POS_GU2_SHIFT		20
#define TH_INTR_POS_GU2_MASK		0x1
#define TH_INTR_POS_GD1_SHIFT		19
#define TH_INTR_POS_GD1_MASK		0x1
#define TH_INTR_POS_GU1_SHIFT		18
#define TH_INTR_POS_GU1_MASK		0x1
#define TH_INTR_POS_GD0_SHIFT		17
#define TH_INTR_POS_GD0_MASK		0x1
#define TH_INTR_POS_GU0_SHIFT		16
#define TH_INTR_POS_GU0_MASK		0x1
#define TH_INTR_POS_CD3_SHIFT		15
#define TH_INTR_POS_CD3_MASK		0x1
#define TH_INTR_POS_CU3_SHIFT		14
#define TH_INTR_POS_CU3_MASK		0x1
#define TH_INTR_POS_CD2_SHIFT		13
#define TH_INTR_POS_CD2_MASK		0x1
#define TH_INTR_POS_CU2_SHIFT		12
#define TH_INTR_POS_CU2_MASK		0x1
#define TH_INTR_POS_CD1_SHIFT		11
#define TH_INTR_POS_CD1_MASK		0x1
#define TH_INTR_POS_CU1_SHIFT		10
#define TH_INTR_POS_CU1_MASK		0x1
#define TH_INTR_POS_CD0_SHIFT		9
#define TH_INTR_POS_CD0_MASK		0x1
#define TH_INTR_POS_CU0_SHIFT		8
#define TH_INTR_POS_CU0_MASK		0x1
#define TH_INTR_POS_PD3_SHIFT		7
#define TH_INTR_POS_PD3_MASK		0x1
#define TH_INTR_POS_PU3_SHIFT		6
#define TH_INTR_POS_PU3_MASK		0x1
#define TH_INTR_POS_PD2_SHIFT		5
#define TH_INTR_POS_PD2_MASK		0x1
#define TH_INTR_POS_PU2_SHIFT		4
#define TH_INTR_POS_PU2_MASK		0x1
#define TH_INTR_POS_PD1_SHIFT		3
#define TH_INTR_POS_PD1_MASK		0x1
#define TH_INTR_POS_PU1_SHIFT		2
#define TH_INTR_POS_PU1_MASK		0x1
#define TH_INTR_POS_PD0_SHIFT		1
#define TH_INTR_POS_PD0_MASK		0x1
#define TH_INTR_POS_PU0_SHIFT		0
#define TH_INTR_POS_PU0_MASK		0x1


#define UP_STATS_L0		0x10
#define DN_STATS_L0		0x14

#define STATS_CTL		0x94
#define STATS_CTL_CLR_DN	0x8
#define STATS_CTL_EN_DN		0x4
#define STATS_CTL_CLR_UP	0x2
#define STATS_CTL_EN_UP		0x1

#define THROT_GLOBAL_CFG	0x400
#define THROT13_GLOBAL_CFG	0x148
#define THROT_GLOBAL_ENB_SHIFT	0
#define THROT_GLOBAL_ENB_MASK	0x1

#define OC1_CFG				0x310
#define OC1_CFG_LONG_LATENCY_SHIFT	6
#define OC1_CFG_LONG_LATENCY_MASK	0x1
#define OC1_CFG_HW_RESTORE_SHIFT	5
#define OC1_CFG_HW_RESTORE_MASK		0x1
#define OC1_CFG_PWR_GOOD_MASK_SHIFT	4
#define OC1_CFG_PWR_GOOD_MASK_MASK	0x1
#define OC1_CFG_THROTTLE_MODE_SHIFT	2
#define OC1_CFG_THROTTLE_MODE_MASK	0x3
#define OC1_CFG_ALARM_POLARITY_SHIFT	1
#define OC1_CFG_ALARM_POLARITY_MASK	0x1
#define OC1_CFG_EN_THROTTLE_SHIFT	0
#define OC1_CFG_EN_THROTTLE_MASK	0x1

#define OC1_CNT_THRESHOLD		0x314
#define OC1_THROTTLE_PERIOD		0x318
#define OC1_ALARM_COUNT			0x31c
#define OC1_FILTER			0x320

#define OC1_STATS			0x3a8

#define OC_INTR_STATUS			0x39c
#define OC_INTR_ENABLE			0x3a0
#define OC_INTR_DISABLE			0x3a4
#define OC_INTR_POS_OC1_SHIFT		0
#define OC_INTR_POS_OC1_MASK		0x1
#define OC_INTR_POS_OC2_SHIFT		1
#define OC_INTR_POS_OC2_MASK		0x1
#define OC_INTR_POS_OC3_SHIFT		2
#define OC_INTR_POS_OC3_MASK		0x1
#define OC_INTR_POS_OC4_SHIFT		3
#define OC_INTR_POS_OC4_MASK		0x1
#define OC_INTR_POS_OC5_SHIFT		4
#define OC_INTR_POS_OC5_MASK		0x1

#define OC_STATS_CTL			0x3c4
#define OC_STATS_CTL_CLR_ALL		0x2
#define OC_STATS_CTL_EN_ALL		0x1

#define CPU_PSKIP_STATUS			0x418
#define GPU_PSKIP_STATUS			0x41c
#define XPU_PSKIP_STATUS_M_SHIFT		12
#define XPU_PSKIP_STATUS_M_MASK			0xff
#define XPU_PSKIP_STATUS_N_SHIFT		4
#define XPU_PSKIP_STATUS_N_MASK			0xff
#define XPU_PSKIP_STATUS_SW_OVERRIDE_SHIFT	1
#define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK	0x1
#define XPU_PSKIP_STATUS_ENABLED_SHIFT		0
#define XPU_PSKIP_STATUS_ENABLED_MASK		0x1

#define THROT_PRIORITY_LOCK			0x424
#define THROT_PRIORITY_LOCK_PRIORITY_SHIFT	0
#define THROT_PRIORITY_LOCK_PRIORITY_MASK	0xff

#define THROT_STATUS				0x428
#define THROT_STATUS_BREACH_SHIFT		12
#define THROT_STATUS_BREACH_MASK		0x1
#define THROT_STATUS_STATE_SHIFT		4
#define THROT_STATUS_STATE_MASK			0xff
#define THROT_STATUS_ENABLED_SHIFT		0
#define THROT_STATUS_ENABLED_MASK		0x1

#define THROT_PSKIP_CTRL_LITE_CPU		0x430
#define THROT13_PSKIP_CTRL_LOW_CPU		0x154
#define THROT_PSKIP_CTRL_ENABLE_SHIFT		31
#define THROT_PSKIP_CTRL_ENABLE_MASK		0x1
#define THROT_PSKIP_CTRL_VECT_GPU_SHIFT		16
#define THROT_PSKIP_CTRL_VECT_GPU_MASK		0x7
#define THROT_PSKIP_CTRL_VECT_CPU_SHIFT		8
#define THROT_PSKIP_CTRL_VECT_CPU_MASK		0x7
#define THROT_PSKIP_CTRL_DIVIDEND_SHIFT		8
#define THROT_PSKIP_CTRL_DIVIDEND_MASK		0xff
#define THROT_PSKIP_CTRL_DIVISOR_SHIFT		0
#define THROT_PSKIP_CTRL_DIVISOR_MASK		0xff
#define THROT_PSKIP_CTRL_VECT2_CPU_SHIFT	0
#define THROT_PSKIP_CTRL_VECT2_CPU_MASK		0x7

#define THROT_PSKIP_RAMP_LITE_CPU		0x434
#define THROT13_PSKIP_RAMP_LOW_CPU		0x150
#define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_SHIFT	31
#define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK	0x1
#define THROT_PSKIP_RAMP_DURATION_SHIFT		8
#define THROT_PSKIP_RAMP_DURATION_MASK		0xffff
#define THROT_PSKIP_RAMP_STEP_SHIFT		0
#define THROT_PSKIP_RAMP_STEP_MASK		0xff

#define THROT_VECT_NONE				0x0 /* 3'b000 */
#define THROT_VECT_LOW				0x1 /* 3'b001 */
#define THROT_VECT_MED				0x3 /* 3'b011 */
#define THROT_VECT_HVY				0x7 /* 3'b111 */

#define THROT_LEVEL_LOW				0
#define THROT_LEVEL_MED				1
#define THROT_LEVEL_HVY				2

#define THROT_PRIORITY_LITE			0x444
#define THROT_PRIORITY_LITE_PRIO_SHIFT		0
#define THROT_PRIORITY_LITE_PRIO_MASK		0xff

#define THROT_DELAY_LITE			0x448
#define THROT_DELAY_LITE_DELAY_SHIFT		0
#define THROT_DELAY_LITE_DELAY_MASK		0xff

#define THROT_OFFSET				0x30
#define THROT13_OFFSET				0x0c
#define ALARM_OFFSET				0x14

#define FUSE_TSENSOR_CALIB_FT_SHIFT	13
#define FUSE_TSENSOR_CALIB_FT_MASK	0x1fff
#define FUSE_TSENSOR_CALIB_CP_SHIFT	0
#define FUSE_TSENSOR_CALIB_CP_MASK	0x1fff
#define FUSE_TSENSOR_CALIB_BITS		13

/* car register offsets needed for enabling HW throttling */
#define CAR_SUPER_CCLKG_DIVIDER		0x36c
#define CAR13_SUPER_CCLKG_DIVIDER	0x024
#define CDIVG_ENABLE_SHIFT		31
#define CDIVG_ENABLE_MASK		0x1
#define CDIVG_USE_THERM_CONTROLS_SHIFT	30
#define CDIVG_USE_THERM_CONTROLS_MASK	0x1
#define CDIVG_DIVIDEND_MASK		0xff
#define CDIVG_DIVIDEND_SHIFT		8
#define CDIVG_DIVISOR_MASK		0xff
#define CDIVG_DIVISOR_SHIFT		0

#define CAR_SUPER_CLK_DIVIDER_REGISTER()	(IS_T13X ? \
						 CAR13_SUPER_CCLKG_DIVIDER : \
						 CAR_SUPER_CCLKG_DIVIDER)
#define THROT_PSKIP_CTRL(throt, dev)		(THROT_PSKIP_CTRL_LITE_CPU + \
						(THROT_OFFSET * throt) + \
						(8 * dev))
#define THROT_PSKIP_RAMP(throt, dev)		(THROT_PSKIP_RAMP_LITE_CPU + \
						(THROT_OFFSET * throt) + \
						(8 * dev))
#define THROT13_PSKIP_CTRL_CPU(vect)		(THROT13_PSKIP_CTRL_LOW_CPU + \
						 (THROT13_OFFSET * vect))
#define THROT13_PSKIP_RAMP_CPU(vect)		(THROT13_PSKIP_RAMP_LOW_CPU + \
						 (THROT13_OFFSET * vect))
#define THROT_PRIORITY_CTRL(throt)		(THROT_PRIORITY_LITE + \
						(THROT_OFFSET * throt))
#define THROT_DELAY_CTRL(throt)			(THROT_DELAY_LITE + \
						(THROT_OFFSET * throt))
#define ALARM_CFG(throt)			(OC1_CFG + \
						(ALARM_OFFSET * (throt - \
								THROTTLE_OC1)))
#define ALARM_CNT_THRESHOLD(throt)		(OC1_CNT_THRESHOLD + \
						(ALARM_OFFSET * (throt - \
								THROTTLE_OC1)))
#define ALARM_THROTTLE_PERIOD(throt)		(OC1_THROTTLE_PERIOD + \
						(ALARM_OFFSET * (throt - \
								THROTTLE_OC1)))
#define ALARM_ALARM_COUNT(throt)		(OC1_ALARM_COUNT + \
						(ALARM_OFFSET * (throt - \
								THROTTLE_OC1)))
#define ALARM_FILTER(throt)			(OC1_FILTER + \
						(ALARM_OFFSET * (throt - \
								THROTTLE_OC1)))
#define ALARM_STATS(throt)			(OC1_STATS + \
						(4 * (throt - THROTTLE_OC1)))

#define THROT_DEPTH_DIVIDEND(depth)	((256 * (100 - (depth)) / 100) - 1)
#define THROT_DEPTH(th, dp)		{			\
		(th)->depth    = (dp);				\
		(th)->dividend = THROT_DEPTH_DIVIDEND(dp);	\
		(th)->divisor  = 255;				\
		(th)->duration = 0xff;				\
		(th)->step     = 0xf;				\
	}

#define REG_SET(r, _name, val)	(((r) & ~(_name##_MASK << _name##_SHIFT)) | \
				 (((val) & _name##_MASK) << _name##_SHIFT))
#define REG_GET_BIT(r, _name)	((r) & (_name##_MASK << _name##_SHIFT))
#define REG_GET(r, _name)	(REG_GET_BIT(r, _name) >> _name##_SHIFT)
#define MAKE_SIGNED32(val, nb)	((s32)(val) << (32 - (nb)) >> (32 - (nb)))

#define IS_T11X		(tegra_chip_id == TEGRA_CHIPID_TEGRA11)
#define IS_T14X		(tegra_chip_id == TEGRA_CHIPID_TEGRA14)
#define IS_T12X		(tegra_chip_id == TEGRA_CHIPID_TEGRA12)
#define IS_T13X		(tegra_chip_id == TEGRA_CHIPID_TEGRA13)

static void __iomem *reg_soctherm_base = IOMEM(IO_ADDRESS(TEGRA_SOCTHERM_BASE));
static void __iomem *clk_reset_base = IOMEM(IO_ADDRESS(TEGRA_CLK_RESET_BASE));
static void __iomem *clk13_rst_base = IOMEM(IO_ADDRESS(TEGRA_CLK13_RESET_BASE));

static DEFINE_MUTEX(soctherm_suspend_resume_lock);

static int soctherm_suspend(void);
static int soctherm_resume(void);

static struct soctherm_platform_data plat_data;

/*
 * Remove this flag once this "driver" is structured as a platform driver and
 * the board files calls platform_device_register instead of directly calling
 * tegra11_soctherm_init(). See nvbug 1206311.
 */
static bool soctherm_init_platform_done;
static bool read_hw_temp = true;
static bool soctherm_suspended;
static bool vdd_cpu_low_voltage;
static bool vdd_core_low_voltage;
static u32 tegra_chip_id;

static struct clk *soctherm_clk;
static struct clk *tsensor_clk;

/**
 * soctherm_writel() - Writes a value to a SOC_THERM register
 * @value:		The value to write
 * @reg:		The register offset
 *
 * Writes the @value to @reg if the soctherm device is not suspended.
 */
static inline void soctherm_writel(u32 value, u32 reg)
{
	if (!soctherm_suspended)
		__raw_writel(value, (void __iomem *)
			(reg_soctherm_base + reg));
}

/**
 * soctherm_readl() - reads specified register from SOC_THERM IP block
 * @reg:	register address to be read
 *
 * Return: 0 if SOC_THERM is suspended, else the value of the register
 */
static inline u32 soctherm_readl(u32 reg)
{
	if (soctherm_suspended)
		return 0;
	return __raw_readl(reg_soctherm_base + reg);
}

/* XXX Temporary until CCROC accesses are split out */
static void clk_reset13_writel(u32 value, u32 reg)
{
	BUG_ON(!IS_T13X);
	__raw_writel(value, clk13_rst_base + reg);
	__raw_readl(clk13_rst_base + reg);
}

/* XXX Temporary until CCROC accesses are split out */
static u32 clk_reset13_readl(u32 reg)
{
	BUG_ON(!IS_T13X);
	return __raw_readl(clk13_rst_base + reg);
}

static inline void clk_reset_writel(u32 value, u32 reg)
{
	if (IS_T13X) {
		__raw_writel(value, clk13_rst_base + reg);
		__raw_readl(clk13_rst_base + reg);
	} else
		__raw_writel(value, clk_reset_base + reg);
}

static inline u32 clk_reset_readl(u32 reg)
{
	if (IS_T13X)
		return __raw_readl(clk13_rst_base + reg);
	else
		return __raw_readl(clk_reset_base + reg);
}

/**
 * temp_convert() - convert raw sensor readings to temperature
 * @cap:	raw TSOSC count
 * @a:		slope of count/temperature linear regression
 * @b:		x-intercept of count/temperature linear regression
 *
 * This is a software version of what happens in the hardware when
 * temp_translate() is called. However, when the hardware does the conversion,
 * it cannot do it with the same precision that can be done with software.
 *
 * This function is not in use as long as @read_hw_temp is set to true, however
 * software temperature conversion could be used to monitor temperatures with a
 * higher degree of precision as they near a temperature threshold.
 *
 * Return: temperature in millicelsius.
 */
static inline long temp_convert(int cap, int a, int b)
{
	cap *= a;
	cap >>= 10;
	cap += (b << 3);
	cap *= LOWER_PRECISION_FOR_CONV(500);
	cap /= 8;
	return cap;
}

/**
 * temp_translate_rev() - Translates the given temperature from two's
 * complement to the signed magnitude form used in SOC_THERM registers
 * @temp:	The temperature to be translated
 *
 * The register value returned will have the following bit assignment:
 * 15:7 magnitude of temperature in (1/2 or 1 degree precision) centigrade
 * 0 the sign bit of the temperature
 *
 * This function is the inverse of the temp_translate() function
 *
 * Return: The register value.
 */
static inline u32 temp_translate_rev(long temp)
{
	int sign;
	int low_bit;

	u32 lsb = 0;
	u32 abs = 0;
	u32 reg = 0;
	sign = (temp > 0 ? 1 : -1);
	low_bit = (sign > 0 ? 0 : 1);
	temp *= sign;
	/* high precision only */
	if (!PRECISION_IS_LOWER()) {
		lsb = ((temp % 1000) > 0) ? 1 : 0;
		abs = (temp - 500 * lsb) / 1000;
		abs &= 0xff;
		reg = ((abs << 8) | (lsb << 7) | low_bit);
	}
	return reg;
}

#ifdef CONFIG_THERMAL
static struct thermal_zone_device *soctherm_th_zones[THERM_SIZE];
#endif
struct soctherm_oc_irq_chip_data {
	int			irq_base;
	struct mutex		irq_lock; /* serialize OC IRQs */
	struct irq_chip		irq_chip;
	struct irq_domain	*domain;
	int			irq_enable;
};
static struct soctherm_oc_irq_chip_data soc_irq_cdata;

static u32 fuse_calib_base_cp;
static u32 fuse_calib_base_ft;
static s32 actual_temp_cp;
static s32 actual_temp_ft;

static const char *const therm_names[] = {
	[THERM_CPU] = "CPU",
	[THERM_MEM] = "MEM",
	[THERM_GPU] = "GPU",
	[THERM_PLL] = "PLL",
};

static const char *const throt_names[] = {
	[THROTTLE_LIGHT]   = "light",
	[THROTTLE_HEAVY]   = "heavy",
	[THROTTLE_OC1]     = "oc1",
	[THROTTLE_OC2]     = "oc2",
	[THROTTLE_OC3]     = "oc3",
	[THROTTLE_OC4]     = "oc4",
	[THROTTLE_OC5]     = "oc5", /* reserved */
};

static const char *const throt_dev_names[] = {
	[THROTTLE_DEV_CPU] = "CPU",
	[THROTTLE_DEV_GPU] = "GPU",
};

static const char *const sensor_names[] = {
	[TSENSE_CPU0] = "cpu0",
	[TSENSE_CPU1] = "cpu1",
	[TSENSE_CPU2] = "cpu2",
	[TSENSE_CPU3] = "cpu3",
	[TSENSE_MEM0] = "mem0",
	[TSENSE_MEM1] = "mem1",
	[TSENSE_GPU]  = "gpu0",
	[TSENSE_PLLX] = "pllx",
};

static const int sensor2tsensorcalib[] = {
	[TSENSE_CPU0] = 0,
	[TSENSE_CPU1] = 1,
	[TSENSE_CPU2] = 2,
	[TSENSE_CPU3] = 3,
	[TSENSE_MEM0] = 5,
	[TSENSE_MEM1] = 6,
	[TSENSE_GPU]  = 4,
	[TSENSE_PLLX] = 7,
};

static const int tsensor2therm_map[] = {
	[TSENSE_CPU0] = THERM_CPU,
	[TSENSE_CPU1] = THERM_CPU,
	[TSENSE_CPU2] = THERM_CPU,
	[TSENSE_CPU3] = THERM_CPU,
	[TSENSE_GPU]  = THERM_GPU,
	[TSENSE_MEM0] = THERM_MEM,
	[TSENSE_MEM1] = THERM_MEM,
	[TSENSE_PLLX] = THERM_PLL,
};

static const enum soctherm_throttle_dev_id therm2dev[] = {
	[THERM_CPU] = THROTTLE_DEV_CPU,
	[THERM_MEM] = THROTTLE_DEV_NONE,
	[THERM_GPU] = THROTTLE_DEV_GPU,
	[THERM_PLL] = THROTTLE_DEV_NONE,
};

static const struct soctherm_sensor default_t11x_sensor_params = {
	.tall      = 16300,
	.tiddq     = 1,
	.ten_count = 1,
	.tsample   = 163,
	.tsamp_ate = 655,
	.pdiv      = 10,
	.pdiv_ate  = 10,
};
static const struct soctherm_sensor default_t14x_sensor_params = {
	.tall      = 16300,
	.tiddq     = 1,
	.ten_count = 1,
	.tsample   = 120,
	.tsamp_ate = 481,
	.pdiv      = 8,
	.pdiv_ate  = 8,
};

/* Used for T124 and T132 */
static const struct soctherm_sensor default_t12x_sensor_params = {
	.tall      = 16300,
	.tiddq     = 1,
	.ten_count = 1,
	.tsample   = 120,
	.tsamp_ate = 480,
	.pdiv      = 8,
	.pdiv_ate  = 8,
};

static const unsigned long default_t11x_soctherm_clk_rate = 51000000;
static const unsigned long default_t11x_tsensor_clk_rate = 500000;
static const unsigned long default_t14x_soctherm_clk_rate = 51000000;
static const unsigned long default_t14x_tsensor_clk_rate = 400000;
/* TODO : finalize the default clk rate */
static const unsigned long default_t12x_soctherm_clk_rate = 51000000;
static const unsigned long default_t12x_tsensor_clk_rate = 400000;

/* SOC- OCx to theirt GPIO which is wakeup capable. This is T114 specific */
static int soctherm_ocx_to_wake_gpio[TEGRA_SOC_OC_IRQ_MAX] = {
	TEGRA_GPIO_PEE3,	/* TEGRA_SOC_OC_IRQ_1 */
	TEGRA_GPIO_INVALID,	/* TEGRA_SOC_OC_IRQ_2 */
	TEGRA_GPIO_INVALID,	/* TEGRA_SOC_OC_IRQ_3 */
	TEGRA_GPIO_PJ2,		/* TEGRA_SOC_OC_IRQ_4 */
	TEGRA_GPIO_INVALID,	/* TEGRA_SOC_OC_IRQ_5 */
};

static int sensor2therm_a[TSENSE_SIZE];
static int sensor2therm_b[TSENSE_SIZE];

/**
 * div64_s64_precise() - wrapper for div64_s64()
 * @a:	the dividend
 * @b:	the divisor
 *
 * Implements division with fairly accurate rounding instead of truncation by
 * shifting the dividend to the left by 16 so that the quotient has a
 * much higher precision.
 *
 * Return: the quotient of a / b.
 */

static inline s64 div64_s64_precise(s64 a, s32 b)
{
	s64 r, al;

	/* scale up for increased precision in division */
	al = a << 16;

	r = div64_s64((al * 2) + 1, 2 * b);
	return r >> 16;
}

/**
 * temp_translate() - Converts temperature
 * @readback:		The value from a SOC_THERM sensor temperature
 *			register
 *
 * Converts temperature from the format used in registers to a (signed)
 * long. This function is the inverse of temp_translate_rev().
 *
 * Return: the translated temperature in millicelsius
 */
static inline long temp_translate(int readback)
{
	int abs = readback >> 8;
	int lsb = (readback & 0x80) >> 7;
	int sign = readback & 0x01 ? -1 : 1;

	return (abs * LOWER_PRECISION_FOR_CONV(1000) +
		lsb * LOWER_PRECISION_FOR_CONV(500)) * sign;
}

#ifdef CONFIG_THERMAL

/**
 * soctherm_has_mn_cpu_pskip_status() - does CPU use M,N values for pskip status?
 *
 * If the currently-running SoC reports the CPU thermal throttling
 * pulse skipper status with (M, N) values via SOC_THERM registers,
 * then return true; otherwise, return false.  XXX Temporary - should
 * be replaced by autodetection or DT properties/compatible flags.
 *
 * Return: true if CPU thermal pulse-skipper M,N status values are available via
 * SOC_THERM, or false if not.
 */
static int soctherm_has_mn_cpu_pskip_status(void)
{
	return IS_T11X || IS_T14X || IS_T12X;
}

/**
 * soctherm_get_mn_cpu_pskip_status() - read state of CPU thermal pulse skipper
 * @enabled: pointer to a u8: return 0 if the skipper is disabled, 1 if enabled
 * @sw_override: ptr to a u8: return 0 if sw override is disabled, 1 if enabled
 * @m: pointer to a u16 to return the current pulse skipper ratio numerator into
 * @n: pointer to a u16 to return the current pulse skipper ratio denominator to
 *
 * Read the current status of the thermal throttling pulse skipper
 * attached to the CPU clock, and return the status into the variables
 * pointed to by @enabled, @sw_override, @m, and @n.  The M and N
 * values are not what is stored in the register bitfields, but
 * instead are the actual values used by the pulse skipper -- i.e.,
 * they are the bitfield values _plus one_; they have valid ranges of
 * 1-256.  This function is only defined for chips that report M,N
 * thermal throttling states
 *
 * Return: 0 upon success, -ENOTSUPP if called on a chip that uses
 * CPU-local (i.e., non-SOC_THERM) pulse-skipper status, or -EINVAL if
 * any of the arguments are NULL.
 */
int soctherm_get_mn_cpu_pskip_status(u8 *enabled, u8 *sw_override, u16 *m,
				     u16 *n)
{
	u32 v;

	if (!enabled || !m || !n || !sw_override)
		return -EINVAL;

	/*
	 * XXX should be replaced with an earlier DT property read to
	 * determine the GPU type (or GPU->SOC_THERM integration) in
	 * use
	 */
	if (!soctherm_has_mn_cpu_pskip_status())
		return -ENOTSUPP;

	v = soctherm_readl(CPU_PSKIP_STATUS);
	if (REG_GET(v, XPU_PSKIP_STATUS_ENABLED)) {
		*enabled = 1;
		*sw_override = REG_GET(v, XPU_PSKIP_STATUS_SW_OVERRIDE);
		*m = REG_GET(v, XPU_PSKIP_STATUS_M) + 1;
		*n = REG_GET(v, XPU_PSKIP_STATUS_N) + 1;
	} else {
		*enabled = 0;
	}

	return 0;
}

/**
 * soctherm_has_gpu_pskip_status() - is GPU pskip state readable via SOC_THERM?
 *
 * If the currently-running SoC reports the GPU thermal throttling
 * pulse skipper status via SOC_THERM registers, then return true;
 * otherwise, return false.  XXX Temporary - should be replaced by
 * autodetection or DT properties/compatible flags.
 *
 * Return: true if GPU thermal pulse-skipper status is readable via
 * SOC_THERM, or false if not.
 */
static int soctherm_has_gpu_pskip_status(void)
{
	return IS_T11X || IS_T14X;
}

/**
 * soctherm_get_gpu_pskip_status() - read state of the GPU thermal pulse skipper
 * @enabled: pointer to a u8: return 0 if the skipper is disabled, 1 if enabled
 * @sw_override: ptr to a u8: return 0 if sw override is disabled, 1 if enabled
 * @m: pointer to a u8 to return the current pulse skipper ratio numerator into
 * @n: pointer to a u8 to return the current pulse skipper ratio denominator to
 *
 * Read the current status of the thermal throttling pulse skipper
 * attached to the GPU clock, and return the status into the variables
 * pointed to by @enabled, @sw_override, @m, and @n.  Note that the M
 * and N values are not what is stored in the register bitfields, but
 * instead are the actual values used by the pulse skipper -- i.e., they
 * are the bitfield values _plus one_; they have valid ranges of 1-256.
 *
 * Return: 0 upon success, -ENOTSUPP on chips with GPU-local
 * throttling status (e.g., T124, T132) or -EINVAL if any of the
 * arguments are NULL.
 */
int soctherm_get_gpu_pskip_status(u8 *enabled, u8 *sw_override, u16 *m, u16 *n)
{
	u32 v;

	if (!enabled || !m || !n || !sw_override)
		return -EINVAL;

	/*
	 * XXX should be replaced with an earlier DT property read to
	 * determine the GPU type (or GPU->SOC_THERM integration) in
	 * use
	 */
	if (!soctherm_has_gpu_pskip_status())
		return -ENOTSUPP;

	v = soctherm_readl(GPU_PSKIP_STATUS);
	if (REG_GET(v, XPU_PSKIP_STATUS_ENABLED)) {
		*enabled = 1;
		*sw_override = REG_GET(v, XPU_PSKIP_STATUS_SW_OVERRIDE);
		*m = REG_GET(v, XPU_PSKIP_STATUS_M) + 1;
		*n = REG_GET(v, XPU_PSKIP_STATUS_N) + 1;
	} else {
		*enabled = 0;
	}

	return 0;
}

/**
 * enforce_temp_range() - check and enforce temperature range [min, max]
 * @trip_temp:		The trip temperature to check
 *
 * Checks and enforces the permitted temperature range that SOC_THERM
 * HW can support with 8-bit registers to specify temperature. This is
 * done while taking care of precision.
 *
 * Return: The precsion adjusted capped temperature in millicelsius.
 */
static int enforce_temp_range(long trip_temp)
{
	long temp = LOWER_PRECISION_FOR_TEMP(trip_temp);

	if (temp < MIN_LOW_TEMP) {
		pr_info("soctherm: trip_point temp %ld forced to %d\n",
			trip_temp, LOWER_PRECISION_FOR_CONV(MIN_LOW_TEMP));
		temp = MIN_LOW_TEMP;
	} else if (temp > MAX_HIGH_TEMP) {
		pr_info("soctherm: trip_point temp %ld forced to %d\n",
			trip_temp, LOWER_PRECISION_FOR_CONV(MAX_HIGH_TEMP));
		temp = MAX_HIGH_TEMP;
	}

	return temp;
}

/**
 * prog_hw_shutdown() - Configures the hardware to shut down the
 * system if a given sensor group reaches a given temperature
 * @trip_state:		The trip information. Includes the temperature
 *			at which a trip occurs.
 * @therm:		Int specifying the sensor group.
 *			Should be one of the following:
 *			THERM_CPU, THERM_GPU,
 *			THERM_MEM, or THERM_PPL.
 *
 * Sets the thermal trip threshold of the given sensor group
 * to be the trip temperature of @trip_state.
 * If this threshold is crossed, the hardware will shut down.
 *
 * Return: No return value (void).
 */
static inline void prog_hw_shutdown(struct thermal_trip_info *trip_state,
				    int therm)
{
	u32 r;
	int temp;

	/* Add 1'C to HW shutdown threshold so SW can try to shutdown first */
	temp = trip_state->trip_temp + LOWER_PRECISION_FOR_CONV(1000);

	temp = enforce_temp_range(temp) / 1000;

	r = soctherm_readl(THERMTRIP);
	if (therm == THERM_CPU) {
		r = REG_SET(r, THERMTRIP_CPU_EN, 1);
		r = REG_SET(r, THERMTRIP_CPU_THRESH, temp);
	} else if (therm == THERM_GPU) {
		r = REG_SET(r, THERMTRIP_GPU_EN, 1);
		r = REG_SET(r, THERMTRIP_GPUMEM_THRESH, temp);
	} else if (therm == THERM_PLL) {
		r = REG_SET(r, THERMTRIP_TSENSE_EN, 1);
		r = REG_SET(r, THERMTRIP_TSENSE_THRESH, temp);
	} else if (therm == THERM_MEM) {
		r = REG_SET(r, THERMTRIP_MEM_EN, 1);
		r = REG_SET(r, THERMTRIP_GPUMEM_THRESH, temp);
	}
	r = REG_SET(r, THERMTRIP_ANY_EN, 0);
	soctherm_writel(r, THERMTRIP);
}

/**
 * prog_hw_threshold() - updates hardware temperature threshold
 *	of a particular trip point
 * @trip_state:	setting of a trip point to use to update hardware threshold
 * @therm:	soctherm_therm_id specifying the sensor group to update
 * @throt:	soctherm_throttle_id indicating throttling level to update
 *
 * Configure sensor group @therm to engage a hardware throttling response at
 * the threshold indicated by @trip_state.
 *
 * Checks to see if HW config register needs reprogramming:
 *
 * There's an intentional side-effect of writing trip temperature thresholds
 * in HW; It resets the up/down state machine that track hysteresis and can
 * cause unnecessary thermal events (interrupts).
 *
 * Avoid unnecessary events by checking if the trip config register is
 * being configured to the same settings and skipping the write.
 */
static inline void prog_hw_threshold(struct thermal_trip_info *trip_state,
				     int therm, int throt)
{
	u32 r, reg_off;
	int temp;
	bool reprogram;
	int cpu_throt, gpu_throt;

	temp = enforce_temp_range(trip_state->trip_temp) / 1000;

	/* Hardcode LITE on level-1 and HEAVY on level-2 */
	reg_off = TS_THERM_REG_OFFSET(CTL_LVL0_CPU0, throt + 1, therm);

	if (throt == THROTTLE_LIGHT) {
		cpu_throt = CTL_LVL0_CPU0_CPU_THROT_LIGHT;
		gpu_throt = CTL_LVL0_CPU0_GPU_THROT_LIGHT;
	} else {
		cpu_throt = CTL_LVL0_CPU0_CPU_THROT_HEAVY;
		gpu_throt = CTL_LVL0_CPU0_GPU_THROT_HEAVY;
		if (throt != THROTTLE_HEAVY)
			pr_warn("soctherm: invalid throt %d - assuming HEAVY",
				throt);
	}

	r = soctherm_readl(reg_off);
	reprogram = ((REG_GET(r, CTL_LVL0_CPU0_DN_THRESH) != temp) ||
		     (REG_GET(r, CTL_LVL0_CPU0_UP_THRESH) != temp) ||
		     (REG_GET(r, CTL_LVL0_CPU0_CPU_THROT) != cpu_throt) ||
		     (REG_GET(r, CTL_LVL0_CPU0_GPU_THROT) != gpu_throt) ||
		     (REG_GET(r, CTL_LVL0_CPU0_EN) != 1));

	if (reprogram) {
		r = REG_SET(r, CTL_LVL0_CPU0_UP_THRESH, temp);
		r = REG_SET(r, CTL_LVL0_CPU0_DN_THRESH, temp);
		r = REG_SET(r, CTL_LVL0_CPU0_CPU_THROT, cpu_throt);
		r = REG_SET(r, CTL_LVL0_CPU0_GPU_THROT, gpu_throt);
		r = REG_SET(r, CTL_LVL0_CPU0_EN, 1);
		soctherm_writel(r, reg_off);
	}
}

/**
 * soctherm_set_limits() - Configures a sensor group to raise interrupts outside
 * the given temperature range
 * @therm:		ID of the sensor group
 * @lo_limit:		The lowest temperature limit
 * @hi_limit:		The highest temperature limit
 *
 * Configures sensor group @therm to raise an interrupt when temperature goes
 * above @hi_limit or below @lo_limit.
 *
 * Checks to see if HW config register needs reprogramming. See comment in
 * prog_hw_threshold().
 */
static void soctherm_set_limits(enum soctherm_therm_id therm,
				long lo_limit, long hi_limit)
{
	u32 r, reg_off;
	int rlo_limit, rhi_limit;
	bool reprogram;

	rlo_limit = LOWER_PRECISION_FOR_TEMP(lo_limit) / 1000;
	rhi_limit = LOWER_PRECISION_FOR_TEMP(hi_limit) / 1000;

	reg_off = TS_THERM_REG_OFFSET(CTL_LVL0_CPU0, 0, therm);
	r = soctherm_readl(reg_off);

	reprogram = ((REG_GET(r, CTL_LVL0_CPU0_DN_THRESH) != rlo_limit) ||
		     (REG_GET(r, CTL_LVL0_CPU0_UP_THRESH) != rhi_limit) ||
		     (REG_GET(r, CTL_LVL0_CPU0_EN) != 1));

	if (reprogram) {
		r = REG_SET(r, CTL_LVL0_CPU0_DN_THRESH, rlo_limit);
		r = REG_SET(r, CTL_LVL0_CPU0_UP_THRESH, rhi_limit);
		r = REG_SET(r, CTL_LVL0_CPU0_EN, 1);
		soctherm_writel(r, reg_off);
	}

	switch (therm) {
	case THERM_CPU:
		r = REG_SET(0, TH_INTR_POS_CD0, 1);
		r = REG_SET(r, TH_INTR_POS_CU0, 1);
		break;
	case THERM_GPU:
		r = REG_SET(0, TH_INTR_POS_GD0, 1);
		r = REG_SET(r, TH_INTR_POS_GU0, 1);
		break;
	case THERM_PLL:
		r = REG_SET(0, TH_INTR_POS_PD0, 1);
		r = REG_SET(r, TH_INTR_POS_PU0, 1);
		break;
	case THERM_MEM:
		r = REG_SET(0, TH_INTR_POS_MD0, 1);
		r = REG_SET(r, TH_INTR_POS_MU0, 1);
		break;
	default:
		r = 0;
		break;
	}
	soctherm_writel(r, TH_INTR_ENABLE);
}

/**
 * soctherm_update_zone() - Updates the given zone.
 * @zn:		The number of the zone to be updated.
 *		This number correlates to one of the following:
 *		CPU, GPU, MEM, or PLL.
 *
 * Based on current temperature and the trip points associated with
 * this zone, update the temperature thresholds at which hardware will
 * generate interrupts.
 *
 * Return: Nothing is returned (void).
 */
static void soctherm_update_zone(int zn)
{
	long low_temp = 0, high_temp = MAX_HIGH_TEMP;
	long trip_temp, passive_low_temp = MAX_HIGH_TEMP, zone_temp;
	enum thermal_trip_type trip_type;
	struct thermal_trip_info *trip_state;
	struct thermal_zone_device *cur_thz = soctherm_th_zones[zn];
	int count, trips;

	thermal_zone_device_update(cur_thz);

	trips = cur_thz->trips;
	for (count = 0; count < trips; count++) {
		cur_thz->ops->get_trip_type(cur_thz, count, &trip_type);
		if ((trip_type == THERMAL_TRIP_HOT) ||
		    (trip_type == THERMAL_TRIP_CRITICAL))
			continue; /* handled in HW */

		cur_thz->ops->get_trip_temp(cur_thz, count, &trip_temp);

		trip_state = &plat_data.therm[zn].trips[count];
		zone_temp = cur_thz->temperature;

		if (!trip_state->tripped) { /* not tripped? update high */
			if (trip_temp < high_temp)
				high_temp = trip_temp;
		} else { /* tripped? update low */
			if (trip_type != THERMAL_TRIP_PASSIVE) {
				/* get highest ACTIVE */
				if (trip_temp > low_temp)
					low_temp = trip_temp;
			} else {
				/* get lowest PASSIVE */
				if (trip_temp < passive_low_temp)
					passive_low_temp = trip_temp;
			}
		}
	}

	if (passive_low_temp != MAX_HIGH_TEMP)
		low_temp = max(low_temp, passive_low_temp);

	soctherm_set_limits(zn, low_temp, high_temp);
}

/**
 * soctherm_update() - updates all thermal zones
 *
 * Will not run if the board-specific data has not been initialized. Loops
 * through all of the thermal zones and makes sure that their high and low
 * temperature limits are updated.
 */
static void soctherm_update(void)
{
	int i;

	if (!soctherm_init_platform_done)
		return;

	for (i = 0; i < THERM_SIZE; i++) {
		if (soctherm_th_zones[i] && soctherm_th_zones[i]->trips)
			soctherm_update_zone(i);
	}
}

/**
  * soctherm_hw_action_get_max_state() - gets the max state for cooling
  *	devices associated with hardware throttling
  * @cdev:       cooling device to get the state
  * @max_state:  pointer where the maximum state will be written to
  *
  * Sets @max_state = 3. See soctherm_hw_action_get_cur_state.
  *
  * Return: 0
  */
static int soctherm_hw_action_get_max_state(struct thermal_cooling_device *cdev,
					    unsigned long *max_state)
{
	struct thermal_trip_info *trip_state = cdev->devdata;

	if (!trip_state)
		return 0;

	*max_state = 3; /* bit 1: CPU  bit 2: GPU */
	return 0;
}

/**
 * soctherm_get_cpu_throt_state - read the current state of the CPU pulse skipper
 * @dividend: pulse skipper numerator value to test against (1-256)
 * @divisor: pulse skipper denominator value to test against (1-256)
 * @cur_state: ptr to the variable that the current throttle state is stored in
 *
 * Determine the current state of the CPU thermal throttling pulse
 * skipper, and if it's enabled and at its configured ending state,
 * set the appropriate 'enabled' bit in the variable pointed to by
 * @cur_state.  This works on T114, T124, and T148 by comparing
 * @dividend and @divisor with the current state of the hardware -
 * though note that @dividend and @divisor must be the actual dividend
 * and divisor values.  That is, they must be in 1-256 range, not the
 * 0-255 range used by the hardware bitfields.
 *
 * FIXME: For T132 switch to Denver:CCROC NV_THERM style status.  Does
 * not currently work on T132.
 *
 * Return: 0 upon success, -ENOTSUPP on T12x and T13x, or -EINVAL if
 * the arguments are invalid or out of range.
 *
 */
static int soctherm_get_cpu_throt_state(u16 dividend, u16 divisor,
					unsigned long *cur_state)
{
	u16 m, n;
	u8 enabled, sw_override;

	if (!cur_state || dividend == 0 || divisor == 0 ||
	    dividend > 256 || divisor > 256)
		return -EINVAL;

	if (soctherm_has_mn_cpu_pskip_status()) {
		soctherm_get_mn_cpu_pskip_status(&enabled, &sw_override, &m, &n);

		if (enabled && m == dividend && n == divisor)
			*cur_state |= (1 << THROTTLE_DEV_CPU);
	} else {
		pr_warn_once("CPU throttling status not yet available on this SoC\n");
		return -EINVAL;
	}

	return 0;
}

/**
 * soctherm_get_gpu_throt_state - read the current state of the GPU pulse skipper
 * @dividend: pulse skipper numerator value to test against (1-256)
 * @divisor: pulse skipper denominator value to test against (1-256)
 * @cur_state: ptr to the variable that the current throttle state is stored in
 *
 * Determine the current state of the GPU thermal throttling pulse
 * skipper, and if it's enabled and at its configured ending state,
 * set the appropriate 'enabled' bit in the variable pointed to by
 * @cur_state.  This works on T114 and T148 by comparing @dividend and
 * @divisor with the current state of the hardware - though note that
 * @dividend and @divisor must be the actual dividend and divisor
 * values.  That is, they must be in 1-256 range, not the 0-255 range used
 * by the hardware bitfields.
 *
 * Unfortunately, on T12x and T13x, the GPU manages its own thermal
 * throttling, and does not report its state to the SOC_THERM IP
 * block.  So on those chips, this function will return an error.
 *
 * Return: 0 upon success, -ENOTSUPP on T12x and T13x, or -EINVAL if
 * the arguments are invalid or out of range.
 */
static int soctherm_get_gpu_throt_state(u16 dividend, u16 divisor,
					unsigned long *cur_state)
{
	u16 m, n;
	u8 enabled, sw_override;
	int r;

	if (!cur_state || dividend == 0 || divisor == 0 ||
	    dividend > 256 || divisor > 256)
		return -EINVAL;

	/*
	 * XXX should be replaced with an earlier DT property read to
	 * determine the GPU type (or GPU->SOC_THERM integration) in
	 * use
	 */
	if (!soctherm_has_gpu_pskip_status())
		return -ENOTSUPP;

	r = soctherm_get_gpu_pskip_status(&enabled, &sw_override, &m, &n);
	if (r) {
		WARN_ON(1);
		return r;
	}

	if (!enabled)
		return 0;

	*cur_state |= (m == dividend && n == divisor) ?
		(1 << THROTTLE_DEV_GPU) : 0;

	return r;
}

/**
 * soctherm_hw_action_get_cur_state() - get the current CPU/GPU throttling state
 * @cdev: ptr to the struct thermal_cooling_device associated with SOC_THERM
 * @cur_state: ptr to a variable to return the throttling state into
 *
 * Query the current state of the SOC_THERM cooling device represented
 * by @cdev, and return its current state into the variable pointed to
 * by @cur_state.  Intended to be used as a thermal framework callback
 * function.
 *
 * Return: 0.
 */
static int soctherm_hw_action_get_cur_state(struct thermal_cooling_device *cdev,
					    unsigned long *cur_state)
{
	struct thermal_trip_info *trip_state = cdev->devdata;
	struct soctherm_throttle_dev *devs;
	int i, r;

	if (!trip_state)
		return 0;

	*cur_state = 0;
	if (trip_state->trip_type != THERMAL_TRIP_HOT)
		return 0;

	for (i = THROTTLE_LIGHT; i <= THROTTLE_HEAVY; i++) {
		if (!strnstr(trip_state->cdev_type, throt_names[i],
			     THERMAL_NAME_LENGTH))
			continue;

		devs = &plat_data.throttle[i].devs[THROTTLE_DEV_CPU];
		if (devs->enable)
			soctherm_get_cpu_throt_state(devs->dividend + 1,
						     devs->divisor + 1,
						     cur_state);

		devs = &plat_data.throttle[i].devs[THROTTLE_DEV_GPU];
		if (devs->enable) {
			r = soctherm_get_gpu_throt_state(devs->dividend + 1,
							 devs->divisor + 1,
							 cur_state);
			/*
			 * On some chips, the GPU thermal throttling
			 * status isn't reported back to the SOC_THERM
			 * hardware.  The ideal situation is for the
			 * GPU driver to register its own cooling
			 * device in that case; however, that code
			 * isn't implemented AFAIK.  On those chips,
			 * Diwakar's preferred approach is for the GPU
			 * throttling status bit to follow the CPU
			 * throttling status bit, since that's the
			 * vendor- recommended thermal configuration.
			 * Diwakar notes: On Tegra12x OC5 is a
			 * reserved alarm. Hence GPU 'PSKIP' state
			 * always shows ON. The real status register
			 * 'NV_THERM_CLK_STATUS' can't be read safely
			 * [from this code - pjw]. So we mirror the
			 * CPU status.
			 */
			if (r == -ENOTSUPP)
				if (*cur_state & (1 << THROTTLE_DEV_CPU))
					*cur_state |= (1 << THROTTLE_DEV_GPU);
		}

	}

	return 0;
}

static int soctherm_hw_action_set_cur_state(struct thermal_cooling_device *cdev,
					    unsigned long cur_state)
{
	return 0; /* hw sets this state */
}

static struct thermal_cooling_device *soctherm_hw_critical_cdev;
static struct thermal_cooling_device *soctherm_hw_heavy_cdev;
static struct thermal_cooling_device *soctherm_hw_light_cdev;
static struct thermal_cooling_device_ops soctherm_hw_action_ops = {
	.get_max_state = soctherm_hw_action_get_max_state,
	.get_cur_state = soctherm_hw_action_get_cur_state,
	.set_cur_state = soctherm_hw_action_set_cur_state,
};

static int soctherm_suspend_get_max_state(struct thermal_cooling_device *cdev,
					  unsigned long *max_state)
{
	*max_state = 1;
	return 0;
}

static int soctherm_suspend_get_cur_state(struct thermal_cooling_device *cdev,
					  unsigned long *cur_state)
{
	*cur_state = !soctherm_suspended;
	return 0;
}

/**
 * soctherm_suspend_set_cur_state() - Resumes or suspends soctherm
 * @cdev:		Thermal cooling device. Currently not being used.
 * @cur_state:		The current state
 *
 * Ensures that the SOC_THERM device is suspended or resumed to match
 * @cur_state. This function is passed to the thermal framework as part of a
 * cooling device. This is a workaround to suspend the SOC_THERM IP block, which
 * is only needed because this is not yet a device driver. Once this code is
 * converted to be a device driver, the soctherm_suspend implementation can
 * be removed
 * Return: 0 (success).
 */
static int soctherm_suspend_set_cur_state(struct thermal_cooling_device *cdev,
					  unsigned long cur_state)
{
	if (!cur_state != soctherm_suspended) {
		if (cur_state)
			soctherm_resume();
		else
			soctherm_suspend();
	}
	return 0;
}

static struct thermal_cooling_device_ops soctherm_suspend_ops = {
	.get_max_state = soctherm_suspend_get_max_state,
	.get_cur_state = soctherm_suspend_get_cur_state,
	.set_cur_state = soctherm_suspend_set_cur_state,
};

/**
 * soctherm_bind() - Binds the given thermal zone's trip
 * points with the given cooling device.
 * @thz:	The thermal zone device to be bound
 * @cdev:	The cooling device to be bound
 *
 * If thermal sensor calibration data is missing from fuses,
 * the cooling devices are not bound.
 *
 * Based on platform-specific configuration associated with this
 * thermal zone, soctherm_bind() binds this cooling device to this
 * thermal zone at various trip points.
 *
 * soctherm_bind is called as a thermal_zone_device_ops bind function.
 *
 * Return: Returns 0 on successful binding. Returns 0 if passed an
 * invalid thermal zone argument, or improperly fused soctherm.
 * In the latter two cases, binding of the cooling device does not
 * occur.
 */
static int soctherm_bind(struct thermal_zone_device *thz,
				struct thermal_cooling_device *cdev)
{
	int i;
	struct soctherm_therm *therm = thz->devdata;
	struct thermal_trip_info *trip_state;

	/* skip binding cooling devices on improperly fused soctherm */
	if (tegra_fuse_calib_base_get_cp(NULL, NULL) < 0 ||
	    tegra_fuse_calib_base_get_ft(NULL, NULL) < 0)
		return 0;

	for (i = 0; i < therm->num_trips; i++) {
		trip_state = &therm->trips[i];
		if (trip_state->cdev_type &&
		    !strncmp(trip_state->cdev_type, cdev->type,
						THERMAL_NAME_LENGTH)) {
			thermal_zone_bind_cooling_device(thz, i, cdev,
							 trip_state->upper,
							 trip_state->lower);
			trip_state->bound = true;
		}
	}

	return 0;
}

/**
 * soctherm_unbind() - unbinds cooling device from a thermal zone.
 * @thz:        thermal zone to be dissociated with a cooling device
 * @cdev:       a cooling device to be dissociated with a thermal zone
 *
 * Dissociates a given cooling device from a given thermal zone.
 * This function will go through every trip point and dissociate
 * cooling device from the thermal zone.
 *
 * Return: 0
 */
static int soctherm_unbind(struct thermal_zone_device *thz,
				struct thermal_cooling_device *cdev)
{
	int i;
	struct soctherm_therm *therm = thz->devdata;
	struct thermal_trip_info *trip_state;

	for (i = 0; i < therm->num_trips; i++) {
		trip_state = &therm->trips[i];
		if (!trip_state->bound)
			continue;
		if (trip_state->cdev_type &&
		    !strncmp(trip_state->cdev_type, cdev->type,
						THERMAL_NAME_LENGTH)) {
			thermal_zone_unbind_cooling_device(thz, 0, cdev);
			trip_state->bound = false;
		}
	}

	return 0;
}

/**
 * soctherm_get_temp() - gets the temperature for the given thermal zone
 * @thz:	the thermal zone from which to get the temperature
 * @temp:	a pointer to where the temperature will be stored
 *
 * Reads the sensor associated with the given thermal zone, converts the
 * reading to millicelcius, and places it into temp. This function is passed
 * to the thermal framework as a callback function when the zone is created and
 * registered.
 *
 * Return: 0
 */
static int soctherm_get_temp(struct thermal_zone_device *thz,
					unsigned long *temp)
{
	struct soctherm_therm *therm = thz->devdata;
	ptrdiff_t index = therm - plat_data.therm;
	u32 r, regv, shft, mask;
	enum soctherm_sense i, j;
	int tt, ti;

	switch (index) {
	case THERM_CPU:
		regv = TS_TEMP1;
		shft = TS_TEMP1_CPU_TEMP_SHIFT;
		mask = TS_TEMP1_CPU_TEMP_MASK;
		i = TSENSE_CPU0;
		j = TSENSE_CPU3;
		break;

	case THERM_GPU:
		regv = TS_TEMP1;
		shft = TS_TEMP1_GPU_TEMP_SHIFT;
		mask = TS_TEMP1_GPU_TEMP_MASK;
		i = TSENSE_GPU;
		j = TSENSE_GPU;
		break;

	case THERM_MEM:
		regv = TS_TEMP2;
		shft = TS_TEMP2_MEM_TEMP_SHIFT;
		mask = TS_TEMP2_MEM_TEMP_MASK;
		i = TSENSE_MEM0;
		j = TSENSE_MEM1;
		break;

	case THERM_PLL:
	default: /* if devdata has error, return PLL temp to be safe */
		regv = TS_TEMP2;
		shft = TS_TEMP2_PLLX_TEMP_SHIFT;
		mask = TS_TEMP2_PLLX_TEMP_MASK;
		i = TSENSE_PLLX;
		j = TSENSE_PLLX;
		break;
	}

	if (read_hw_temp) {
		r = soctherm_readl(regv);
		*temp = temp_translate((r & (mask << shft)) >> shft);
	} else {
		for (tt = 0; i <= j; i++) {
			r = soctherm_readl(TS_TSENSE_REG_OFFSET(
						TS_CPU0_STATUS0, i));
			ti = temp_convert(REG_GET(r, TS_CPU0_STATUS0_CAPTURE),
						sensor2therm_a[i],
						sensor2therm_b[i]);
			*temp = tt = max(tt, ti);
		}
	}
	return 0;
}

/**
 * soctherm_get_trip_type() - Gets the type of a given trip point
 * for a given thermal zone device.
 * @thz:	The thermal zone device
 * @trip:	The trip point index.
 * @type:	The trip type.
 *
 * The trip type will be one of the following values:
 * THERMAL_TRIP_ACTIVE, THERMAL_TRIP_PASSIVE, THERMAL_TRIP_HOT,
 * THERMAL_TRIP_CRITICAL
 *
 * This function is passed to the thermal framework as a callback
 * for each of the SOC_THERM-related thermal zones
 *
 * Return: Returns 0 on success, -EINVAL when passed an invalid argument.
 */
static int soctherm_get_trip_type(struct thermal_zone_device *thz,
				int trip, enum thermal_trip_type *type)
{
	struct soctherm_therm *therm = thz->devdata;

	*type = therm->trips[trip].trip_type;
	return 0;
}

/**
 * soctherm_get_trip_temp() - gets the threshold of a trip point from a zone
 * @thz:	the thermal zone whose trip point temperature will be accessed
 * @trip:	the index of the trip point
 * @temp:	a pointer to where the temperature will be stored
 *
 * Reads the temperature threshold value of the specified trip point from the
 * specified thermal zone (in millicelsius) and places it into temp. It also
 * update's the zone's tripped flag. This function is passed to the thermal
 * framework as a callback function for each thermal zone.
 *
 * Return: 0 if success, otherwise %-EINVAL.
 */

static int soctherm_get_trip_temp(struct thermal_zone_device *thz,
				int trip, unsigned long *temp)
{
	struct soctherm_therm *therm = thz->devdata;
	struct thermal_trip_info *trip_state;
	unsigned long trip_temp, zone_temp;

	trip_state = &therm->trips[trip];
	trip_temp = trip_state->trip_temp;
	zone_temp = thz->temperature;

	if (zone_temp >= trip_temp) {
		trip_temp -= trip_state->hysteresis;
		trip_state->tripped = true;
	} else if (trip_state->tripped) {
		trip_temp -= trip_state->hysteresis;
		if (zone_temp < trip_temp)
			trip_state->tripped = false;
	}

	*temp = trip_temp;
	return 0;
}

/**
 * soctherm_set_trip_temp() - updates trip temperature
 *	for a particular trip point
 * @thz:	pointer to thermal_zone_device to update trip temperature
 * @trip:	index value of thermal_trip_info in soctherm_therm->trips
 * @temp:	value for new temperature
 *
 * Updates both the software data structure and the hardware threshold
 * for a trip point. This function is passed to the thermal framework
 * as a callback function for each of the thermal zone.
 *
 * Return: 0 if successful else %-EINVAL
 */
static int soctherm_set_trip_temp(struct thermal_zone_device *thz,
				int trip, unsigned long temp)
{
	struct soctherm_therm *therm = thz->devdata;
	struct thermal_trip_info *trip_state;
	ptrdiff_t index = therm - plat_data.therm;
	long rem;

	trip_state = &therm->trips[trip];
	trip_state->trip_temp = enforce_temp_range(temp);

	rem = trip_state->trip_temp % LOWER_PRECISION_FOR_CONV(1000);
	if (rem) {
		pr_warn("soctherm: zone%d/trip_point%d %ld mC rounded down\n",
			thz->id, trip, trip_state->trip_temp);
		trip_state->trip_temp -= rem;
	}

	if (trip_state->trip_type == THERMAL_TRIP_HOT) {
		if (strnstr(trip_state->cdev_type,
			    "heavy", THERMAL_NAME_LENGTH))
			prog_hw_threshold(trip_state, index, THROTTLE_HEAVY);
		else if (strnstr(trip_state->cdev_type,
				 "light", THERMAL_NAME_LENGTH))
			prog_hw_threshold(trip_state, index, THROTTLE_LIGHT);
	}

	/* Allow SW to shutdown at 'Critical temperature reached' */
	thermal_notify_framework(thz, trip);

	/* Reprogram HW thermtrip */
	if (trip_state->trip_type == THERMAL_TRIP_CRITICAL)
		prog_hw_shutdown(trip_state, index);

	return 0;
}

/**
 * soctherm_get_crit_temp() - Gets critical temperature of a thermal zone
 * @tzd:		The pointer to thermal zone device
 * @temp:		The pointer to the temperature
 *
 * Iterates through the list of thermal trips for a given @thz, and looks for
 * its critical temperature point @temp to cause a shutdown.
 *
 * Return: 0 if it is able to find a critical temperature point and stores it
 * into the variable pointed by the address in @temp; Otherwise, return -EINVAL.
 */
static int soctherm_get_crit_temp(struct thermal_zone_device *thz,
				  unsigned long *temp)
{
	int i;
	struct soctherm_therm *therm = thz->devdata;
	struct thermal_trip_info *trip_state;

	for (i = 0; i < therm->num_trips; i++) {
		trip_state = &therm->trips[i];
		if (trip_state->trip_type != THERMAL_TRIP_CRITICAL)
			continue;
		*temp = trip_state->trip_temp;
		return 0;
	}

	return -EINVAL;
}

/**
 * soctherm_get_trend() - Gets the thermal trend for a given
 * thermal zone device
 * @thz:	The thermal zone device whose trend is being obtained
 * @trip:	The trip point number
 * @trend:	The thermal trend
 *
 * This function is passed to the thermal framework as a callback
 * for SOC_THERM's thermal zone devices
 *
 * The trend will be one of the following:
 * THERMAL_TREND_STABLE: the temperature is stable
 * THERMAL_TREND_RAISING: the temperature is increasing
 * THERMAL_TREND_DROPPING: the temperature is decreasing
 * THERMAL_TREND_RAISE_FULL: apply the highest cooling action
 * THERMAL_TREND_DROP_FULL: apply the lowest cooling action
 *
 * If the trip type of the trip point of the thermal zone device is
 * THERMAL_TRIP_ACTIVE, then the thermal trend is THERMAL_TREND_RAISING.
 * Otherwise, if the device's temperature is higher than its trip
 * temperature, the trend is THERMAL_TREND_RAISING. If the device's
 * temperature is lower, the trend is THERMAL_TREND_DROPPING. Otherwise
 * the trend is stable.
 *
 * Return: 0 on success. Returns -EINVAL if the function was
 * passed an invalid argument.
 */
static int soctherm_get_trend(struct thermal_zone_device *thz,
				int trip,
				enum thermal_trend *trend)
{
	struct soctherm_therm *therm = thz->devdata;
	struct thermal_trip_info *trip_state;
	long trip_temp;

	trip_state = &therm->trips[trip];
	thz->ops->get_trip_temp(thz, trip, &trip_temp);

	switch (trip_state->trip_type) {
	case THERMAL_TRIP_ACTIVE:
		/* aggressive active cooling */
		*trend = THERMAL_TREND_RAISING;
		break;
	case THERMAL_TRIP_PASSIVE:
		if (thz->temperature > trip_state->trip_temp)
			*trend = THERMAL_TREND_RAISING;
		else if (thz->temperature < trip_temp)
			*trend = THERMAL_TREND_DROPPING;
		else
			*trend = THERMAL_TREND_STABLE;
		break;
	default:
		return -EINVAL;
	}
	return 0;
}

static struct thermal_zone_device_ops soctherm_ops = {
	.bind = soctherm_bind,
	.unbind = soctherm_unbind,
	.get_temp = soctherm_get_temp,
	.get_trip_type = soctherm_get_trip_type,
	.get_trip_temp = soctherm_get_trip_temp,
	.set_trip_temp = soctherm_set_trip_temp,
	.get_crit_temp = soctherm_get_crit_temp,
	.get_trend = soctherm_get_trend,
};

/**
  * soctherm_hot_cdev_register() - registers cooling devices
  *	associated with hardware throttling.
  * @i:		soctherm_therm_id index of the sensor group
  * @trip:	index of thermal_trip_info in soctherm_therm->trips
  *
  * As indicated by platform configuration data, registers with
  * the thermal framework two cooling devices representing
  * SOC_THERM's hardware throttling capability associated with
  * sensor group @i
  *
  * These cooling devices are special. To function properly, they must be
  * bound (with a single trip point) to the thermal zone associated with
  * the same sensor group.
  *
  * Setting the trip point temperature leads to an adjustment of the
  * hardware throttling temperature threshold. Examining the cooling
  * device's cur_state indicates whether hardware throttling is active.
  */
static void __init soctherm_hot_cdev_register(int i, int trip)
{
	struct soctherm_therm *therm;
	int k;

	therm = &plat_data.therm[i];

	for (k = 0; k < THROTTLE_SIZE; k++) {
		if ((therm2dev[i] == THROTTLE_DEV_NONE) ||
		    (!plat_data.throttle[k].devs[therm2dev[i]].enable))
			continue;

		if ((strnstr(therm->trips[trip].cdev_type, "oc1",
			     THERMAL_NAME_LENGTH) && k == THROTTLE_OC1) ||
		    (strnstr(therm->trips[trip].cdev_type, "oc2",
			     THERMAL_NAME_LENGTH) && k == THROTTLE_OC2) ||
		    (strnstr(therm->trips[trip].cdev_type, "oc3",
			     THERMAL_NAME_LENGTH) && k == THROTTLE_OC3) ||
		    (strnstr(therm->trips[trip].cdev_type, "oc4",
			     THERMAL_NAME_LENGTH) && k == THROTTLE_OC4))
			continue;

		if (strnstr(therm->trips[trip].cdev_type,
			    "heavy",
			    THERMAL_NAME_LENGTH) &&
		    k == THROTTLE_HEAVY &&
		    !soctherm_hw_heavy_cdev) {
			soctherm_hw_heavy_cdev =
				thermal_cooling_device_register(
					therm->trips[trip].cdev_type,
					&therm->trips[trip],
					&soctherm_hw_action_ops);
			continue;
		}

		if (strnstr(therm->trips[trip].cdev_type,
			    "light",
			    THERMAL_NAME_LENGTH) &&
		    k == THROTTLE_LIGHT &&
		    !soctherm_hw_light_cdev) {
			soctherm_hw_light_cdev =
				thermal_cooling_device_register(
					therm->trips[trip].cdev_type,
					&therm->trips[trip],
					&soctherm_hw_action_ops);
			continue;
		}
	}
}

/**
 * soctherm_thermal_sys_init() - initializes the SOC_THERM thermal system
 *
 * After the board-specific data has been initalized, this creates a thermal
 * zone device for each enabled sensor and each enabled sensor group.
 * It also creates a cooling zone device for each enabled thermal zone that has
 * a critical trip point. It enables the suspend feature if no over-current
 * alarms are enabled.
 *
 * Once all of the thermal zones have been registered, it runs
 * soctherm_update(), which sets high and low temperature thresholds.
 *
 * Runs at kernel boot-time.
 *
 * Return: 0
 */
static int __init soctherm_thermal_sys_init(void)
{
	char name[THERMAL_NAME_LENGTH];
	struct soctherm_therm *therm;
	bool oc_en = false;
	int i, j;

	if (!soctherm_init_platform_done)
		return 0;

	for (i = 0; i < THERM_SIZE; i++) {
		therm = &plat_data.therm[i];
		if (!therm->zone_enable)
			continue;

		for (j = 0; j < therm->num_trips; j++) {
			switch (therm->trips[j].trip_type) {
			case THERMAL_TRIP_CRITICAL:
				if (soctherm_hw_critical_cdev)
					break;
				soctherm_hw_critical_cdev =
					thermal_cooling_device_register(
						therm->trips[j].cdev_type,
						&therm->trips[j],
						&soctherm_hw_action_ops);
				break;

			case THERMAL_TRIP_HOT:
				soctherm_hot_cdev_register(i, j);
				break;

			case THERMAL_TRIP_PASSIVE:
			case THERMAL_TRIP_ACTIVE:
				break; /* done elsewhere */
			}
		}

		snprintf(name, THERMAL_NAME_LENGTH, "%s-therm", therm_names[i]);
		soctherm_th_zones[i] = thermal_zone_device_register(
						name,
						therm->num_trips,
						(1ULL << therm->num_trips) - 1,
						therm,
						&soctherm_ops,
						therm->tzp,
						therm->passive_delay,
						0);

		for (j = THROTTLE_OC1; !oc_en && j < THROTTLE_SIZE; j++)
			if ((therm2dev[i] != THROTTLE_DEV_NONE) &&
			    (plat_data.throttle[j].devs[therm2dev[i]].enable))
				oc_en = true;
	}

	/* do not enable suspend feature if any OC alarms are enabled */
	if (!oc_en)
		thermal_cooling_device_register("suspend_soctherm", NULL,
						&soctherm_suspend_ops);
	else
		pr_warn("soctherm: Suspend feature CANNOT be enabled %s\n",
			"when any OC alarm is enabled");

	soctherm_update();
	return 0;
}
module_init(soctherm_thermal_sys_init);

#else
static void soctherm_update_zone(int zn)
{
}
static void soctherm_update(void)
{
}
#endif

/**
 * soctherm_thermal_thread_func() - Handles a thermal interrupt request
 * @irq:	The interrupt number being requested; not used
 * @arg:	Opaque pointer to an argument; not used
 *
 * Clears the interrupt status register if there are expected
 * interrupt bits set.
 * The interrupt(s) are then handled by updating the corresponding
 * thermal zones.
 *
 * An error is logged if any unexpected interrupt bits are set.
 *
 * Disabled interrupts are re-enabled.
 *
 * Return: %IRQ_HANDLED. Interrupt was handled and no further processing
 * is needed.
 */
static irqreturn_t soctherm_thermal_thread_func(int irq, void *arg)
{
	u32 st, ex = 0, cp = 0, gp = 0, pl = 0;

	st = soctherm_readl(TH_INTR_STATUS);

	/* deliberately clear expected interrupts handled in SW */
	cp |= REG_GET_BIT(st, TH_INTR_POS_CD0);
	cp |= REG_GET_BIT(st, TH_INTR_POS_CU0);
	ex |= cp;

	gp |= REG_GET_BIT(st, TH_INTR_POS_GD0);
	gp |= REG_GET_BIT(st, TH_INTR_POS_GU0);
	ex |= gp;

	pl |= REG_GET_BIT(st, TH_INTR_POS_PD0);
	pl |= REG_GET_BIT(st, TH_INTR_POS_PU0);
	ex |= pl;

	if (ex) {
		soctherm_writel(ex, TH_INTR_STATUS);
		st &= ~ex;
		if (cp)
			soctherm_update_zone(THERM_CPU);
		if (gp)
			soctherm_update_zone(THERM_GPU);
		if (pl)
			soctherm_update_zone(THERM_PLL);
	}

	/* deliberately ignore expected interrupts NOT handled in SW */
	ex |= REG_GET_BIT(st, TH_INTR_POS_MD0);
	ex |= REG_GET_BIT(st, TH_INTR_POS_MU0);

	ex |= REG_GET_BIT(st, TH_INTR_POS_CD1);
	ex |= REG_GET_BIT(st, TH_INTR_POS_CU1);
	ex |= REG_GET_BIT(st, TH_INTR_POS_CD2);
	ex |= REG_GET_BIT(st, TH_INTR_POS_CU2);
	ex |= REG_GET_BIT(st, TH_INTR_POS_CD3);
	ex |= REG_GET_BIT(st, TH_INTR_POS_CU3);

	ex |= REG_GET_BIT(st, TH_INTR_POS_GD1);
	ex |= REG_GET_BIT(st, TH_INTR_POS_GU1);
	ex |= REG_GET_BIT(st, TH_INTR_POS_GD2);
	ex |= REG_GET_BIT(st, TH_INTR_POS_GU2);
	ex |= REG_GET_BIT(st, TH_INTR_POS_GD3);
	ex |= REG_GET_BIT(st, TH_INTR_POS_GU3);

	ex |= REG_GET_BIT(st, TH_INTR_POS_PD1);
	ex |= REG_GET_BIT(st, TH_INTR_POS_PU1);
	ex |= REG_GET_BIT(st, TH_INTR_POS_PD2);
	ex |= REG_GET_BIT(st, TH_INTR_POS_PU2);
	ex |= REG_GET_BIT(st, TH_INTR_POS_PD3);
	ex |= REG_GET_BIT(st, TH_INTR_POS_PU3);

	ex |= REG_GET_BIT(st, TH_INTR_POS_MD1);
	ex |= REG_GET_BIT(st, TH_INTR_POS_MU1);
	ex |= REG_GET_BIT(st, TH_INTR_POS_MD2);
	ex |= REG_GET_BIT(st, TH_INTR_POS_MU2);
	ex |= REG_GET_BIT(st, TH_INTR_POS_MD3);
	ex |= REG_GET_BIT(st, TH_INTR_POS_MU3);
	st &= ~ex;

	if (st) {
		/* Whine about any other unexpected INTR bits still set */
		pr_err("soctherm: Ignored unexpected INTRs 0x%08x\n", st);
		soctherm_writel(st, TH_INTR_STATUS);
	}

	return IRQ_HANDLED;
}

/**
 * soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt
 * @alarm:		The soctherm throttle id
 * @enable:		Flag indicating enable the soctherm over-current
 *			interrupt or disable it
 *
 * Enables a specific over-current pins @alarm to raise an interrupt if the flag
 * is set and the alarm corresponds to OC1, OC2, OC3, or OC4.
 */
static inline void soctherm_oc_intr_enable(enum soctherm_throttle_id alarm,
					   bool enable)
{
	u32 r;

	if (!enable)
		return;

	r = soctherm_readl(OC_INTR_ENABLE);
	switch (alarm) {
	case THROTTLE_OC1:
		r = REG_SET(r, OC_INTR_POS_OC1, 1);
		break;
	case THROTTLE_OC2:
		r = REG_SET(r, OC_INTR_POS_OC2, 1);
		break;
	case THROTTLE_OC3:
		r = REG_SET(r, OC_INTR_POS_OC3, 1);
		break;
	case THROTTLE_OC4:
		r = REG_SET(r, OC_INTR_POS_OC4, 1);
		break;
	default:
		r = 0;
		break;
	}
	soctherm_writel(r, OC_INTR_ENABLE);
}

/**
 * soctherm_handle_alarm() - Handles soctherm alarms
 * @alarm:		The soctherm throttle id
 *
 * "Handles" over-current alarms (OC1, OC2, OC3, and OC4) by printing
 * a warning or informative message.
 *
 * Return: -EINVAL for @alarm = THROTTLE_OC3, otherwise 0 (success).
 */
static int soctherm_handle_alarm(enum soctherm_throttle_id alarm)
{
	int rv = -EINVAL;

	switch (alarm) {
	case THROTTLE_OC1:
		pr_debug("soctherm: Successfully handled OC1 alarm\n");
		/* add OC1 alarm handling code here */
		rv = 0;
		break;

	case THROTTLE_OC2:
		pr_info("soctherm: Successfully handled OC2 alarm\n");
		/* TODO: add OC2 alarm handling code here */
		rv = 0;
		break;

	case THROTTLE_OC3:
		pr_warn("soctherm: Unexpected OC3 alarm\n");
		/* add OC3 alarm handling code here */
		break;

	case THROTTLE_OC4:
		pr_info("soctherm: Successfully handled OC4 alarm\n");
		/* TODO: add OC4 alarm handling code here */
		rv = 0;
		break;

	default:
		break;
	}

	if (rv)
		pr_err("soctherm: ERROR in handling %s alarm\n",
		       throt_names[alarm]);

	return rv;
}

/**
 * soctherm_edp_thread_func() - log an over-current interrupt request
 * @irq:	OC irq number. Currently not being used. See description
 * @arg:	a void pointer for callback, currently not being used
 *
 * Over-current events are handled in hardware. This function is called to log
 * and handle any OC events that happened. Additionally, it checks every
 * over-current interrupt registers for registers are set but
 * was not expected (i.e. any discrepancy in interrupt status) by the function,
 * the discrepancy will logged.
 *
 * Return: %IRQ_HANDLED
 */
static irqreturn_t soctherm_edp_thread_func(int irq, void *arg)
{
	u32 st, ex, oc1, oc2, oc3, oc4;

	st = soctherm_readl(OC_INTR_STATUS);

	/* deliberately clear expected interrupts handled in SW */
	oc1 = REG_GET_BIT(st, OC_INTR_POS_OC1);
	oc2 = REG_GET_BIT(st, OC_INTR_POS_OC2);
	oc3 = REG_GET_BIT(st, OC_INTR_POS_OC3);
	oc4 = REG_GET_BIT(st, OC_INTR_POS_OC4);
	ex = oc1 | oc2 | oc3 | oc4;

	if (ex) {
		soctherm_writel(st, OC_INTR_STATUS);
		st &= ~ex;

		if (oc1 && !soctherm_handle_alarm(THROTTLE_OC1))
			soctherm_oc_intr_enable(THROTTLE_OC1, true);

		if (oc2 && !soctherm_handle_alarm(THROTTLE_OC2))
			soctherm_oc_intr_enable(THROTTLE_OC2, true);

		if (oc3 && !soctherm_handle_alarm(THROTTLE_OC3))
			soctherm_oc_intr_enable(THROTTLE_OC3, true);

		if (oc4 && !soctherm_handle_alarm(THROTTLE_OC4))
			soctherm_oc_intr_enable(THROTTLE_OC4, true);

		if (oc1 && soc_irq_cdata.irq_enable & BIT(0))
			handle_nested_irq(
				irq_find_mapping(soc_irq_cdata.domain, 0));

		if (oc2 && soc_irq_cdata.irq_enable & BIT(1))
			handle_nested_irq(
				irq_find_mapping(soc_irq_cdata.domain, 1));

		if (oc3 && soc_irq_cdata.irq_enable & BIT(2))
			handle_nested_irq(
				irq_find_mapping(soc_irq_cdata.domain, 2));

		if (oc4 && soc_irq_cdata.irq_enable & BIT(3))
			handle_nested_irq(
				irq_find_mapping(soc_irq_cdata.domain, 3));
	}

	if (st) {
		pr_err("soctherm: Ignored unexpected OC ALARM 0x%08x\n", st);
		soctherm_writel(st, OC_INTR_STATUS);
	}

	return IRQ_HANDLED;
}

/**
 * soctherm_thermal_isr() - thermal interrupt request handler
 * @irq:	Interrupt request number
 * @arg:	Not used.
 *
 * Reads the thermal interrupt status and then disables any asserted
 * interrupts. The thread woken by this isr services the asserted
 * interrupts and re-enables them.
 *
 * Return: %IRQ_WAKE_THREAD
 */
static irqreturn_t soctherm_thermal_isr(int irq, void *arg)
{
	u32 r;

	r = soctherm_readl(TH_INTR_STATUS);
	soctherm_writel(r, TH_INTR_DISABLE);

	return IRQ_WAKE_THREAD;
}

/**
 * soctherm_edp_isr() - Disables any active interrupts
 * @irq:	The interrupt request number
 * @arg:	Opaque pointer to an argument
 *
 * Writes to the OC_INTR_DISABLE register the over current interrupt status,
 * masking any asserted interrupts. Doing this prevents the same interrupts
 * from triggering this isr repeatedly. The thread woken by this isr will
 * handle asserted interrupts and subsequently unmask/re-enable them.
 *
 * The OC_INTR_DISABLE register indicates which OC interrupts
 * have been disabled.
 *
 * Return: %IRQ_WAKE_THREAD, handler requests to wake the handler thread
 */
static irqreturn_t soctherm_edp_isr(int irq, void *arg)
{
	u32 r;

	r = soctherm_readl(OC_INTR_STATUS);
	soctherm_writel(r, OC_INTR_DISABLE);

	return IRQ_WAKE_THREAD;
}

/**
 * throttlectl_cpu_mn() - program CPU pulse skipper configuration
 * @throt: soctherm_throttle_id describing the level of throttling
 *
 * Pulse skippers are used to throttle clock frequencies.  This
 * function programs the pulse skippers based on @throt and platform
 * data.  This function is used for CPUs that have "remote" pulse
 * skipper control, e.g., the CPU pulse skipper is controlled by the
 * SOC_THERM IP block.  (SOC_THERM is located outside the CPU
 * complex.)
 *
 * Return: boolean true if HW was programmed, or false if the desired
 * configuration is not supported.
 */
static bool throttlectl_cpu_mn(enum soctherm_throttle_id throt)
{
	u32 r;
	struct soctherm_throttle *data = &plat_data.throttle[throt];
	struct soctherm_throttle_dev *dev = &data->devs[THROTTLE_DEV_CPU];

	if (!dev->enable)
		return false;

	r = soctherm_readl(THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
	r = REG_SET(r, THROT_PSKIP_CTRL_ENABLE, dev->enable);
	r = REG_SET(r, THROT_PSKIP_CTRL_DIVIDEND, dev->dividend);
	r = REG_SET(r, THROT_PSKIP_CTRL_DIVISOR, dev->divisor);
	soctherm_writel(r, THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));

	r = soctherm_readl(THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
	r = REG_SET(r, THROT_PSKIP_RAMP_DURATION, dev->duration);
	r = REG_SET(r, THROT_PSKIP_RAMP_STEP, dev->step);
	soctherm_writel(r, THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));

	return true;
}

/**
 * throttlectl_cpu_level() - program CPU pulse skipper configuration
 * @throt: soctherm_throttle_id describing the level of throttling
 *
 * Pulse skippers are used to throttle clock frequencies.  This
 * function programs the pulse skippers based on @throt and platform
 * data.  This function is used on SoCs which have CPU-local pulse
 * skipper control, such as T13x. It programs soctherm's interface to
 * Denver:CCROC NV_THERM in terms of Low, Medium and Heavy throttling
 * vectors. PSKIP_BYPASS mode is set as required per HW spec.
 *
 * It's also necessary to set up the CPU-local NV_THERM instance with
 * the M/N values desired for each level.  This function does this
 * also, although it should be handled by a separate driver.
 *
 * Return: boolean true if HW was programmed, or false if the desired
 * configuration is not supported.
 */
static bool throttlectl_cpu_level(enum soctherm_throttle_id throt)
{
	u32 r, throt_vect = 0;
	int throt_level = 0;
	struct soctherm_throttle *data = &plat_data.throttle[throt];
	struct soctherm_throttle_dev *dev = &data->devs[THROTTLE_DEV_CPU];

	if (!dev->enable)
		return false;

	/* Denver:CCROC NV_THERM interface N:3 Mapping */
	if (!strcmp(dev->throttling_depth, "heavy_throttling")) {
		throt_level = THROT_LEVEL_HVY;
		throt_vect = THROT_VECT_HVY;
	} else if (!strcmp(dev->throttling_depth, "medium_throttling")) {
		throt_level = THROT_LEVEL_MED;
		throt_vect = THROT_VECT_MED;
	} else {
		throt_level = THROT_LEVEL_LOW;
		throt_vect = THROT_VECT_LOW;
	}

	if (dev->depth)
		THROT_DEPTH(dev, dev->depth);

	r = soctherm_readl(THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
	r = REG_SET(r, THROT_PSKIP_CTRL_ENABLE, dev->enable);
	/* for T132: setup throttle vector in soctherm register */
	r = REG_SET(r, THROT_PSKIP_CTRL_VECT_CPU, throt_vect);
	r = REG_SET(r, THROT_PSKIP_CTRL_VECT2_CPU, throt_vect);
	soctherm_writel(r, THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));

	/* No point programming the sequencer, since we're bypassing it */

	/* for T132: setup actual depth in ccroc nv_therm register */
	r = soctherm_readl(THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
	r = REG_SET(r, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE, 1);
	soctherm_writel(r, THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));

	r = clk_reset13_readl(THROT13_PSKIP_RAMP_CPU(throt_level));
	r = REG_SET(r, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE, 1);
	clk_reset13_writel(r, THROT13_PSKIP_RAMP_CPU(throt_level));

	r = clk_reset13_readl(THROT13_PSKIP_CTRL_CPU(throt_level));
	r = REG_SET(r, THROT_PSKIP_CTRL_ENABLE, dev->enable);
	r = REG_SET(r, THROT_PSKIP_CTRL_DIVIDEND, dev->dividend);
	r = REG_SET(r, THROT_PSKIP_CTRL_DIVISOR, dev->divisor);
	clk_reset13_writel(r, THROT13_PSKIP_CTRL_CPU(throt_level));

	return true;
}

/**
 * throttlectl_gpu_gk20a_nv_therm_style() - programs GK20a NV_THERM config
 * @dev		device struct pointer to GPU device
 * @throt	soctherm_throttle_id describing the level of throttling
 *
 * This function programs soctherm's interface to GK20a NV_THERM in
 * terms of Low, Medium and Heavy throttling preset levels.
 *
 * Return: boolean true if HW was programmed
 */
static bool throttlectl_gpu_gk20a_nv_therm_style(
				struct soctherm_throttle_dev *dev,
				enum soctherm_throttle_id throt)
{
	u32 r, throt_vect;

	/* gk20a nv_therm interface N:3 Mapping */
	if (!strcmp(dev->throttling_depth, "heavy_throttling"))
		throt_vect = THROT_VECT_HVY;
	else if (!strcmp(dev->throttling_depth, "medium_throttling"))
		throt_vect = THROT_VECT_MED;
	else
		throt_vect = THROT_VECT_LOW;

	r = soctherm_readl(THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
	r = REG_SET(r, THROT_PSKIP_CTRL_ENABLE, dev->enable);
	r = REG_SET(r, THROT_PSKIP_CTRL_VECT_GPU, throt_vect);
	soctherm_writel(r, THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));

	r = soctherm_readl(THROT_PSKIP_RAMP(throt, THROTTLE_DEV_GPU));
	r = REG_SET(r, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE, 1);
	soctherm_writel(r, THROT_PSKIP_RAMP(throt, THROTTLE_DEV_GPU));

	return true;
}

/**
 * throttlectl_gpu() - programs GPU pulse skippers' configuration
 * @throt	soctherm_throttle_id describing the level of throttling
 *
 * Pulse skippers are used to throttle clock frequencies.
 * This function programs the pulse skippers based on @throt and platform data.
 *
 * Return: boolean true if HW was programmed
 */
static bool throttlectl_gpu(enum soctherm_throttle_id throt)
{
	u32 r;
	struct soctherm_throttle *data = &plat_data.throttle[throt];
	struct soctherm_throttle_dev *dev = &data->devs[THROTTLE_DEV_GPU];

	if (!dev->enable)
		return false;

	if (IS_T12X || IS_T13X)
		return throttlectl_gpu_gk20a_nv_therm_style(dev, throt);

	if (dev->depth)
		THROT_DEPTH(dev, dev->depth);

	r = soctherm_readl(THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
	r = REG_SET(r, THROT_PSKIP_CTRL_ENABLE, dev->enable);
	r = REG_SET(r, THROT_PSKIP_CTRL_DIVIDEND, dev->dividend);
	r = REG_SET(r, THROT_PSKIP_CTRL_DIVISOR, dev->divisor);
	soctherm_writel(r, THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));

	r = soctherm_readl(THROT_PSKIP_RAMP(throt, THROTTLE_DEV_GPU));
	r = REG_SET(r, THROT_PSKIP_RAMP_DURATION, dev->duration);
	r = REG_SET(r, THROT_PSKIP_RAMP_STEP, dev->step);
	soctherm_writel(r, THROT_PSKIP_RAMP(throt, THROTTLE_DEV_GPU));

	return true;
}

/**
 * soctherm_throttle_program() - programs pulse skippers' configuration
 * @throt	soctherm_throttle_id describing the level of throttling
 *
 * Pulse skippers are used to throttle clock frequencies.
 * This function programs the pulse skippers based on @throt and platform data.
 *
 * Return: Nothing is returned (void).
 */
static void soctherm_throttle_program(enum soctherm_throttle_id throt)
{
	u32 r;
	bool throt_enable;
	struct soctherm_throttle *data = &plat_data.throttle[throt];

	throt_enable = (IS_T13X) ? throttlectl_cpu_level(throt) :
		throttlectl_cpu_mn(throt);
	throt_enable |= throttlectl_gpu(throt);

	r = REG_SET(0, THROT_PRIORITY_LITE_PRIO, data->priority);
	soctherm_writel(r, THROT_PRIORITY_CTRL(throt));

	r = REG_SET(0, THROT_DELAY_LITE_DELAY, 0);
	soctherm_writel(r, THROT_DELAY_CTRL(throt));

	r = soctherm_readl(THROT_PRIORITY_LOCK);
	if (r < data->priority) {
		r = REG_SET(0, THROT_PRIORITY_LOCK_PRIORITY, data->priority);
		soctherm_writel(r, THROT_PRIORITY_LOCK);
	}

	/* ----- configure reserved OC5 alarm ----- */
	if (throt == THROTTLE_OC5) {
		r = soctherm_readl(ALARM_CFG(throt));
		r = REG_SET(r, OC1_CFG_THROTTLE_MODE, BRIEF);
		r = REG_SET(r, OC1_CFG_ALARM_POLARITY, 0);
		r = REG_SET(r, OC1_CFG_EN_THROTTLE, 1);
		soctherm_writel(r, ALARM_CFG(throt));

		r = REG_SET(r, OC1_CFG_ALARM_POLARITY, 1);
		soctherm_writel(r, ALARM_CFG(throt));

		r = REG_SET(r, OC1_CFG_ALARM_POLARITY, 0);
		soctherm_writel(r, ALARM_CFG(throt));

		r = REG_SET(r, THROT_PSKIP_CTRL_DIVIDEND, 0);
		r = REG_SET(r, THROT_PSKIP_CTRL_DIVISOR, 0);
		r = REG_SET(r, THROT_PSKIP_CTRL_ENABLE, 1);
		soctherm_writel(r, THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));

		r = soctherm_readl(THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
		r = REG_SET(r, THROT_PSKIP_RAMP_DURATION, 0xff);
		r = REG_SET(r, THROT_PSKIP_RAMP_STEP, 0xf);
		soctherm_writel(r, THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));

		r = soctherm_readl(THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
		r = REG_SET(r, THROT_PSKIP_CTRL_ENABLE, 1);
		soctherm_writel(r, THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));

		r = REG_SET(0, THROT_PRIORITY_LITE_PRIO, 1);
		soctherm_writel(r, THROT_PRIORITY_CTRL(throt));
		return;
	}

	if (!throt_enable || (throt < THROTTLE_OC1))
		return;

	/* ----- configure other OC alarms ----- */
	if (!(data->throt_mode == BRIEF || data->throt_mode == STICKY))
		pr_warn("soctherm: Invalid throt_mode in %s\n",
			throt_names[throt]);

	r = soctherm_readl(ALARM_CFG(throt));
	r = REG_SET(r, OC1_CFG_HW_RESTORE, 1);
	r = REG_SET(r, OC1_CFG_PWR_GOOD_MASK, data->pgmask);
	r = REG_SET(r, OC1_CFG_THROTTLE_MODE, data->throt_mode);
	r = REG_SET(r, OC1_CFG_ALARM_POLARITY, data->polarity);
	r = REG_SET(r, OC1_CFG_EN_THROTTLE, 1);
	soctherm_writel(r, ALARM_CFG(throt));

	soctherm_oc_intr_enable(throt, data->intr);

	soctherm_writel(data->period, ALARM_THROTTLE_PERIOD(throt)); /* usec */
	soctherm_writel(data->alarm_cnt_threshold, ALARM_CNT_THRESHOLD(throt));
	if (data->alarm_filter)
		soctherm_writel(data->alarm_filter, ALARM_FILTER(throt));
	else
		soctherm_writel(0xffffffff, ALARM_FILTER(throt));
}

/**
 * soctherm_tsense_program() - Configure sensor timing parameters based on
 * chip-specific data.
 *
 * @sensor:	The temperature sensor. This corresponds to one of the
 *		four CPU sensors, one of the two memory
 *		sensors, or the GPU or PLLX sensor.
 * @data:	Information regarding a sensor. This comes from the platform
 *		data
 *
 * This function is called during initialization. It sets two CPU thermal sensor
 * configuration registers (TS_CPU0_CONFIG0 and TS_CPU0_CONFIG1)
 * to contain the given chip-specific sensor's configuration data.
 *
 * The configuration data affects the sensor's temperature capturing.
 *
 * Return: Nothing is returned (void).
 */
static void soctherm_tsense_program(enum soctherm_sense sensor,
						struct soctherm_sensor *data)
{
	u32 r;

	r = REG_SET(0, TS_CPU0_CONFIG0_TALL, data->tall);
	soctherm_writel(r, TS_TSENSE_REG_OFFSET(TS_CPU0_CONFIG0, sensor));

	r = REG_SET(0, TS_CPU0_CONFIG1_TIDDQ, data->tiddq);
	r = REG_SET(r, TS_CPU0_CONFIG1_EN, 1);
	r = REG_SET(r, TS_CPU0_CONFIG1_TEN_COUNT, data->ten_count);
	r = REG_SET(r, TS_CPU0_CONFIG1_TSAMPLE, data->tsample - 1);
	soctherm_writel(r, TS_TSENSE_REG_OFFSET(TS_CPU0_CONFIG1, sensor));
}

/**
 * soctherm_clk_init() - Initialize SOC_THERM related clocks.
 *
 * The initialization will map clock aliases for SOC_THERM and TSENSE
 * and set their clock rates based on chip-specific defaults or
 * any platform-specific overrides.
 *
 * Return: 0 if successful else %-EINVAL if initialization failed
 */
static int __init soctherm_clk_init(void)
{
	unsigned long default_soctherm_clk_rate;
	unsigned long default_tsensor_clk_rate;

	soctherm_clk = clk_get_sys("soc_therm", NULL);
	tsensor_clk = clk_get_sys("tegra-tsensor", NULL);

	if (IS_ERR(tsensor_clk) || IS_ERR(soctherm_clk)) {
		clk_put(soctherm_clk);
		clk_put(tsensor_clk);
		soctherm_clk = NULL;
		tsensor_clk = NULL;
		return -EINVAL;
	}

	/* initialize default clock rates */
	if (IS_T11X) {
		default_soctherm_clk_rate = default_t11x_soctherm_clk_rate;
		default_tsensor_clk_rate = default_t11x_tsensor_clk_rate;
	} else if (IS_T14X) {
		default_soctherm_clk_rate = default_t14x_soctherm_clk_rate;
		default_tsensor_clk_rate = default_t14x_tsensor_clk_rate;
	} else if ((IS_T12X || IS_T13X)) {
		default_soctherm_clk_rate = default_t12x_soctherm_clk_rate;
		default_tsensor_clk_rate = default_t12x_tsensor_clk_rate;
	} else {
		BUG();
	}

	plat_data.soctherm_clk_rate =
		plat_data.soctherm_clk_rate ?: default_soctherm_clk_rate;
	plat_data.tsensor_clk_rate =
		plat_data.tsensor_clk_rate ?: default_tsensor_clk_rate;

	if (clk_get_rate(soctherm_clk) != plat_data.soctherm_clk_rate)
		if (clk_set_rate(soctherm_clk, plat_data.soctherm_clk_rate))
			return -EINVAL;

	if (clk_get_rate(tsensor_clk) != plat_data.tsensor_clk_rate)
		if (clk_set_rate(tsensor_clk, plat_data.tsensor_clk_rate))
			return -EINVAL;

	return 0;
}

/**
 * soctherm_clk_enable() - enables and disables the clocks
 * @enable:	whether the clocks should be enabled or disabled
 *
 * Enables the SOC_THERM and thermal sensor clocks when SOC_THERM
 * is initialized.
 *
 * Return: 0 if successful, %-EINVAL if either clock hasn't been initialized.
 */
static int soctherm_clk_enable(bool enable)
{
	if (soctherm_clk == NULL || tsensor_clk == NULL)
		return -EINVAL;

	if (enable) {
		clk_enable(soctherm_clk);
		clk_enable(tsensor_clk);
	} else {
		clk_disable(soctherm_clk);
		clk_disable(tsensor_clk);
	}

	return 0;
}

/**
 * soctherm_fuse_read_calib_base() - Calculates calibration base temperature
 *
 * Calculates the nominal temperature used for thermal sensor calibration
 * based on chip type and the value in fuses.
 *
 * Return: 0 (success), otherwise -EINVAL.
 */
static int soctherm_fuse_read_calib_base(void)
{
	s32 calib_cp, calib_ft;
	s32 nominal_calib_cp, nominal_calib_ft;

	if (tegra_fuse_calib_base_get_cp(&fuse_calib_base_cp, &calib_cp) < 0 ||
	    tegra_fuse_calib_base_get_ft(&fuse_calib_base_ft, &calib_ft) < 0) {
		pr_err("soctherm: ERROR: Improper CP or FT calib fuse.\n");
		return -EINVAL;
	}

	nominal_calib_cp = 25;
	if (IS_T11X)
		nominal_calib_ft = 90;
	else if (IS_T14X || IS_T12X || IS_T13X)
		nominal_calib_ft = 105;
	else
		BUG();

	/* use HI precision to calculate: use fuse_temp in 0.5C */
	actual_temp_cp = 2 * nominal_calib_cp + calib_cp;
	actual_temp_ft = 2 * nominal_calib_ft + calib_ft;

	return 0;
}

static struct soctherm_fuse_correction_war no_fuse_war[] = {
	[TSENSE_CPU0] = { 1000000, 0 },
	[TSENSE_CPU1] = { 1000000, 0 },
	[TSENSE_CPU2] = { 1000000, 0 },
	[TSENSE_CPU3] = { 1000000, 0 },
	[TSENSE_MEM0] = { 1000000, 0 },
	[TSENSE_MEM1] = { 1000000, 0 },
	[TSENSE_GPU]  = { 1000000, 0 },
	[TSENSE_PLLX] = { 1000000, 0 },
};

static struct soctherm_fuse_correction_war t11x_fuse_war[] = {
	[TSENSE_CPU0] = { 1196400, -13600000 },
	[TSENSE_CPU1] = { 1196400, -13600000 },
	[TSENSE_CPU2] = { 1196400, -13600000 },
	[TSENSE_CPU3] = { 1196400, -13600000 },
	[TSENSE_MEM0] = { 1000000,  -1000000 },
	[TSENSE_MEM1] = { 1000000,  -1000000 },
	[TSENSE_GPU]  = { 1124500,  -9793100 },
	[TSENSE_PLLX] = { 1224200, -14665000 },
};

static struct soctherm_fuse_correction_war t14x_fuse_war[] = {
	[TSENSE_CPU0] = { 1149000, -16753000 },
	[TSENSE_CPU1] = { 1148800, -16287000 },
	[TSENSE_CPU2] = { 1139100, -12552000 },
	[TSENSE_CPU3] = { 1141800, -11061000 },
	[TSENSE_MEM0] = { 1082300, -11061000 },
	[TSENSE_MEM1] = { 1061800,  -7596500 },
	[TSENSE_GPU]  = { 1078900, -10480000 },
	[TSENSE_PLLX] = { 1125900, -14736000 },
};

/* old CP/FT */
static struct soctherm_fuse_correction_war t12x_fuse_war1[] = {
	[TSENSE_CPU0] = { 1148300, -6572300 },
	[TSENSE_CPU1] = { 1126100, -5794600 },
	[TSENSE_CPU2] = { 1155800, -7462800 },
	[TSENSE_CPU3] = { 1134900, -6810800 },
	[TSENSE_MEM0] = { 1062700, -4463200 },
	[TSENSE_MEM1] = { 1084700, -5603400 },
	[TSENSE_GPU]  = { 1084300, -5111900 },
	[TSENSE_PLLX] = { 1134500, -7410700 },
};

/* new CP1/CP2 */
static struct soctherm_fuse_correction_war t12x_fuse_war2[] = {
	[TSENSE_CPU0] = { 1135400, -6266900 },
	[TSENSE_CPU1] = { 1122220, -5700700 },
	[TSENSE_CPU2] = { 1127000, -6768200 },
	[TSENSE_CPU3] = { 1110900, -6232000 },
	[TSENSE_MEM0] = { 1122300, -5936400 },
	[TSENSE_MEM1] = { 1145700, -7124600 },
	[TSENSE_GPU]  = { 1120100, -6000500 },
	[TSENSE_PLLX] = { 1106500, -6729300 },
};

/* old ATE pattern */
static struct soctherm_fuse_correction_war t13x_fuse_war1[] = {
	[TSENSE_CPU0] = { 1119800,  -6330400 },
	[TSENSE_CPU1] = { 1094100,  -3751800 },
	[TSENSE_CPU2] = { 1108800,  -3835200 },
	[TSENSE_CPU3] = { 1103200,  -5132100 },
	[TSENSE_MEM0] = { 1168400, -11266000 },
	[TSENSE_MEM1] = { 1185600, -10861000 },
	[TSENSE_GPU]  = { 1158500, -10714000 },
	[TSENSE_PLLX] = { 1150000, -11899000 },
};

/* new ATE pattern */
static struct soctherm_fuse_correction_war t13x_fuse_war2[] = {
	[TSENSE_CPU0] = { 1126600, -9433500 },
	[TSENSE_CPU1] = { 1110800, -7383000 },
	[TSENSE_CPU2] = { 1113800, -6215200 },
	[TSENSE_CPU3] = { 1129600, -8196100 },
	[TSENSE_MEM0] = { 1132900, -6755300 },
	[TSENSE_MEM1] = { 1142300, -7374200 },
	[TSENSE_GPU]  = { 1125100, -6350400 },
	[TSENSE_PLLX] = { 1118100, -8208800 },
};

/**
 * soctherm_fuse_read_tsensor() - calculates therm_a and therm_b for a sensor
 * @sensor:	The sensor for which to calculate.
 *
 * Reads the calibration data from the thermal sensor's fuses and then uses
 * that data to calculate the slope of the pulse/temperature
 * relationship, therm_a, and its x-intercept, therm_b. After correcting the
 * values based on their chip ID and whether precision is high or low, it
 * stores them in the sensor's registers so that the hardware can convert the
 * raw TSOSC reading into temperature in celsius.
 *
 * Return: 0 if successful, otherwise %-EINVAL
 */
static int soctherm_fuse_read_tsensor(enum soctherm_sense sensor)
{
	u32 r, value;
	s32 calib, delta_sens, delta_temp;
	s16 therm_a, therm_b;
	s32 div, mult, actual_tsensor_ft, actual_tsensor_cp;
	int fuse_rev;
	struct soctherm_fuse_correction_war *war;

	fuse_rev = tegra_fuse_calib_base_get_cp(NULL, NULL);
	if (fuse_rev < 0)
		return fuse_rev;
	pr_debug("%s: fuse_rev %d\n", __func__, fuse_rev);

	tegra_fuse_get_tsensor_calib(sensor2tsensorcalib[sensor], &value);

	/* Extract bits and convert to signed 2's complement */
	calib = REG_GET(value, FUSE_TSENSOR_CALIB_FT);
	calib = MAKE_SIGNED32(calib, FUSE_TSENSOR_CALIB_BITS);
	actual_tsensor_ft = (fuse_calib_base_ft * 32) + calib;

	calib = REG_GET(value, FUSE_TSENSOR_CALIB_CP);
	calib = MAKE_SIGNED32(calib, FUSE_TSENSOR_CALIB_BITS);
	actual_tsensor_cp = (fuse_calib_base_cp * 64) + calib;

	mult = plat_data.sensor_data[sensor].pdiv *
		plat_data.sensor_data[sensor].tsamp_ate;
	div = plat_data.sensor_data[sensor].tsample *
		plat_data.sensor_data[sensor].pdiv_ate;

	/* first calculate therm_a and therm_b in Hi precision */
	delta_sens = actual_tsensor_ft - actual_tsensor_cp;
	delta_temp = actual_temp_ft - actual_temp_cp;

	therm_a = div64_s64_precise((s64)delta_temp * (1LL << 13) * mult,
				    (s64)delta_sens * div);

	therm_b = div64_s64_precise((((s64)actual_tsensor_ft * actual_temp_cp) -
				     ((s64)actual_tsensor_cp * actual_temp_ft)),
				    (s64)delta_sens);

	/* FUSE correction WARs */
	if (IS_T11X)
		war = PRECISION_IS_LOWER() ?
			&t11x_fuse_war[sensor] : &no_fuse_war[sensor];
	else if (IS_T14X)
		war = PRECISION_IS_LOWER() ?
			&t14x_fuse_war[sensor] : &no_fuse_war[sensor];
	else if (IS_T12X)
		war = fuse_rev ?
			&t12x_fuse_war1[sensor] : &t12x_fuse_war2[sensor];
	else if (IS_T13X)
		war = fuse_rev ?
			&t13x_fuse_war1[sensor] : &t13x_fuse_war2[sensor];
	else
		war = &no_fuse_war[sensor];

	therm_a = div64_s64_precise((s64)therm_a * war->a,
				    (s64)1000000LL);
	therm_b = div64_s64_precise((s64)therm_b * war->a + war->b,
				    (s64)1000000LL);
	therm_a = LOWER_PRECISION_FOR_TEMP(therm_a);
	therm_b = LOWER_PRECISION_FOR_TEMP(therm_b);

	sensor2therm_a[sensor] = (s16)therm_a;
	sensor2therm_b[sensor] = (s16)therm_b;

	r = REG_SET(0, TS_CPU0_CONFIG2_THERM_A, therm_a);
	r = REG_SET(r, TS_CPU0_CONFIG2_THERM_B, therm_b);
	soctherm_writel(r, TS_TSENSE_REG_OFFSET(TS_CPU0_CONFIG2, sensor));

	return 0;
}

/**
 * soctherm_therm_trip_init() - configure PMC's thermal-shutdown behavior
 * @data:	Power management unit thermal sensor initialization data
 *
 * Takes a given set of data and writes it to SCRATCH54 and SCRATCH55, which
 * PMC will use if SOC_THERM requests a shutdown based on excessive
 * temperature (i.e. a thermtrip).
 */
static void soctherm_therm_trip_init(struct tegra_thermtrip_pmic_data *data)
{
	if (!data)
		return;

	tegra_pmc_enable_thermal_trip();
	tegra_pmc_config_thermal_trip(data);
}

/**
 * soctherm_adjust_cpu_zone() - Adjusts the soctherm CPU zone
 * @therm:	soctherm_therm_id specifying the sensor group to adjust
 *
 * Changes SOC_THERM registers based on the CPU and PLLX temperatures.
 * Programs hotspot offsets per CPU or GPU and PLLX difference of temperature,
 * stops or starts CPUn TSOSCs, and programs hotspot offsets per configuration.
 * This function is called in soctherm_init_platform_data(),
 * tegra_soctherm_adjust_cpu_zone() and tegra_soctherm_adjust_core_zone().
 */
static void soctherm_adjust_zone(int tz)
{
	u32 r, s;
	int i;
	unsigned long ztemp, pll_temp, diff;
	bool low_voltage;

	if (soctherm_suspended)
		return;

	if (tz == THERM_CPU)
		low_voltage = vdd_cpu_low_voltage;
	else if (tz == THERM_GPU)
		low_voltage = vdd_core_low_voltage;
	else if (tz == THERM_MEM)
		low_voltage = vdd_core_low_voltage;
	else
		return;

	if (low_voltage) {
		r = soctherm_readl(TS_TEMP1);
		s = soctherm_readl(TS_TEMP2);

		/* get pllx temp */
		pll_temp = temp_translate(REG_GET(s, TS_TEMP2_PLLX_TEMP));
		ztemp = pll_temp; /* initialized */

		/* get therm-zone temp */
		if (tz == THERM_CPU)
			ztemp = temp_translate(REG_GET(r, TS_TEMP1_CPU_TEMP));
		else if (tz == THERM_GPU)
			ztemp = temp_translate(REG_GET(r, TS_TEMP1_GPU_TEMP));
		else if (tz == THERM_MEM)
			ztemp = temp_translate(REG_GET(s, TS_TEMP2_MEM_TEMP));

		if (ztemp > pll_temp)
			diff = ztemp - pll_temp;
		else
			diff = 0;

		/* Program hotspot offsets per <tz> ~ PLL diff */
		r = soctherm_readl(TS_HOTSPOT_OFF);
		if (tz == THERM_CPU)
			r = REG_SET(r, TS_HOTSPOT_OFF_CPU, diff / 1000);
		else if (tz == THERM_GPU)
			r = REG_SET(r, TS_HOTSPOT_OFF_GPU, diff / 1000);
		else if (tz == THERM_MEM)
			r = REG_SET(r, TS_HOTSPOT_OFF_MEM, diff / 1000);
		soctherm_writel(r, TS_HOTSPOT_OFF);

		/* Stop all TSENSE's mapped to <tz> */
		for (i = 0; i < TSENSE_SIZE; i++) {
			if (tsensor2therm_map[i] != tz)
				continue;
			r = soctherm_readl(TS_TSENSE_REG_OFFSET
						(TS_CPU0_CONFIG0, i));
			r = REG_SET(r, TS_CPU0_CONFIG0_STOP, 1);
			soctherm_writel(r, TS_TSENSE_REG_OFFSET
						(TS_CPU0_CONFIG0, i));
		}
	} else {
		/* UN-Stop all TSENSE's mapped to <tz> */
		for (i = 0; i < TSENSE_SIZE; i++) {
			if (tsensor2therm_map[i] != tz)
				continue;
			r = soctherm_readl(TS_TSENSE_REG_OFFSET
						(TS_CPU0_CONFIG0, i));
			r = REG_SET(r, TS_CPU0_CONFIG0_STOP, 0);
			soctherm_writel(r, TS_TSENSE_REG_OFFSET
						(TS_CPU0_CONFIG0, i));
		}

		/* default to configured offset for <tz> */
		diff = plat_data.therm[tz].hotspot_offset;

		/* Program hotspot offsets per config */
		r = soctherm_readl(TS_HOTSPOT_OFF);
		if (tz == THERM_CPU)
			r = REG_SET(r, TS_HOTSPOT_OFF_CPU, diff / 1000);
		else if (tz == THERM_GPU)
			r = REG_SET(r, TS_HOTSPOT_OFF_GPU, diff / 1000);
		else if (tz == THERM_MEM)
			r = REG_SET(r, TS_HOTSPOT_OFF_MEM, diff / 1000);
		soctherm_writel(r, TS_HOTSPOT_OFF);
	}
}

/**
 * soctherm_init_platform_data() - Initializes the platform data.
 *
 * Cleans up some platform data in preparation for configuring the
 * hardware and configures the hardware as specified by the cleaned up
 * platform data.
 *
 * Initializes unset parameters for CPU, GPU, MEM, and PLL
 * based on the default values for the sensors on the Tegra chip in use.
 *
 * Sets the temperature sensor PDIV (post divider) register which
 * contains the temperature sensor PDIV for the CPU, GPU, MEM, and PLLX
 *
 * Sets the configurations for each of the sensors.
 *
 * Sanitizes thermal trips for each thermal zone.
 *
 * Writes hotspot offsets to TS_HOTSPOT_OFF register.
 *
 * Checks the throttling priorities and makes sure that they are
 * in the correct order for throttle types THROTTLE_OC1 though THROTTLE_OC4.
 *
 * Initializes PSKIP parameters. These parameters are used during a thermal
 * trip to calculate the amount of throttling of the CPU or GPU for each
 * thermal trip type (i.e. THROTTLE_LIGHT or THROTTLE_HEAVY)
 *
 * Initializes the throttling thresholds for the CPU, GPU, MEM, and PLL
 *
 * Checks if the priorities of heavy and light throttling are in
 * the correct order.
 *
 * Initializes the STATS_CTL and OC_STATS_CTL registers for stat collection
 *
 * Enables PMC shutdown based on the platform data
 *
 * Programs the temperatures at which hardware shutdowns occur.
 *
 * soctherm_init_platform_data ensures that the system will function as
 * expected when it resumes from suspended state or on initial start up.
 *
 * Return: 0 on success. -EINVAL is returned otherwise
 */
static int soctherm_init_platform_data(void)
{
	struct soctherm_therm *therm;
	struct soctherm_sensor *s;
	struct soctherm_sensor sensor_defaults;
	int i, j, k;
	long rem;
	long gsh = MAX_HIGH_TEMP;
	u32 r;

	if (IS_T11X)
		sensor_defaults = default_t11x_sensor_params;
	else if (IS_T14X)
		sensor_defaults = default_t14x_sensor_params;
	else if ((IS_T12X || IS_T13X))
		sensor_defaults = default_t12x_sensor_params;
	else
		BUG();

	/* initialize default values for unspecified params */
	for (i = 0; i < TSENSE_SIZE; i++) {
		therm = &plat_data.therm[tsensor2therm_map[i]];
		s = &plat_data.sensor_data[i];
		s->sensor_enable = s->sensor_enable ?: therm->zone_enable;
		s->tall      = s->tall      ?: sensor_defaults.tall;
		s->tiddq     = s->tiddq     ?: sensor_defaults.tiddq;
		s->ten_count = s->ten_count ?: sensor_defaults.ten_count;
		s->tsample   = s->tsample   ?: sensor_defaults.tsample;
		s->tsamp_ate = s->tsamp_ate ?: sensor_defaults.tsamp_ate;
		s->pdiv      = s->pdiv      ?: sensor_defaults.pdiv;
		s->pdiv_ate  = s->pdiv_ate  ?: sensor_defaults.pdiv_ate;
	}

	/* Pdiv */
	r = soctherm_readl(TS_PDIV);
	r = REG_SET(r, TS_PDIV_CPU, plat_data.sensor_data[TSENSE_CPU0].pdiv);
	r = REG_SET(r, TS_PDIV_GPU, plat_data.sensor_data[TSENSE_GPU].pdiv);
	r = REG_SET(r, TS_PDIV_MEM, plat_data.sensor_data[TSENSE_MEM0].pdiv);
	r = REG_SET(r, TS_PDIV_PLLX, plat_data.sensor_data[TSENSE_PLLX].pdiv);
	soctherm_writel(r, TS_PDIV);

	/* Thermal Sensing programming */
	if (soctherm_fuse_read_calib_base() < 0)
		return -EINVAL;
	for (i = 0; i < TSENSE_SIZE; i++) {
		if (plat_data.sensor_data[i].sensor_enable) {
			soctherm_tsense_program(i, &plat_data.sensor_data[i]);
			if (soctherm_fuse_read_tsensor(i) < 0)
				return -EINVAL;
		}
	}

	soctherm_adjust_zone(THERM_CPU);
	soctherm_adjust_zone(THERM_GPU);
	soctherm_adjust_zone(THERM_MEM);

	/* Sanitize therm trips */
	for (i = 0; i < THERM_SIZE; i++) {
		therm = &plat_data.therm[i];
		if (!therm->zone_enable)
			continue;

		for (j = 0; j < therm->num_trips; j++) {
			rem = therm->trips[j].trip_temp %
				LOWER_PRECISION_FOR_CONV(1000);
			if (rem) {
				pr_warn(
			"soctherm: zone%d/trip_point%d %ld mC rounded down\n",
					i, j, therm->trips[j].trip_temp);
				therm->trips[j].trip_temp -= rem;
			}
		}
	}

	/* Program hotspot offsets per THERM */
	r = REG_SET(0, TS_HOTSPOT_OFF_CPU,
		    plat_data.therm[THERM_CPU].hotspot_offset / 1000);
	r = REG_SET(r, TS_HOTSPOT_OFF_GPU,
		    plat_data.therm[THERM_GPU].hotspot_offset / 1000);
	r = REG_SET(r, TS_HOTSPOT_OFF_MEM,
		    plat_data.therm[THERM_MEM].hotspot_offset / 1000);
	soctherm_writel(r, TS_HOTSPOT_OFF);

	/* Thermal HW throttle programming */
	for (i = 0; i < THROTTLE_SIZE; i++) {
		/* Sanitize HW throttle priority for OC1 - OC4 (not OC5) */
		if ((i != THROTTLE_OC5) && (!plat_data.throttle[i].priority))
			plat_data.throttle[i].priority = 0xE + i;

		/* Setup PSKIP parameters */
		soctherm_throttle_program(i);

		/* Setup throttle thresholds per THERM */
		for (j = 0; j < THERM_SIZE; j++) {
			if ((therm2dev[j] == THROTTLE_DEV_NONE) ||
			    (!plat_data.throttle[i].devs[therm2dev[j]].enable))
				continue;

			therm = &plat_data.therm[j];
			for (k = 0; k < therm->num_trips; k++)
				if ((therm->trips[k].trip_type ==
				     THERMAL_TRIP_HOT) &&
				    strnstr(therm->trips[k].cdev_type,
					    i == THROTTLE_HEAVY ? "heavy" :
					    "light", THERMAL_NAME_LENGTH))
					break;
			if (k < therm->num_trips && i <= THROTTLE_HEAVY)
				prog_hw_threshold(&therm->trips[k], j, i);
		}
	}

	r = REG_SET(0, THROT_GLOBAL_ENB, 1);
	if (IS_T13X)
		clk_reset13_writel(r, THROT13_GLOBAL_CFG);
	else
		soctherm_writel(r, THROT_GLOBAL_CFG);

	if (plat_data.throttle[THROTTLE_HEAVY].priority <
	    plat_data.throttle[THROTTLE_LIGHT].priority)
		pr_err("soctherm: ERROR: Priority of HEAVY less than LIGHT\n");

	/* initialize stats collection */
	r = STATS_CTL_CLR_DN | STATS_CTL_EN_DN |
		STATS_CTL_CLR_UP | STATS_CTL_EN_UP;
	soctherm_writel(r, STATS_CTL);
	soctherm_writel(OC_STATS_CTL_EN_ALL, OC_STATS_CTL);

	/* Enable PMC to shutdown */
	soctherm_therm_trip_init(plat_data.tshut_pmu_trip_data);

	r = clk_reset_readl(CAR_SUPER_CLK_DIVIDER_REGISTER());
	r = REG_SET(r, CDIVG_USE_THERM_CONTROLS, 1);
	clk_reset_writel(r, CAR_SUPER_CLK_DIVIDER_REGISTER());

	/* Thermtrip */
	for (i = 0; i < THERM_SIZE; i++) {
		therm = &plat_data.therm[i];
		if (!therm->zone_enable)
			continue;

		for (j = 0; j < therm->num_trips; j++) {
			if (therm->trips[j].trip_type != THERMAL_TRIP_CRITICAL)
				continue;
			if (i == THERM_GPU) {
				gsh = therm->trips[j].trip_temp;
			} else if ((i == THERM_MEM) &&
				   (gsh != MAX_HIGH_TEMP) &&
				   (therm->trips[j].trip_temp != gsh)) {
				pr_warn("soctherm: Force TRIP temp: MEM = GPU");
				therm->trips[j].trip_temp = gsh;
			}
			prog_hw_shutdown(&therm->trips[j], i);
		}
	}

	return 0;
}

/**
 * soctherm_suspend_locked() - suspends SOC_THERM IP block
 *
 * Note: This function should never be directly called because
 * it's not thread-safe. Instead, soctherm_suspend() should be called.
 * Performs SOC_THERM suspension. It will disable SOC_THERM device interrupts.
 * SOC_THERM will need to be reinitialized.
 *
 */
static void soctherm_suspend_locked(void)
{
	if (!soctherm_suspended) {
		soctherm_writel((u32)-1, TH_INTR_DISABLE);
		soctherm_writel((u32)-1, OC_INTR_DISABLE);
		disable_irq(INT_THERMAL);
		disable_irq(INT_EDP);
		soctherm_init_platform_done = false;
		soctherm_suspended = true;
		/* soctherm_clk_enable(false);*/
	}
}

/**
 * soctherm_suspend() - Suspends the SOC_THERM device
 *
 * Suspends SOC_THERM and prevents interrupts from occurring
 * and SOC_THERM from interrupting the CPU.
 *
 * Return: 0 on success.
 */
static int soctherm_suspend(void)
{
	mutex_lock(&soctherm_suspend_resume_lock);
	soctherm_suspend_locked();
	mutex_unlock(&soctherm_suspend_resume_lock);
	return 0;
}

/**
 * soctherm_resume_locked() - Resumes soctherm if it is suspended
 *
 * Enables device interrupt generation for thermal and EDP when soctherm
 * platform initialization is done.
 */
static void soctherm_resume_locked(void)
{
	if (soctherm_suspended) {
		/* soctherm_clk_enable(true);*/
		soctherm_suspended = false;
		soctherm_init_platform_data();
		soctherm_init_platform_done = true;
		soctherm_update();
		enable_irq(INT_THERMAL);
		enable_irq(INT_EDP);
	}
}

/**
 * soctherm_resume() - wrapper for soctherm_resume_locked()
 *
 * Grabs the soctherm_suspend_resume_lock and then resumes SOC_THERM by running
 * soctherm_resume_locked().
 *
 * Return: 0
 */
static int soctherm_resume(void)
{
	mutex_lock(&soctherm_suspend_resume_lock);
	soctherm_resume_locked();
	mutex_unlock(&soctherm_suspend_resume_lock);
	return 0;
}

/**
 * soctherm_sync() - Syncs soctherm
 *
 * If soctherm is suspended, reinitializes the SOC_THERM IP block registers
 * from the platform data and updates each zone. Otherwise only the
 * latter occurs.
 */
static int soctherm_sync(void)
{
	mutex_lock(&soctherm_suspend_resume_lock);

	if (soctherm_suspended) {
		soctherm_resume_locked();
		soctherm_suspend_locked();
	} else {
		soctherm_update();
	}

	mutex_unlock(&soctherm_suspend_resume_lock);
	return 0;
}
late_initcall_sync(soctherm_sync);

/**
 * soctherm_pm_notify() - reacts to system PM suspend or resume events
 * @nb:         pointer to notifier_block. Currently not being used
 * @event:      type of action (suspend/resume)
 * @data:       argument for callback, currently not being used
 *
 * Currently supports %PM_SUSPEND_PREPARE and %PM_POST_SUSPEND
 *
 * Return: %NOTIFY_OK
 */
static int soctherm_pm_notify(struct notifier_block *nb,
				unsigned long event, void *data)
{
	switch (event) {
	case PM_SUSPEND_PREPARE:
		soctherm_suspend();
		break;
	case PM_POST_SUSPEND:
		soctherm_resume();
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block soctherm_nb = {
	.notifier_call = soctherm_pm_notify,
};

/**
 * soctherm_oc_irq_lock() - locks the over-current interrupt request
 * @data:	Interrupt request data
 *
 * Looks up the chip data from @data and locks the mutex associated with
 * a particular over-current interrupt request.
 */
static void soctherm_oc_irq_lock(struct irq_data *data)
{
	struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);

	mutex_lock(&d->irq_lock);
}

/**
 * soctherm_oc_irq_sync_unlock() - Unlocks the OC interrupt request
 * @data:		Interrupt request data
 *
 * Looks up the interrupt request data @data and unlocks the mutex associated
 * with a particular over-current interrupt request.
 */
static void soctherm_oc_irq_sync_unlock(struct irq_data *data)
{
	struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);

	mutex_unlock(&d->irq_lock);
}

/**
 * soctherm_oc_irq_enable() - Enables the SOC_THERM over-current interrupt queue
 * @data:       irq_data structure of the chip
 *
 * Sets the irq_enable bit of SOC_THERM allowing SOC_THERM
 * to respond to over-current interrupts.
 *
 */
static void soctherm_oc_irq_enable(struct irq_data *data)
{
	struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);

	d->irq_enable |= BIT(data->hwirq);
}

/**
 * soctherm_oc_irq_disable() - Disables overcurrent interrupt requests
 * @irq_data:	The interrupt request information
 *
 * Clears the interrupt request enable bit of the overcurrent
 * interrupt request chip data.
 *
 * Return: Nothing is returned (void)
 */
static void soctherm_oc_irq_disable(struct irq_data *data)
{
	struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);

	d->irq_enable &= ~BIT(data->hwirq);
}

static int soctherm_oc_irq_set_type(struct irq_data *data, unsigned int type)
{
	return 0;
}

/**
 * soctherm_oc_irq_set_wake() - Set the overcurrent interrupt request
 * to "wake"
 * @irq_data:	Interrupt request information
 * @on:		Whether to enable or disable power management wakeup
 *
 * Configure the GPIO associated with a SOC_THERM over-current
 * interrupt to wake the system from sleep
 *
 * It may be necessary to wake the system from sleep mode so that
 * SOC_THERM can provide proper over-current throttling.
 *
 * Return: 0 on success, -EINVAL if there is no wakeup support
 * for that given hardware irq, or the gpio number if there is
 * no gpio_to_irq for that gpio.
 */
static int soctherm_oc_irq_set_wake(struct irq_data *data, unsigned int on)
{
	int gpio;
	int gpio_irq;

	gpio = soctherm_ocx_to_wake_gpio[data->hwirq];
	if (!gpio_is_valid(gpio)) {
		pr_err("No wakeup supported for irq %lu\n", data->hwirq);
		return -EINVAL;
	}

	gpio_irq = gpio_to_irq(gpio);
	if (gpio_irq < 0) {
		pr_err("No gpio_to_irq for gpio %d\n", gpio);
		return gpio;
	}

	irq_set_irq_wake(gpio_irq, on);
	return 0;
}

/**
 * soctherm_oc_irq_map() - SOC_THERM interrupt request domain mapper
 * @h:		Interrupt request domain
 * @virq:	Virtual interrupt request number
 * @hw:		Hardware interrupt request number
 *
 * Mapping callback function for SOC_THERM's irq_domain. When a SOC_THERM
 * interrupt request is called, the irq_domain takes the request's virtual
 * request number (much like a virtual memory address) and maps it to a
 * physical hardware request number.
 *
 * When a mapping doesn't already exist for a virtual request number, the
 * irq_domain calls this function to associate the virtual request number with
 * a hardware request number.
 *
 * Return: 0
 */
static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq,
		irq_hw_number_t hw)
{
	struct soctherm_oc_irq_chip_data *data = h->host_data;

	irq_set_chip_data(virq, data);
	irq_set_chip(virq, &data->irq_chip);
	irq_set_nested_thread(virq, 1);
	set_irq_flags(virq, IRQF_VALID);
	return 0;
}

static struct irq_domain_ops soctherm_oc_domain_ops = {
	.map	= soctherm_oc_irq_map,
	.xlate	= irq_domain_xlate_twocell,
};

/**
 * tegra11_soctherem_oc_int_init() - Initial enabling of the over
 * current interrupts
 * @irq_base:	The interrupt request base number from platform data
 * @num_irqs:	The number of new interrupt requests
 *
 * Sets the over current interrupt request chip data
 *
 * Return: 0 on success or if overcurrent interrupts are not enabled,
 * -ENOMEM (out of memory), or irq_base if the function failed to
 * allocate the irqs
 */
static int tegra11_soctherem_oc_int_init(int irq_base, int num_irqs)
{
	if (irq_base <= 0 || !num_irqs) {
		pr_info("%s(): OC interrupts are not enabled\n", __func__);
		return 0;
	}

	mutex_init(&soc_irq_cdata.irq_lock);
	soc_irq_cdata.irq_enable = 0;

	soc_irq_cdata.irq_chip.name = "soc_therm_oc";
	soc_irq_cdata.irq_chip.irq_bus_lock = soctherm_oc_irq_lock,
	soc_irq_cdata.irq_chip.irq_bus_sync_unlock =
		soctherm_oc_irq_sync_unlock,
	soc_irq_cdata.irq_chip.irq_disable = soctherm_oc_irq_disable,
	soc_irq_cdata.irq_chip.irq_enable = soctherm_oc_irq_enable,
	soc_irq_cdata.irq_chip.irq_set_type = soctherm_oc_irq_set_type,
	soc_irq_cdata.irq_chip.irq_set_wake = soctherm_oc_irq_set_wake,

	irq_base = irq_alloc_descs(irq_base, 0, num_irqs, 0);
	if (irq_base < 0) {
		pr_err("%s: Failed to allocate IRQs: %d\n", __func__, irq_base);
		return irq_base;
	}

	soc_irq_cdata.domain = irq_domain_add_legacy(NULL, num_irqs,
			irq_base, 0, &soctherm_oc_domain_ops, &soc_irq_cdata);
	if (!soc_irq_cdata.domain) {
		pr_err("%s: Failed to create IRQ domain\n", __func__);
		return -ENOMEM;
	}
	pr_info("%s(): OC interrupts enabled successful\n", __func__);
	return 0;
}

static int core_rail_regulator_notifier_cb(
	struct notifier_block *nb, unsigned long event, void *v)
{
	int uv = (int)((long)v);
	int rv = NOTIFY_DONE;
	int core_vmin_limit_uv;

	if (IS_T12X) {
		core_vmin_limit_uv = 900000;
		if (event & REGULATOR_EVENT_OUT_POSTCHANGE) {
			if (uv >= core_vmin_limit_uv) {
				tegra_soctherm_adjust_core_zone(true);
				rv = NOTIFY_OK;
			}
		} else if (event & REGULATOR_EVENT_OUT_PRECHANGE) {
			if (uv < core_vmin_limit_uv) {
				tegra_soctherm_adjust_core_zone(false);
				rv = NOTIFY_OK;
			}
		}
	}
	return rv;
}

static int __init soctherm_core_rail_notify_init(void)
{
	int ret;
	static struct notifier_block vmin_condition_nb;

	vmin_condition_nb.notifier_call = core_rail_regulator_notifier_cb;
	ret = tegra_dvfs_rail_register_notifier(tegra_core_rail,
						&vmin_condition_nb);
	if (ret) {
		pr_err("%s: Failed to register core rail notifier\n",
		       __func__);
		return ret;
	}

	return 0;
}
late_initcall_sync(soctherm_core_rail_notify_init);

/**
 * tegra11_soctherm_init() - initializes SOC_THERM IP Block
 * @data:       pointer to board-specific information
 *
 * Initialize and enable SOC_THERM clocks, sanitize platform data, configure
 * SOC_THERM according to platform data, and set up interrupt handling for
 * OC events.
 *
 * Return: -1 if initialization failed, 0 otherwise
 */
int __init tegra11_soctherm_init(struct soctherm_platform_data *data)
{
	int ret;
	tegra_chip_id = tegra_get_chip_id();
	if (!(IS_T11X || IS_T14X || IS_T12X || IS_T13X)) {
		pr_err("%s: Unknown chip_id %d", __func__, tegra_chip_id);
		return -1;
	}

	register_pm_notifier(&soctherm_nb);

	if (!data)
		return -1;
	plat_data = *data;

	if (soctherm_clk_init() < 0)
		return -1;

	if (soctherm_clk_enable(true) < 0)
		return -1;

	if (soctherm_init_platform_data() < 0)
		return -1;

	soctherm_init_platform_done = true;

	ret = tegra11_soctherem_oc_int_init(data->oc_irq_base,
			data->num_oc_irqs);
	if (ret < 0) {
		pr_err("soctherem_oc_int_init failed: %d\n", ret);
		return ret;
	}

	if (request_threaded_irq(INT_THERMAL, soctherm_thermal_isr,
				 soctherm_thermal_thread_func, IRQF_ONESHOT,
				 "soctherm_thermal", NULL) < 0)
		return -1;

	if (request_threaded_irq(INT_EDP, soctherm_edp_isr,
				 soctherm_edp_thread_func, IRQF_ONESHOT,
				 "soctherm_edp", NULL) < 0)
		return -1;

	return 0;
}

/**
 * tegra_soctherm_adjust_cpu_zone() - Adjusts the CPU zone of Tegra soctherm
 * @high_voltage_range:		Flag indicating whether or not the system is
 *				within the highest voltage range
 *
 * If a particular VDD_CPU voltage threshold has been crossed (either up or
 * down), invokes soctherm_adjust_cpu_zone().
 * This function should be called by code outside this file when VDD_CPU crosses
 * a particular threshold.
 */
void tegra_soctherm_adjust_cpu_zone(bool high_voltage_range)
{
	if (!vdd_cpu_low_voltage != high_voltage_range) {
		vdd_cpu_low_voltage = !high_voltage_range;
		soctherm_adjust_zone(THERM_CPU);
	}
}

void tegra_soctherm_adjust_core_zone(bool high_voltage_range)
{
	if ((IS_T12X || IS_T13X)) {
		if (!vdd_core_low_voltage != high_voltage_range) {
			vdd_core_low_voltage = !high_voltage_range;
			soctherm_adjust_zone(THERM_GPU);
			soctherm_adjust_zone(THERM_MEM);
		}
	}
}

#ifdef CONFIG_DEBUG_FS

/**
 * regs_show() - show callback for regs debugfs
 * @s:          seq_file for registers values to be written to
 * @data:       a void pointer for callback, currently not being used
 *
 * Gathers various register values and system status, then
 * formats and display the information as a debugfs virtual file.
 * This function allows easy access to debugging information.
 *
 * Return: -1 if fail, 0 otherwise
 */
static int regs_show(struct seq_file *s, void *data)
{
	u32 r;
	u32 state;
	int tcpu[TSENSE_SIZE];
	int i, j, level;
	uint m, n, q;
	char *depth;

	if (soctherm_suspended) {
		seq_puts(s, "SOC_THERM is SUSPENDED\n");
		return 0;
	}

	seq_printf(s, "-----TSENSE (precision %s  convert %s)-----\n",
		   PRECISION_TO_STR(), read_hw_temp ? "HW" : "SW");
	for (i = 0; i < TSENSE_SIZE; i++) {
		r = soctherm_readl(TS_TSENSE_REG_OFFSET(TS_CPU0_CONFIG1, i));
		state = REG_GET(r, TS_CPU0_CONFIG1_EN);
		if (!state)
			continue;

		seq_printf(s, "%s: ", sensor_names[i]);

		seq_printf(s, "En(%d) ", state);
		state = REG_GET(r, TS_CPU0_CONFIG1_TIDDQ);
		seq_printf(s, "tiddq(%d) ", state);
		state = REG_GET(r, TS_CPU0_CONFIG1_TEN_COUNT);
		seq_printf(s, "ten_count(%d) ", state);
		state = REG_GET(r, TS_CPU0_CONFIG1_TSAMPLE);
		seq_printf(s, "tsample(%d) ", state + 1);

		r = soctherm_readl(TS_TSENSE_REG_OFFSET(TS_CPU0_STATUS1, i));
		state = REG_GET(r, TS_CPU0_STATUS1_TEMP_VALID);
		seq_printf(s, "Temp(%d/", state);
		state = REG_GET(r, TS_CPU0_STATUS1_TEMP);
		seq_printf(s, "%d) ", tcpu[i] = temp_translate(state));

		r = soctherm_readl(TS_TSENSE_REG_OFFSET(TS_CPU0_STATUS0, i));
		state = REG_GET(r, TS_CPU0_STATUS0_VALID);
		seq_printf(s, "Capture(%d/", state);
		state = REG_GET(r, TS_CPU0_STATUS0_CAPTURE);
		seq_printf(s, "%d) (Converted-temp(%ld) ", state,
			   temp_convert(state, sensor2therm_a[i],
					sensor2therm_b[i]));

		r = soctherm_readl(TS_TSENSE_REG_OFFSET(TS_CPU0_CONFIG0, i));
		state = REG_GET(r, TS_CPU0_CONFIG0_STOP);
		seq_printf(s, "Stop(%d) ", state);
		state = REG_GET(r, TS_CPU0_CONFIG0_TALL);
		seq_printf(s, "Tall(%d) ", state);
		state = REG_GET(r, TS_CPU0_CONFIG0_TCALC_OVER);
		seq_printf(s, "Over(%d/", state);
		state = REG_GET(r, TS_CPU0_CONFIG0_OVER);
		seq_printf(s, "%d/", state);
		state = REG_GET(r, TS_CPU0_CONFIG0_CPTR_OVER);
		seq_printf(s, "%d) ", state);

		r = soctherm_readl(TS_TSENSE_REG_OFFSET(TS_CPU0_CONFIG2, i));
		state = REG_GET(r, TS_CPU0_CONFIG2_THERM_A);
		seq_printf(s, "Therm_A/B(%d/", state);
		state = REG_GET(r, TS_CPU0_CONFIG2_THERM_B);
		seq_printf(s, "%d)\n", (s16)state);
	}

	r = soctherm_readl(TS_PDIV);
	seq_printf(s, "PDIV: 0x%x\n", r);

	seq_puts(s, "\n");
	seq_puts(s, "-----SOC_THERM-----\n");

	r = soctherm_readl(TS_TEMP1);
	state = REG_GET(r, TS_TEMP1_CPU_TEMP);
	seq_printf(s, "Temperatures: CPU(%ld) ", temp_translate(state));
	state = REG_GET(r, TS_TEMP1_GPU_TEMP);
	seq_printf(s, " GPU(%ld) ", temp_translate(state));
	r = soctherm_readl(TS_TEMP2);
	state = REG_GET(r, TS_TEMP2_PLLX_TEMP);
	seq_printf(s, " PLLX(%ld) ", temp_translate(state));
	state = REG_GET(r, TS_TEMP2_MEM_TEMP);
	seq_printf(s, " MEM(%ld)\n", temp_translate(state));

	for (i = 0; i < THERM_SIZE; i++) {
		seq_printf(s, "%s:\n", therm_names[i]);
		for (level = 0; level < 4; level++) {
			r = soctherm_readl(TS_THERM_REG_OFFSET(CTL_LVL0_CPU0,
								level, i));
			state = REG_GET(r, CTL_LVL0_CPU0_UP_THRESH);
			seq_printf(s, "   %d: Up/Dn(%d/", level,
				   LOWER_PRECISION_FOR_CONV(state));
			state = REG_GET(r, CTL_LVL0_CPU0_DN_THRESH);
			seq_printf(s, "%d) ", LOWER_PRECISION_FOR_CONV(state));
			state = REG_GET(r, CTL_LVL0_CPU0_EN);
			seq_printf(s, "En(%d) ", state);

			state = REG_GET(r, CTL_LVL0_CPU0_CPU_THROT);
			seq_puts(s, "CPU Throt");
			seq_printf(s, "(%s) ", state ?
			state == CTL_LVL0_CPU0_CPU_THROT_LIGHT ? "L" :
			state == CTL_LVL0_CPU0_CPU_THROT_HEAVY ? "H" :
				"H+L" : "none");

			state = REG_GET(r, CTL_LVL0_CPU0_GPU_THROT);
			seq_puts(s, "GPU Throt");
			seq_printf(s, "(%s) ", state ?
			state == CTL_LVL0_CPU0_GPU_THROT_LIGHT ? "L" :
			state == CTL_LVL0_CPU0_GPU_THROT_HEAVY ? "H" :
				"H+L" : "none");

			state = REG_GET(r, CTL_LVL0_CPU0_STATUS);
			seq_printf(s, "Status(%s)\n",
				   state == 0 ? "LO" :
				   state == 1 ? "in" :
				   state == 2 ? "??" : "HI");
		}
	}

	r = soctherm_readl(STATS_CTL);
	seq_printf(s, "STATS: Up(%s) Dn(%s)\n",
		   r & STATS_CTL_EN_UP ? "En" : "--",
		   r & STATS_CTL_EN_DN ? "En" : "--");
	for (level = 0; level < 4; level++) {
		r = soctherm_readl(TS_TSENSE_REG_OFFSET(UP_STATS_L0, level));
		seq_printf(s, "  Level_%d Up(%d) ", level, r);
		r = soctherm_readl(TS_TSENSE_REG_OFFSET(DN_STATS_L0, level));
		seq_printf(s, "Dn(%d)\n", r);
	}

	r = soctherm_readl(THERMTRIP);
	state = REG_GET(r, THERMTRIP_ANY_EN);
	seq_printf(s, "ThermTRIP ANY En(%d)\n", state);

	state = REG_GET(r, THERMTRIP_CPU_EN);
	seq_printf(s, "     CPU En(%d) ", state);
	state = REG_GET(r, THERMTRIP_CPU_THRESH);
	seq_printf(s, "Thresh(%d)\n", LOWER_PRECISION_FOR_CONV(state));

	state = REG_GET(r, THERMTRIP_GPU_EN);
	seq_printf(s, "     GPU En(%d) ", state);
	state = REG_GET(r, THERMTRIP_GPUMEM_THRESH);
	seq_printf(s, "Thresh(%d)\n", LOWER_PRECISION_FOR_CONV(state));

	state = REG_GET(r, THERMTRIP_MEM_EN);
	seq_printf(s, "     MEM En(%d) ", state);
	state = REG_GET(r, THERMTRIP_GPUMEM_THRESH);
	seq_printf(s, "Thresh(%d)\n", LOWER_PRECISION_FOR_CONV(state));

	state = REG_GET(r, THERMTRIP_TSENSE_EN);
	seq_printf(s, "    PLLX En(%d) ", state);
	state = REG_GET(r, THERMTRIP_TSENSE_THRESH);
	seq_printf(s, "Thresh(%d)\n", LOWER_PRECISION_FOR_CONV(state));

	r = soctherm_readl(THROT_GLOBAL_CFG);
	seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r);

	seq_puts(s, "---------------------------------------------------\n");
	r = soctherm_readl(THROT_STATUS);
	state = REG_GET(r, THROT_STATUS_BREACH);
	seq_printf(s, "THROT STATUS: breach(%d) ", state);
	state = REG_GET(r, THROT_STATUS_STATE);
	seq_printf(s, "state(%d) ", state);
	state = REG_GET(r, THROT_STATUS_ENABLED);
	seq_printf(s, "enabled(%d)\n", state);

	r = soctherm_readl(CPU_PSKIP_STATUS);
	if (IS_T13X) {
		state = REG_GET(r, XPU_PSKIP_STATUS_ENABLED);
		seq_printf(s, "%s PSKIP STATUS: ",
			   throt_dev_names[THROTTLE_DEV_CPU]);
		seq_printf(s, "enabled(%d)\n", state);
	} else {
		state = REG_GET(r, XPU_PSKIP_STATUS_M);
		seq_printf(s, "%s PSKIP STATUS: M(%d) ",
			   throt_dev_names[THROTTLE_DEV_CPU], state);
		state = REG_GET(r, XPU_PSKIP_STATUS_N);
		seq_printf(s, "N(%d) ", state);
		state = REG_GET(r, XPU_PSKIP_STATUS_ENABLED);
		seq_printf(s, "enabled(%d)\n", state);
	}

	r = soctherm_readl(GPU_PSKIP_STATUS);
	if ((IS_T12X || IS_T13X)) {
		state = REG_GET(r, XPU_PSKIP_STATUS_ENABLED);
		seq_printf(s, "%s PSKIP STATUS: ",
			   throt_dev_names[THROTTLE_DEV_GPU]);
		seq_printf(s, "enabled(%d)\n", state);
	} else {
		state = REG_GET(r, XPU_PSKIP_STATUS_M);
		seq_printf(s, "%s PSKIP STATUS: M(%d) ",
			   throt_dev_names[THROTTLE_DEV_GPU], state);
		state = REG_GET(r, XPU_PSKIP_STATUS_N);
		seq_printf(s, "N(%d) ", state);
		state = REG_GET(r, XPU_PSKIP_STATUS_ENABLED);
		seq_printf(s, "enabled(%d)\n", state);
	}

	seq_puts(s, "---------------------------------------------------\n");
	seq_puts(s, "THROTTLE control and PSKIP configuration:\n");
	seq_printf(s, "%5s  %3s  %2s  %7s  %8s  %7s  %8s  %4s  %4s  %5s  ",
		   "throt", "dev", "en", " depth ", "dividend", "divisor",
		   "duration", "step", "prio", "delay");
	seq_printf(s, "%2s  %2s  %2s  %2s  %2s  %2s  ",
		   "LL", "HW", "PG", "MD", "01", "EN");
	seq_printf(s, "%8s  %8s  %8s  %8s  %8s\n",
		   "thresh", "period", "count", "filter", "stats");

	/* display throttle_cfg's of all alarms including OC5 */
	for (i = 0; i < THROTTLE_SIZE; i++) {
		for (j = 0; j < THROTTLE_DEV_SIZE; j++) {
			r = soctherm_readl(THROT_PSKIP_CTRL(i, j));
			state = REG_GET(r, THROT_PSKIP_CTRL_ENABLE);
			seq_printf(s, "%5s  %3s  %2d  ",
				   j ? "" : throt_names[i],
				   throt_dev_names[j], state);
			if (!state) {
				seq_puts(s, "\n");
				continue;
			}

			level = THROT_LEVEL_LOW;
			depth = "";
			q = 0;
			if (IS_T13X && j == THROTTLE_DEV_CPU) {
				state = REG_GET(r, THROT_PSKIP_CTRL_VECT_CPU);
				if (state == THROT_VECT_HVY) {
					level = THROT_LEVEL_HVY;
					depth = "hi";
				} else if (state == THROT_VECT_MED) {
					level = THROT_LEVEL_MED;
					depth = "med";
				} else if (state == THROT_VECT_LOW) {
					level = THROT_LEVEL_LOW;
					depth = "low";
				}
			}
			if ((IS_T12X || IS_T13X) && j == THROTTLE_DEV_GPU) {
				state = REG_GET(r, THROT_PSKIP_CTRL_VECT_GPU);
				if (state == THROT_VECT_HVY) {
					q = 87;
					depth = "hi";
				} else if (state == THROT_VECT_MED) {
					q = 75;
					depth = "med";
				} else if (state == THROT_VECT_LOW) {
					q = 50;
					depth = "low";
				}
			}

			if (IS_T13X && j == THROTTLE_DEV_CPU)
				r = clk_reset13_readl(
					THROT13_PSKIP_CTRL_CPU(level));
			else
				r = soctherm_readl(THROT_PSKIP_CTRL(i, j));

			m = REG_GET(r, THROT_PSKIP_CTRL_DIVIDEND);
			n = REG_GET(r, THROT_PSKIP_CTRL_DIVISOR);
			q = q ?: 100 - (((100 * (m+1)) + ((n+1) / 2)) / (n+1));
			seq_printf(s, "%2u%% %3s  ", q, depth);
			seq_printf(s, "%8u  ", m);
			seq_printf(s, "%7u  ", n);

			if (IS_T13X && j == THROTTLE_DEV_CPU)
				r = clk_reset13_readl(
					THROT13_PSKIP_RAMP_CPU(level));
			else
				r = soctherm_readl(THROT_PSKIP_RAMP(i, j));

			state = REG_GET(r, THROT_PSKIP_RAMP_DURATION);
			seq_printf(s, "%8d  ", state);
			state = REG_GET(r, THROT_PSKIP_RAMP_STEP);
			seq_printf(s, "%4d  ", state);

			r = soctherm_readl(THROT_PRIORITY_CTRL(i));
			state = REG_GET(r, THROT_PRIORITY_LITE_PRIO);
			seq_printf(s, "%4d  ", state);

			r = soctherm_readl(THROT_DELAY_CTRL(i));
			state = REG_GET(r, THROT_DELAY_LITE_DELAY);
			seq_printf(s, "%5d  ", state);

			if (i >= THROTTLE_OC1) {
				r = soctherm_readl(ALARM_CFG(i));
				state = REG_GET(r, OC1_CFG_LONG_LATENCY);
				seq_printf(s, "%2d  ", state);
				state = REG_GET(r, OC1_CFG_HW_RESTORE);
				seq_printf(s, "%2d  ", state);
				state = REG_GET(r, OC1_CFG_PWR_GOOD_MASK);
				seq_printf(s, "%2d  ", state);
				state = REG_GET(r, OC1_CFG_THROTTLE_MODE);
				seq_printf(s, "%2d  ", state);
				state = REG_GET(r, OC1_CFG_ALARM_POLARITY);
				seq_printf(s, "%2d  ", state);
				state = REG_GET(r, OC1_CFG_EN_THROTTLE);
				seq_printf(s, "%2d  ", state);

				r = soctherm_readl(ALARM_CNT_THRESHOLD(i));
				seq_printf(s, "%8d  ", r);
				r = soctherm_readl(ALARM_THROTTLE_PERIOD(i));
				seq_printf(s, "%8d  ", r);
				r = soctherm_readl(ALARM_ALARM_COUNT(i));
				seq_printf(s, "%8d  ", r);
				r = soctherm_readl(ALARM_FILTER(i));
				seq_printf(s, "%8d  ", r);
				r = soctherm_readl(ALARM_STATS(i));
				seq_printf(s, "%8d  ", r);
			}
			seq_puts(s, "\n");
		}
	}
	return 0;
}

/**
 * temp_log_show() - "show" callback for temp_log debugfs node
 * @s:		pointer to the seq_file record to write the log through
 * @data:	not used
 *
 * The temperature log contains the time (seconds.nanoseconds), and the
 * temperature of each of the thermal sensors, if there is a valid temperature
 * capture available. Makes sure that SOC_THERM is left in the same state in
 * which it was previously (suspended/resumed).
 *
 * Return: 0
 */
static int temp_log_show(struct seq_file *s, void *data)
{
	u32 r, state;
	int i;
	u64 ts;
	u_long ns;
	bool was_suspended = false;

	ts = cpu_clock(0);
	ns = do_div(ts, 1000000000);
	seq_printf(s, "%6lu.%06lu", (u_long) ts, ns / 1000);

	if (soctherm_suspended) {
		mutex_lock(&soctherm_suspend_resume_lock);
		soctherm_resume_locked();
		was_suspended = true;
	}

	for (i = 0; i < TSENSE_SIZE; i++) {
		r = soctherm_readl(TS_TSENSE_REG_OFFSET(
					TS_CPU0_CONFIG1, i));
		state = REG_GET(r, TS_CPU0_CONFIG1_EN);
		if (!state)
			continue;

		r = soctherm_readl(TS_TSENSE_REG_OFFSET(
					TS_CPU0_STATUS1, i));
		if (!REG_GET(r, TS_CPU0_STATUS1_TEMP_VALID)) {
			seq_puts(s, "\tINVALID");
			continue;
		}

		if (read_hw_temp) {
			state = REG_GET(r, TS_CPU0_STATUS1_TEMP);
			seq_printf(s, "\t%ld", temp_translate(state));
		} else {
			r = soctherm_readl(TS_TSENSE_REG_OFFSET(
						TS_CPU0_STATUS0, i));
			state = REG_GET(r, TS_CPU0_STATUS0_CAPTURE);
			seq_printf(s, "\t%ld",
				   temp_convert(state, sensor2therm_a[i],
						sensor2therm_b[i]));
		}
	}
	seq_puts(s, "\n");

	if (was_suspended) {
		soctherm_suspend_locked();
		mutex_unlock(&soctherm_suspend_resume_lock);
	}
	return 0;
}

/**
 * regs_open() - wraps single_open to associate internal regs_show()
 * @inode:      inode related to the file
 * @file:       pointer to a file to be manipulated with single_open
 *
 * Return: Passes along the return value from single_open().
 */
static int regs_open(struct inode *inode, struct file *file)
{
	return single_open(file, regs_show, inode->i_private);
}

static const struct file_operations regs_fops = {
	.open		= regs_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * convert_get() - indicates software or hardware temperature conversion
 * @data:       argument for callback, currently not being used
 * @val:        pointer to a u64 location to store flag value
 *
 * Stores boolean flag into memory address pointed to by val.
 * The flag indicates whether SOC_THERM is using
 * software or hardware temperature conversion.
 *
 * Return: 0
 */
static int convert_get(void *data, u64 *val)
{
	*val = !read_hw_temp;
	return 0;
}
/**
 * convert_set() - Sets a flag indicating which temperature is
 * being read.
 * @data:	Opaque pointer to data passed in from filesystem layer
 * @val:	The flag value
 *
 * Sets the read_hw_temp file static flag. This flag indicates whether
 * the hardware temperature or the software temperature is being
 * read.
 *
 * Return: 0 on success.
 */
static int convert_set(void *data, u64 val)
{
	read_hw_temp = !val;
	return 0;
}

/**
 * cputemp_get() - gets the CPU temperature.
 * @data:	not used
 * @val:	a pointer in which the temperature will be placed.
 *
 * Reads the temperature of the thermal sensor associated with the CPU.
 *
 * Return: 0
 */
static int cputemp_get(void *data, u64 *val)
{
	u32 reg;

	reg = soctherm_readl(TS_TEMP1);
	*val = temp_translate(REG_GET(reg, TS_TEMP1_CPU_TEMP));
	return 0;
}

/**
 * cputemp_set() - Puts a particular value into the CPU temperature register
 * @data:		The pointer to data. Currently not being used.
 * @temp:		The temperature to be written to the register
 *
 * This function only works if temperature overrides have been enabled.
 * Clears the original register CPU temperature, converts the given
 * temperature to a register value, and writes it to the CPU temp register.
 * Used for debugfs.
 *
 * Return: 0 (success).
 */
static int cputemp_set(void *data, u64 temp)
{
	u32 reg_val = temp_translate_rev(temp);
	u32 reg_orig = soctherm_readl(TS_TEMP1);

	reg_val = (reg_val << 16) | (reg_orig & 0xffff);
	soctherm_writel(reg_val, TS_TEMP1);
	return 0;
}

/**
 * gputemp_get() - retrieve GPU temperature from its register
 * @data:       argument for callback, currently not being used
 * @val:        pointer to a u64 location to store GPU temperature value
 *
 * Reads register value associated with the temperature sensor for the GPU
 * and stores it in the memory address pointed by val.
 *
 * Return: 0
 */
static int gputemp_get(void *data, u64 *val)
{
	u32 reg;

	reg = soctherm_readl(TS_TEMP1);
	*val = temp_translate(REG_GET(reg, TS_TEMP1_GPU_TEMP));
	return 0;
}

/**
 * gputemp_set() - Puts a particular value into the GPU temperature register
 * @data:		The pointer to data. Currently not being used.
 * @temp:		The temperature to be written to the register
 *
 * This function only works if temperature overrides have been enabled.
 * Clears the original GPU temperature register, converts the given
 * temperature to a register value, and writes it to the GPU temp register.
 * The @temp needs to be in the units of the SOC_THERM register temperature
 * bitfield.
 * Used for debugfs.
 *
 * Return: 0 (success).
 */
static int gputemp_set(void *data, u64 temp)
{
	u32 reg_val = temp_translate_rev(temp);
	u32 reg_orig = soctherm_readl(TS_TEMP1);

	reg_val = reg_val | (reg_orig & 0xffff0000);
	soctherm_writel(reg_val, TS_TEMP1);
	return 0;
}

/**
 * memtemp_get() - gets the memory temperature.
 * @data:	not used
 * @val:	a pointer in which the temperature will be placed.
 *
 * Reads the temperature of the thermal sensor associated with the memory.
 *
 * Return: 0
 */
static int memtemp_get(void *data, u64 *val)
{
	u32 reg;

	reg = soctherm_readl(TS_TEMP2);
	*val = temp_translate(REG_GET(reg, TS_TEMP2_MEM_TEMP));
	return 0;
}

/**
 * memtemp_set() - Overrides the memory temperature
 * in hardware
 * @data:	Opaque pointer to data; not used
 * @temp:	The temperature to be written to the register
 *
 * Clears the memory temperature register, converts @temp to
 * a register value, and writes the converted value to the register
 *
 * Function only works when temperature overrides are enabled.
 *
 * This function is called to debug/test temperature
 * trip points regarding MEM temperatures
 *
 * Return: 0 on success.
 */
static int memtemp_set(void *data, u64 temp)
{
	u32 reg_val = temp_translate_rev(temp);
	u32 reg_orig = soctherm_readl(TS_TEMP2);

	reg_val = (reg_val << 16) | (reg_orig & 0xffff);
	soctherm_writel(reg_val, TS_TEMP2);
	return 0;
}

/**
 * plltemp_get() - Gets the phase-locked loop temperature.
 * @data:	Opaque pointer to data
 * @val:	The pll temperature
 *
 * The temperature value is read in from the register.
 * The variable pointed to by @val is set to this temperature value.
 *
 * This function is used in debugfs
 *
 * Return: 0 on success.
 */
static int plltemp_get(void *data, u64 *val)
{
	u32 reg;

	reg = soctherm_readl(TS_TEMP2);
	*val = temp_translate(REG_GET(reg, TS_TEMP2_PLLX_TEMP));
	return 0;
}


/**
 * plltemp_set() - Stores a particular value into the PLLX temperature register
 * @data:		The pointer to data. Currently not being used.
 * @temp:		The temperature to be written to the register
 *
 * This function only works if temperature overrides have been enabled.
 * Clears the original PLLX temperature register, converts the given
 * temperature to a register value, and writes it to the PLLX temp register.
 * Used for debugfs.
 *
 * Return: 0 (success).
 */
static int plltemp_set(void *data, u64 temp)
{
	u32 reg_val = temp_translate_rev(temp);
	u32 reg_orig = soctherm_readl(TS_TEMP2);

	reg_val = reg_val | (reg_orig & 0xffff0000);
	soctherm_writel(reg_val, TS_TEMP2);
	return 0;
}

/**
 * tempoverride_get() - gets the temperature sensor software override value
 * @data:	not used
 * @val:	a pointer in which the value will be placed.
 *
 * Gets whether software override of the temperature is enabled. If it is
 * then TSENSOR_TEMP1/TSENSOR_TEMP2 will be set by the tsense block. If not,
 * then software will have to set it.
 *
 * Return: 0
 */
static int tempoverride_get(void *data, u64 *val)
{
	*val = soctherm_readl(TS_TEMP_SW_OVERRIDE);
	return 0;
}

/**
 * tempoverride_set() - enables or disables software temperature override
 * @data:       argument for callback, currently not being used
 * @val:        val should be 1 to enable override. 0 to disable override
 *
 * For debugging purposes, this function allows or disallow software
 * to override temperature reading. This is useful when testing how SOC_THERM
 * reacts to different temperature.
 *
 * Return: 0
 */
static int tempoverride_set(void *data, u64 val)
{
	soctherm_writel(val, TS_TEMP_SW_OVERRIDE);
	return 0;
}

DEFINE_SIMPLE_ATTRIBUTE(convert_fops, convert_get, convert_set, "%llu\n");
DEFINE_SIMPLE_ATTRIBUTE(cputemp_fops, cputemp_get, cputemp_set, "%llu\n");
DEFINE_SIMPLE_ATTRIBUTE(gputemp_fops, gputemp_get, gputemp_set, "%llu\n");
DEFINE_SIMPLE_ATTRIBUTE(memtemp_fops, memtemp_get, memtemp_set, "%llu\n");
DEFINE_SIMPLE_ATTRIBUTE(plltemp_fops, plltemp_get, plltemp_set, "%llu\n");
DEFINE_SIMPLE_ATTRIBUTE(tempoverride_fops, tempoverride_get, tempoverride_set,
			"%llu\n");

static int temp_log_open(struct inode *inode, struct file *file)
{
	return single_open(file, temp_log_show, inode->i_private);
}

static const struct file_operations temp_log_fops = {
	.open		= temp_log_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * soctherm_debug_init() - initializes the SOC_THERM debugfs files
 *
 * Creates a tegra_soctherm directory in debugfs, then creates all of the
 * debugfs files, setting the functions that are called when each respective
 * file is read or written.
 *
 * Return: 0
 */
static int __init soctherm_debug_init(void)
{
	struct dentry *tegra_soctherm_root;

	tegra_soctherm_root = debugfs_create_dir("tegra_soctherm", NULL);
	debugfs_create_file("regs", 0644, tegra_soctherm_root,
			    NULL, &regs_fops);
	debugfs_create_file("convert", 0644, tegra_soctherm_root,
			    NULL, &convert_fops);
	debugfs_create_file("cputemp", 0644, tegra_soctherm_root,
			    NULL, &cputemp_fops);
	debugfs_create_file("gputemp", 0644, tegra_soctherm_root,
			    NULL, &gputemp_fops);
	debugfs_create_file("memtemp", 0644, tegra_soctherm_root,
			    NULL, &memtemp_fops);
	debugfs_create_file("plltemp", 0644, tegra_soctherm_root,
			    NULL, &plltemp_fops);
	debugfs_create_file("tempoverride", 0644, tegra_soctherm_root,
			    NULL, &tempoverride_fops);
	debugfs_create_file("temp_log", 0644, tegra_soctherm_root,
			    NULL, &temp_log_fops);
	return 0;
}
late_initcall(soctherm_debug_init);

#endif