1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
|
/*
* arch/arm/mach-tegra/tegra13_dvfs.c
*
* Copyright (c) 2012-2014 NVIDIA CORPORATION. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/module.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/kobject.h>
#include <linux/err.h>
#include <linux/pm_qos.h>
#include <linux/tegra-fuse.h>
#include <linux/delay.h>
#include "clock.h"
#include "dvfs.h"
#include "board.h"
#include "tegra_cl_dvfs.h"
#include "tegra_core_sysfs_limits.h"
#include "pm.h"
#include "tegra_simon.h"
static bool tegra_dvfs_cpu_disabled;
static bool tegra_dvfs_core_disabled;
static bool tegra_dvfs_gpu_disabled;
#define KHZ 1000
#define MHZ 1000000
#define VDD_SAFE_STEP 100
static int cpu_vmin_offsets[] = { 0, -20, };
static int gpu_vmin_offsets[] = { 0, -20, };
static int vdd_core_vmin_trips_table[MAX_THERMAL_LIMITS] = { 20, };
static int vdd_core_therm_floors_table[MAX_THERMAL_LIMITS] = { 950, };
static int vdd_core_vmax_trips_table[MAX_THERMAL_LIMITS] = { 62, 72, 82, };
static int vdd_core_therm_caps_table[MAX_THERMAL_LIMITS] = { 1130, 1100, 1060, };
#ifndef CONFIG_TEGRA_CPU_VOLT_CAP
static int vdd_cpu_vmax_trips_table[MAX_THERMAL_LIMITS] = { 62, 72, 82, };
static int vdd_cpu_therm_caps_table[MAX_THERMAL_LIMITS] = { 1230, 1210, 1180, };
static struct tegra_cooling_device cpu_vmax_cdev = {
.cdev_type = "cpu_hot",
};
#endif
static struct tegra_cooling_device cpu_vmin_cdev = {
.cdev_type = "cpu_cold",
};
static struct tegra_cooling_device core_vmax_cdev = {
.cdev_type = "core_hot",
};
static struct tegra_cooling_device core_vmin_cdev = {
.cdev_type = "core_cold",
};
static struct tegra_cooling_device gpu_vmin_cdev = {
.cdev_type = "gpu_cold",
};
static struct tegra_cooling_device gpu_vts_cdev = {
.cdev_type = "gpu_scaling",
};
static struct dvfs_rail tegra13_dvfs_rail_vdd_cpu = {
.reg_id = "vdd_cpu",
.version = "p4v17",
.max_millivolts = 1300,
.min_millivolts = 680,
.simon_domain = TEGRA_SIMON_DOMAIN_CPU,
.step = VDD_SAFE_STEP,
.jmp_to_zero = true,
.vmin_cdev = &cpu_vmin_cdev,
#ifndef CONFIG_TEGRA_CPU_VOLT_CAP
.vmax_cdev = &cpu_vmax_cdev,
#endif
.alignment = {
.step_uv = 10000, /* 10mV */
},
.stats = {
.bin_uV = 10000, /* 10mV */
}
};
static struct dvfs_rail tegra13_dvfs_rail_vdd_core = {
.reg_id = "vdd_core",
.version = "p4v11",
.max_millivolts = 1400,
.min_millivolts = 800,
.step = VDD_SAFE_STEP,
.step_up = 1400,
.vmin_cdev = &core_vmin_cdev,
.vmax_cdev = &core_vmax_cdev,
};
static struct dvfs_rail tegra13_dvfs_rail_vdd_gpu = {
.reg_id = "vdd_gpu",
.version = "p4_v10",
.max_millivolts = 1350,
.min_millivolts = 650,
.simon_domain = TEGRA_SIMON_DOMAIN_GPU,
.step = VDD_SAFE_STEP,
.step_up = 1350,
.in_band_pm = true,
.vts_cdev = &gpu_vts_cdev,
.vmin_cdev = &gpu_vmin_cdev,
.alignment = {
.step_uv = 10000, /* 10mV */
},
.stats = {
.bin_uV = 10000, /* 10mV */
}
};
static struct dvfs_rail *tegra13_dvfs_rails[] = {
&tegra13_dvfs_rail_vdd_cpu,
&tegra13_dvfs_rail_vdd_core,
&tegra13_dvfs_rail_vdd_gpu,
};
static int tegra13_get_core_floor_mv(int cpu_mv)
{
if (cpu_mv < 800)
return 800;
if (cpu_mv <= 900)
return 830;
if (cpu_mv <= 1000)
return 870;
if (cpu_mv <= 1100)
return 900;
if (cpu_mv <= 1200)
return 940;
return 970;
}
/* vdd_core must be >= min_level as a function of vdd_cpu */
static int tegra13_dvfs_rel_vdd_cpu_vdd_core(struct dvfs_rail *vdd_cpu,
struct dvfs_rail *vdd_core)
{
int core_mv;
int cpu_mv = max(vdd_cpu->new_millivolts, vdd_cpu->millivolts);
if (tegra_dvfs_rail_is_dfll_mode(vdd_cpu)) {
/* 30mV thermal floor slack in dfll mode */
int cpu_floor_mv = tegra_dvfs_rail_get_thermal_floor(vdd_cpu);
cpu_mv = max(cpu_mv, cpu_floor_mv + 30);
}
core_mv = tegra13_get_core_floor_mv(cpu_mv);
core_mv = max(vdd_core->new_millivolts, core_mv);
if (vdd_cpu->resolving_to && (core_mv < vdd_core->millivolts))
udelay(100); /* let vdd_cpu discharging settle */
return core_mv;
}
static struct dvfs_relationship tegra13_dvfs_relationships[] = {
{
.from = &tegra13_dvfs_rail_vdd_cpu,
.to = &tegra13_dvfs_rail_vdd_core,
.solve = tegra13_dvfs_rel_vdd_cpu_vdd_core,
.solved_at_nominal = true,
},
};
void __init tegra13x_vdd_cpu_align(int step_uv, int offset_uv)
{
tegra13_dvfs_rail_vdd_cpu.alignment.step_uv = step_uv;
tegra13_dvfs_rail_vdd_cpu.alignment.offset_uv = offset_uv;
}
/* CPU DVFS tables */
static unsigned long cpu_max_freq[] = {
/* speedo_id 0 1 2 3 */
2499000, 2499000,
};
static struct cpu_cvb_dvfs cpu_cvb_dvfs_table[] = {
/* A01 DVFS table */
{
.speedo_id = 0,
.process_id = -1,
.dfll_tune_data = {
.tune0 = 0x00FF2FFF,
.tune0_high_mv = 0x00FF40E5,
.tune1 = 0x000000FF,
.droop_rate_min = 1000000,
.tune_high_min_millivolts = 960,
.min_millivolts = 800,
.tune_high_margin_mv = 30,
},
.max_mv = 1260,
.freqs_mult = KHZ,
.speedo_scale = 100,
.voltage_scale = 1000,
.cvb_table = {
/*f dfll: c0, c1, c2 pll: c0, c1, c2 */
{510000, {1413914, -39055, 488}, {880000, 0, 0}},
{612000, {1491617, -40975, 488}, {920000, 0, 0}},
{714000, {1571360, -42895, 488}, {960000, 0, 0}},
{816000, {1653143, -44815, 488}, {1000000, 0, 0}},
{918000, {1736966, -46725, 488}, {1050000, 0, 0}},
{1020000, {1822828, -48645, 488}, {1090000, 0, 0}},
{1122000, {1910731, -50565, 488}, {1130000, 0, 0}},
{1224000, {2000673, -52485, 488}, {1170000, 0, 0}},
{ 0 , { 0, 0, 0}, { 0, 0, 0}},
},
.vmin_trips_table = { 15, },
.therm_floors_table = { 900, },
},
/* A02 DVFS table */
{
.speedo_id = 1,
.process_id = -1,
.dfll_tune_data = {
.tune1 = 0x00000099,
.droop_rate_min = 1000000,
.min_millivolts = 680,
.tune_high_margin_mv = 30,
},
.max_mv = 1260,
.freqs_mult = KHZ,
.speedo_scale = 100,
.thermal_scale = 10,
.voltage_scale = 1000,
.cvb_table = {
/*f dfll: c0, c1, c2 pll: c0, c1, c2 */
{204000, {1225091, -39915, 743}, {980000, 0, 0} },
{306000, {1263591, -41215, 743}, {980000, 0, 0} },
{408000, {1303202, -42515, 743}, {980000, 0, 0} },
{510000, {1343922, -43815, 743}, {980000, 0, 0} },
{612000, {1385753, -45115, 743}, {1020000, 0, 0} },
{714000, {1428693, -46415, 743}, {1060000, 0, 0} },
{816000, {1472743, -47715, 743}, {1100000, 0, 0} },
{918000, {1517903, -49015, 743}, {1150000, 0, 0} },
{1020000, {1564174, -50315, 743}, {1190000, 0, 0} },
{1122000, {1611553, -51615, 743}, {1230000, 0, 0} },
{1224000, {1660043, -52915, 743}, {1260000, 0, 0} },
{1326000, {1709643, -54215, 743}, {1260000, 0, 0} },
{1428000, {1760353, -55515, 743}, {1260000, 0, 0} },
{1530000, {1812172, -56815, 743}, {1260000, 0, 0} },
{1632000, {1865102, -58115, 743}, {1260000, 0, 0} },
{1734000, {1919141, -59425, 743}, {1260000, 0, 0} },
{1836000, {1974291, -60725, 743}, {1260000, 0, 0} },
{1938000, {2030550, -62025, 743}, {1260000, 0, 0} },
{2014500, {2073190, -62985, 743}, {1260000, 0, 0} },
{2091000, {2117020, -63975, 743}, {1260000, 0, 0} },
{2193000, {2176054, -65275, 743}, {1260000, 0, 0} },
{2295000, {2236198, -66575, 743}, {1260000, 0, 0} },
{2397000, {2297452, -67875, 743}, {1260000, 0, 0} },
{2499000, {2359816, -69175, 743}, {1260000, 0, 0} },
{ 0, { 0, 0, 0}, { 0, 0, 0} },
},
.cvb_vmin = { 0, { 2877000, -174300, 3600, -357, -339, 53}, },
.vmin_trips_table = { 15, 30, 50, 70, 120, },
.therm_floors_table = { 890, 760, 740, 720, 700, },
},
};
static int cpu_vmin[MAX_THERMAL_RANGES];
static int cpu_millivolts[MAX_DVFS_FREQS];
static int cpu_dfll_millivolts[MAX_DVFS_FREQS];
static struct dvfs cpu_dvfs = {
.clk_name = "cpu_g",
.millivolts = cpu_millivolts,
.dfll_millivolts = cpu_dfll_millivolts,
.auto_dvfs = true,
.dvfs_rail = &tegra13_dvfs_rail_vdd_cpu,
};
/* Core DVFS tables */
static const int core_millivolts[MAX_DVFS_FREQS] = {
800, 850, 900, 950, 1000, 1050, 1100, 1150};
#define CORE_DVFS(_clk_name, _speedo_id, _process_id, _auto, _mult, _freqs...) \
{ \
.clk_name = _clk_name, \
.speedo_id = _speedo_id, \
.process_id = _process_id, \
.freqs = {_freqs}, \
.freqs_mult = _mult, \
.millivolts = core_millivolts, \
.auto_dvfs = _auto, \
.dvfs_rail = &tegra13_dvfs_rail_vdd_core, \
}
#define OVRRD_DVFS(_clk_name, _speedo_id, _process_id, _auto, _mult, _freqs...) \
{ \
.clk_name = _clk_name, \
.speedo_id = _speedo_id, \
.process_id = _process_id, \
.freqs = {_freqs}, \
.freqs_mult = _mult, \
.millivolts = core_millivolts, \
.auto_dvfs = _auto, \
.can_override = true, \
.dvfs_rail = &tegra13_dvfs_rail_vdd_core, \
}
static struct dvfs core_dvfs_table[] = {
/* Core voltages (mV): 800, 850, 900, 950, 1000, 1050, 1100, 1150 */
/* Clock limits for internal blocks, PLLs */
CORE_DVFS("emc", -1, -1, 1, KHZ, 264000, 348000, 384000, 384000, 528000, 528000, 1066000, 1200000),
CORE_DVFS("sbus", 0, 0, 1, KHZ, 120000, 180000, 228000, 264000, 312000, 348000, 372000, 372000),
CORE_DVFS("sbus", 0, 1, 1, KHZ, 120000, 204000, 252000, 288000, 324000, 360000, 372000, 372000),
CORE_DVFS("vic03", 0, 0, 1, KHZ, 180000, 240000, 324000, 420000, 492000, 576000, 648000, 720000),
CORE_DVFS("vic03", 0, 1, 1, KHZ, 180000, 336000, 420000, 504000, 600000, 684000, 720000, 720000),
CORE_DVFS("tsec", 0, 0, 1, KHZ, 180000, 240000, 324000, 420000, 492000, 576000, 648000, 720000),
CORE_DVFS("tsec", 0, 1, 1, KHZ, 180000, 336000, 420000, 504000, 600000, 684000, 720000, 720000),
CORE_DVFS("msenc", 0, 0, 1, KHZ, 84000, 168000, 216000, 276000, 324000, 372000, 420000, 456000),
CORE_DVFS("msenc", 0, 1, 1, KHZ, 120000, 228000, 276000, 348000, 396000, 444000, 456000, 456000),
CORE_DVFS("se", 0, 0, 1, KHZ, 84000, 168000, 216000, 276000, 324000, 372000, 420000, 456000),
CORE_DVFS("se", 0, 1, 1, KHZ, 120000, 228000, 276000, 348000, 396000, 444000, 456000, 456000),
CORE_DVFS("vde", 0, 0, 1, KHZ, 84000, 168000, 216000, 276000, 324000, 372000, 420000, 456000),
CORE_DVFS("vde", 0, 1, 1, KHZ, 120000, 228000, 276000, 348000, 396000, 444000, 456000, 456000),
CORE_DVFS("host1x", 0, 0, 1, KHZ, 108000, 156000, 204000, 240000, 348000, 372000, 408000, 408000),
CORE_DVFS("host1x", 0, 1, 1, KHZ, 108000, 156000, 204000, 252000, 348000, 384000, 408000, 408000),
CORE_DVFS("vi", 0, 0, 1, KHZ, 1, 324000, 420000, 516000, 600000, 600000, 600000, 600000),
CORE_DVFS("vi", 0, 1, 1, KHZ, 1, 420000, 480000, 600000, 600000, 600000, 600000, 600000),
CORE_DVFS("isp", 0, 0, 1, KHZ, 1, 324000, 420000, 516000, 600000, 600000, 600000, 600000),
CORE_DVFS("isp", 0, 1, 1, KHZ, 1, 420000, 480000, 600000, 600000, 600000, 600000, 600000),
#ifdef CONFIG_TEGRA_DUAL_CBUS
CORE_DVFS("c2bus", 0, 0, 1, KHZ, 84000, 168000, 216000, 276000, 324000, 372000, 420000, 456000),
CORE_DVFS("c2bus", 0, 1, 1, KHZ, 120000, 228000, 276000, 348000, 396000, 444000, 456000, 456000),
CORE_DVFS("c3bus", 0, 0, 1, KHZ, 180000, 240000, 324000, 420000, 492000, 576000, 648000, 720000),
CORE_DVFS("c3bus", 0, 1, 1, KHZ, 180000, 336000, 420000, 504000, 600000, 684000, 720000, 720000),
#else
CORE_DVFS("cbus", -1, -1, 1, KHZ, 120000, 144000, 168000, 168000, 216000, 216000, 372000, 372000),
#endif
CORE_DVFS("c4bus", 0, 0, 1, KHZ, 1, 324000, 420000, 516000, 600000, 600000, 600000, 600000),
CORE_DVFS("c4bus", 0, 1, 1, KHZ, 1, 420000, 480000, 600000, 600000, 600000, 600000, 600000),
CORE_DVFS("pll_m", -1, -1, 1, KHZ, 800000, 800000, 1066000, 1066000, 1066000, 1066000, 1200000, 1200000),
CORE_DVFS("pll_c", -1, -1, 1, KHZ, 800000, 800000, 1066000, 1066000, 1066000, 1066000, 1066000, 1066000),
CORE_DVFS("pll_c2", -1, -1, 1, KHZ, 800000, 800000, 1066000, 1066000, 1066000, 1066000, 1066000, 1066000),
CORE_DVFS("pll_c3", -1, -1, 1, KHZ, 800000, 800000, 1066000, 1066000, 1066000, 1066000, 1066000, 1066000),
/* Core voltages (mV): 800, 850, 900, 950, 1000, 1050, 1100, 1150 */
/* Clock limits for I/O peripherals */
CORE_DVFS("dsia", -1, -1, 1, KHZ, 402000, 500000, 750000, 750000, 750000, 750000, 750000, 750000),
CORE_DVFS("dsib", -1, -1, 1, KHZ, 402000, 500000, 750000, 750000, 750000, 750000, 750000, 750000),
CORE_DVFS("dsialp", -1, -1, 1, KHZ, 102000, 102000, 102000, 102000, 156000, 156000, 156000, 156000),
CORE_DVFS("dsiblp", -1, -1, 1, KHZ, 102000, 102000, 102000, 102000, 156000, 156000, 156000, 156000),
CORE_DVFS("hdmi", -1, -1, 1, KHZ, 1, 148500, 148500, 297000, 297000, 297000, 297000, 297000),
/* FIXME: Finalize these values for NOR after qual */
CORE_DVFS("nor", -1, -1, 1, KHZ, 102000, 102000, 102000, 102000, 102000, 102000, 102000, 102000),
CORE_DVFS("pciex", -1, -1, 1, KHZ, 1, 250000, 250000, 500000, 500000, 500000, 500000, 500000),
CORE_DVFS("mselect", -1, -1, 1, KHZ, 102000, 102000, 204000, 204000, 204000, 204000, 408000, 408000),
/* Core voltages (mV): 800, 850, 900, 950, 1000, 1050, 1100, 1150 */
/* xusb clocks */
CORE_DVFS("xusb_falcon_src", -1, -1, 1, KHZ, 1, 336000, 336000, 336000, 336000, 336000 , 336000, 336000),
CORE_DVFS("xusb_host_src", -1, -1, 1, KHZ, 1, 112000, 112000, 112000, 112000, 112000 , 112000, 112000),
CORE_DVFS("xusb_dev_src", -1, -1, 1, KHZ, 1, 58300, 58300, 58300, 112000, 112000 , 112000, 112000),
CORE_DVFS("xusb_ss_src", -1, -1, 1, KHZ, 1, 120000, 120000, 120000, 120000, 120000 , 120000, 120000),
CORE_DVFS("xusb_fs_src", -1, -1, 1, KHZ, 1, 48000, 48000, 48000, 48000, 48000 , 48000, 48000),
CORE_DVFS("xusb_hs_src", -1, -1, 1, KHZ, 1, 60000, 60000, 60000, 60000, 60000 , 60000, 60000),
CORE_DVFS("hda", -1, -1, 1, KHZ, 1, 108000, 108000, 108000, 108000, 108000 , 108000, 108000),
CORE_DVFS("hda2codec_2x", -1, -1, 1, KHZ, 1, 48000, 48000, 48000, 48000, 48000 , 48000, 48000),
CORE_DVFS("sor0", 0, -1, 1, KHZ, 162500, 270000, 540000, 540000, 540000, 540000, 540000, 540000),
OVRRD_DVFS("sdmmc1", -1, -1, 1, KHZ, 1, 1, 82000, 82000, 136000, 136000, 136000, 204000),
OVRRD_DVFS("sdmmc3", -1, -1, 1, KHZ, 1, 1, 82000, 82000, 136000, 136000, 136000, 204000),
OVRRD_DVFS("sdmmc4", -1, -1, 1, KHZ, 1, 1, 82000, 82000, 136000, 136000, 136000, 200000),
};
/*
*
* Display peak voltage aggregation into override range floor is deferred until
* actual pixel clock for the particular platform is known. This would allow to
* extend sdmmc tuning range on the platforms that do not excercise maximum
* display clock capabilities specified in DVFS table.
*
*/
#define DEFER_DVFS(_clk_name, _speedo_id, _process_id, _auto, _mult, _freqs...) \
{ \
.clk_name = _clk_name, \
.speedo_id = _speedo_id, \
.process_id = _process_id, \
.freqs = {_freqs}, \
.freqs_mult = _mult, \
.millivolts = core_millivolts, \
.auto_dvfs = _auto, \
.defer_override = true, \
.dvfs_rail = &tegra13_dvfs_rail_vdd_core, \
}
static struct dvfs disp_dvfs_table[] = {
/*
* The clock rate for the display controllers that determines the
* necessary core voltage depends on a divider that is internal
* to the display block. Disable auto-dvfs on the display clocks,
* and let the display driver call tegra_dvfs_set_rate manually
*/
/* Core voltages (mV) 800, 850, 900, 950, 1000, 1050, 1100, 1150 */
DEFER_DVFS("disp1", 0, 0, 0, KHZ, 1, 240000, 282000, 330000, 388000, 408000, 456000, 490000),
DEFER_DVFS("disp1", 0, 1, 0, KHZ, 192000, 247000, 306000, 342000, 400000, 432000, 474000, 535000),
DEFER_DVFS("disp2", 0, 0, 0, KHZ, 1, 240000, 282000, 330000, 388000, 408000, 456000, 490000),
DEFER_DVFS("disp2", 0, 1, 0, KHZ, 192000, 247000, 306000, 342000, 400000, 432000, 474000, 535000),
};
/* Alternative display dvfs table: applicable if only one window B is active */
static struct dvfs disp_alt_dvfs_table[] = {
/* Core voltages (mV): 800, 850, 900, 950, 1000, 1050, 1100, 1150 */
DEFER_DVFS("disp1", 0, 0, 0, KHZ, 1, 272000, 330000, 400000, 456000, 490000, 490000, 490000),
DEFER_DVFS("disp1", 0, 1, 0, KHZ, 216000, 280000, 342000, 408000, 480000, 506000, 535000, 535000),
DEFER_DVFS("disp2", 0, 0, 0, KHZ, 1, 272000, 330000, 400000, 456000, 490000, 490000, 490000),
DEFER_DVFS("disp2", 0, 1, 0, KHZ, 216000, 280000, 342000, 408000, 480000, 506000, 535000, 535000),
};
static int resolve_core_override(int min_override_mv)
{
/* nothing to do -- always resolved */
return 0;
}
/* GPU DVFS tables */
static unsigned long gpu_max_freq[] = {
/* speedo_id 0 1 2 */
804000, 852000, 918000,
};
static struct gpu_cvb_dvfs gpu_cvb_dvfs_table[] = {
{
.speedo_id = -1,
.process_id = -1,
.max_mv = 1200,
.freqs_mult = KHZ,
.speedo_scale = 100,
.thermal_scale = 10,
.voltage_scale = 1000,
.cvb_table = {
/*f dfll pll: c0, c1, c2, c3, c4, c5 */
{ 72000, { }, { 1209886, -36468, 515, 417, -13123, 203}, },
{ 108000, { }, { 1130804, -27659, 296, 298, -10834, 221}, },
{ 180000, { }, { 1162871, -27110, 247, 238, -10681, 268}, },
{ 252000, { }, { 1220458, -28654, 247, 179, -10376, 298}, },
{ 324000, { }, { 1280953, -30204, 247, 119, -9766, 304}, },
{ 396000, { }, { 1344547, -31777, 247, 119, -8545, 292}, },
{ 468000, { }, { 1420168, -34227, 269, 60, -7172, 256}, },
{ 540000, { }, { 1490757, -35955, 274, 60, -5188, 197}, },
{ 612000, { }, { 1599112, -42583, 398, 0, -1831, 119}, },
{ 648000, { }, { 1366986, -16459, -274, 0, -3204, 72}, },
{ 684000, { }, { 1391884, -17078, -274, -60, -1526, 30}, },
{ 708000, { }, { 1415522, -17497, -274, -60, -458, 0}, },
{ 756000, { }, { 1464061, -18331, -274, -119, 1831, -72}, },
{ 804000, { }, { 1524225, -20064, -254, -119, 4272, -155}, },
{ 852000, { }, { 1608418, -21643, -269, 0, 763, -48}, },
{ 900000, { }, { 1706383, -25155, -209, 0, 305, 0}, },
{ 918000, { }, { 1729600, -26289, -194, 0, 763, 0}, },
{ 954000, { }, { 1880996, -35353, 14, -179, 4120, 24}, },
{ 984000, { }, { 1890996, -35353, 14, -179, 4120, 24}, },
{ 1008000, { }, { 2015834, -44439, 271, -596, 4730, 1222}, },
{ 0, { }, { }, },
},
.cvb_vmin = { 0, { }, { 1180000, -18900, 0, 0, -6110, 0}, },
.vmin_trips_table = { 15, },
.therm_floors_table = { 900, },
.vts_trips_table = { -10, 10, 30, 50, 70, },
}
};
static int gpu_vmin[MAX_THERMAL_RANGES];
static int gpu_peak_millivolts[MAX_DVFS_FREQS];
static int gpu_millivolts[MAX_THERMAL_RANGES][MAX_DVFS_FREQS];
static int gpu_millivolts_offs[MAX_THERMAL_RANGES][MAX_DVFS_FREQS];
static struct dvfs gpu_dvfs = {
.clk_name = "gbus",
.auto_dvfs = true,
.dvfs_rail = &tegra13_dvfs_rail_vdd_gpu,
};
static struct notifier_block gpu_simon_grade_nb;
int tegra_dvfs_disable_core_set(const char *arg, const struct kernel_param *kp)
{
int ret;
ret = param_set_bool(arg, kp);
if (ret)
return ret;
if (tegra_dvfs_core_disabled)
tegra_dvfs_rail_disable(&tegra13_dvfs_rail_vdd_core);
else
tegra_dvfs_rail_enable(&tegra13_dvfs_rail_vdd_core);
return 0;
}
int tegra_dvfs_disable_cpu_set(const char *arg, const struct kernel_param *kp)
{
int ret;
ret = param_set_bool(arg, kp);
if (ret)
return ret;
if (tegra_dvfs_cpu_disabled)
tegra_dvfs_rail_disable(&tegra13_dvfs_rail_vdd_cpu);
else
tegra_dvfs_rail_enable(&tegra13_dvfs_rail_vdd_cpu);
return 0;
}
int tegra_dvfs_disable_gpu_set(const char *arg, const struct kernel_param *kp)
{
int ret;
ret = param_set_bool(arg, kp);
if (ret)
return ret;
if (tegra_dvfs_gpu_disabled)
tegra_dvfs_rail_disable(&tegra13_dvfs_rail_vdd_gpu);
else
tegra_dvfs_rail_enable(&tegra13_dvfs_rail_vdd_gpu);
return 0;
}
int tegra_dvfs_disable_get(char *buffer, const struct kernel_param *kp)
{
return param_get_bool(buffer, kp);
}
static struct kernel_param_ops tegra_dvfs_disable_core_ops = {
.set = tegra_dvfs_disable_core_set,
.get = tegra_dvfs_disable_get,
};
static struct kernel_param_ops tegra_dvfs_disable_cpu_ops = {
.set = tegra_dvfs_disable_cpu_set,
.get = tegra_dvfs_disable_get,
};
static struct kernel_param_ops tegra_dvfs_disable_gpu_ops = {
.set = tegra_dvfs_disable_gpu_set,
.get = tegra_dvfs_disable_get,
};
module_param_cb(disable_core, &tegra_dvfs_disable_core_ops,
&tegra_dvfs_core_disabled, 0644);
module_param_cb(disable_cpu, &tegra_dvfs_disable_cpu_ops,
&tegra_dvfs_cpu_disabled, 0644);
module_param_cb(disable_gpu, &tegra_dvfs_disable_gpu_ops,
&tegra_dvfs_gpu_disabled, 0644);
static bool __init can_update_max_rate(struct clk *c, struct dvfs *d)
{
/* Don't update manual dvfs clocks */
if (!d->auto_dvfs)
return false;
/*
* Don't update EMC shared bus, since EMC dvfs is board dependent: max
* rate and EMC scaling frequencies are determined by tegra BCT (flashed
* together with the image) and board specific EMC DFS table; we will
* check the scaling ladder against nominal core voltage when the table
* is loaded (and if on particular board the table is not loaded, EMC
* scaling is disabled).
*/
if (c->ops->shared_bus_update && (c->flags & PERIPH_EMC_ENB))
return false;
/*
* Don't update shared cbus, and don't propagate common cbus dvfs
* limit down to shared users, but set maximum rate for each user
* equal to the respective client limit.
*/
if (c->ops->shared_bus_update && (c->flags & PERIPH_ON_CBUS)) {
struct clk *user;
unsigned long rate;
list_for_each_entry(
user, &c->shared_bus_list, u.shared_bus_user.node) {
if (user->u.shared_bus_user.client) {
rate = user->u.shared_bus_user.client->max_rate;
user->max_rate = rate;
user->u.shared_bus_user.rate = rate;
}
}
return false;
}
/* Other, than EMC and cbus, auto-dvfs clocks can be updated */
return true;
}
static void __init init_dvfs_one(struct dvfs *d, int max_freq_index)
{
int ret;
struct clk *c = tegra_get_clock_by_name(d->clk_name);
if (!c) {
pr_debug("tegra13_dvfs: no clock found for %s\n",
d->clk_name);
return;
}
/* Update max rate for auto-dvfs clocks, with shared bus exceptions */
if (can_update_max_rate(c, d)) {
BUG_ON(!d->freqs[max_freq_index]);
tegra_init_max_rate(
c, d->freqs[max_freq_index] * d->freqs_mult);
}
d->max_millivolts = d->dvfs_rail->nominal_millivolts;
ret = tegra_enable_dvfs_on_clk(c, d);
if (ret)
pr_err("tegra13_dvfs: failed to enable dvfs on %s\n", c->name);
}
static bool __init match_dvfs_one(const char *name,
int dvfs_speedo_id, int dvfs_process_id,
int speedo_id, int process_id)
{
if ((dvfs_process_id != -1 && dvfs_process_id != process_id) ||
(dvfs_speedo_id != -1 && dvfs_speedo_id != speedo_id)) {
pr_debug("tegra13_dvfs: rejected %s speedo %d, process %d\n",
name, dvfs_speedo_id, dvfs_process_id);
return false;
}
return true;
}
static void __init init_alt_dvfs_one(struct dvfs *alt_d)
{
int ret, i;
struct clk *c = tegra_get_clock_by_name(alt_d->clk_name);
if (!c || !c->dvfs) {
pr_debug("tegra13_dvfs: invalid alt dvfs for %s\n",
alt_d->clk_name);
return;
}
if ((c->dvfs->speedo_id == alt_d->speedo_id) &&
(c->dvfs->process_id == alt_d->process_id)) {
for (i = 0; i < c->dvfs->num_freqs; i++)
alt_d->freqs[i] *= alt_d->freqs_mult;
ret = tegra_dvfs_alt_freqs_install(c->dvfs, alt_d->freqs);
if (ret)
pr_err("tegra13_dvfs: failed install alt dvfs on %s\n",
c->name);
}
}
/* cvb_mv = ((c2 * speedo / s_scale + c1) * speedo / s_scale + c0) / v_scale */
static inline int get_cvb_voltage(int speedo, int s_scale,
struct cvb_dvfs_parameters *cvb)
{
/* apply only speedo scale: output mv = cvb_mv * v_scale */
int mv;
mv = DIV_ROUND_CLOSEST(cvb->c2 * speedo, s_scale);
mv = DIV_ROUND_CLOSEST((mv + cvb->c1) * speedo, s_scale) + cvb->c0;
return mv;
}
/* cvb_t_mv =
((c3 * speedo / s_scale + c4 + c5 * T / t_scale) * T / t_scale) / v_scale */
static inline int get_cvb_t_voltage(int speedo, int s_scale, int t, int t_scale,
struct cvb_dvfs_parameters *cvb)
{
/* apply speedo & temperature scales: output mv = cvb_t_mv * v_scale */
int mv;
mv = DIV_ROUND_CLOSEST(cvb->c3 * speedo, s_scale) + cvb->c4 +
DIV_ROUND_CLOSEST(cvb->c5 * t, t_scale);
mv = DIV_ROUND_CLOSEST(mv * t, t_scale);
return mv;
}
static int round_cvb_voltage(int mv, int v_scale, struct rail_alignment *align)
{
/* combined: apply voltage scale and round to cvb alignment step */
int uv;
int step = (align->step_uv ? : 1000) * v_scale;
int offset = align->offset_uv * v_scale;
uv = max(mv * 1000, offset) - offset;
uv = DIV_ROUND_UP(uv, step) * align->step_uv + align->offset_uv;
return uv / 1000;
}
static int round_voltage(int mv, struct rail_alignment *align, bool up)
{
if (align->step_uv) {
int uv = max(mv * 1000, align->offset_uv) - align->offset_uv;
uv = (uv + (up ? align->step_uv - 1 : 0)) / align->step_uv;
return (uv * align->step_uv + align->offset_uv) / 1000;
}
return mv;
}
static void __init set_cpu_dfll_tuning_data(struct cpu_cvb_dvfs *d, int speedo)
{
if (d->speedo_id >= 1) {
/* Initial (low SiMon grade) settings - same for all parts */
d->dfll_tune_data.tune0 = 0x8315FF;
d->dfll_tune_data.tune0_high_mv = 0x8340FF;
if (speedo <= 2180) {
/* Toggle SiMon mask - high grade settings 0x8A....*/
d->dfll_tune_data.tune0_simon_mask = 0x090000;
d->dfll_tune_data.tune_high_min_millivolts = 950;
} else if (speedo < 2336) {
/* Toggle SiMon mask - high grade settings 0x87....*/
d->dfll_tune_data.tune0_simon_mask = 0x040000;
d->dfll_tune_data.tune_high_min_millivolts = 900;
} else {
/* High and low grade settings are the same */
d->dfll_tune_data.tune_high_min_millivolts = 900;
}
}
}
static void __init set_cpu_dfll_vmin_data(
struct cpu_cvb_dvfs *d, struct dvfs *cpu_dvfs,
int speedo, struct rail_alignment *align)
{
int mv, mvj, t, j;
struct dvfs_rail *rail = &tegra13_dvfs_rail_vdd_cpu;
/* First install fixed Vmin profile */
tegra_dvfs_rail_init_vmin_thermal_profile(d->vmin_trips_table,
d->therm_floors_table, rail, &cpu_dvfs->dfll_data);
if (!rail->therm_mv_floors || !rail->therm_mv_floors_num ||
!d->cvb_vmin.cvb_dfll_param.c0)
return;
/*
* If fixed profile installed successfully, and speedo dependency is
* specified, calculate Vmin for each temperature range based on CVB
* equations for DFLL mode with the following restrictions:
* - keep fixed floor in lowest temperature range
* - apply Vmin at left (low) boundary trip-point to the entire range
* - don't allow Vmin below fixed floor
* - make sure calculated Vmin profile is descending with temperature
*/
mv = get_cvb_voltage(
speedo, d->speedo_scale, &d->cvb_vmin.cvb_dfll_param);
for (j = rail->therm_mv_floors_num - 1;; j--) {
cpu_vmin[j] = d->therm_floors_table[j];
if (j < rail->therm_mv_floors_num - 1)
cpu_vmin[j] = max(cpu_vmin[j], cpu_vmin[j+1]);
if (j == 0)
break;
/* add Vmin thermal offset */
t = d->vmin_trips_table[j-1];
mvj = mv + get_cvb_t_voltage(speedo, d->speedo_scale,
t, d->thermal_scale, &d->cvb_vmin.cvb_dfll_param);
mvj = round_cvb_voltage(mvj, d->voltage_scale, align);
cpu_vmin[j] = max(cpu_vmin[j], mvj);
}
/*
* Overwrite fixed Vmin profile with CVB Vmin profile. Although CVB
* calculations are done using DFLL mode coefficients, resulting limits
* can be applied in PLL mode as well (with no actual limitations, since
* PLL mode Vmin requirements are higher, and embedded into PLL DVFS
* table)
*/
tegra_dvfs_rail_init_vmin_thermal_profile(d->vmin_trips_table,
cpu_vmin, rail, &cpu_dvfs->dfll_data);
}
static int __init set_cpu_dvfs_data(unsigned long max_freq,
struct cpu_cvb_dvfs *d, struct dvfs *cpu_dvfs, int *max_freq_index)
{
int j, mv, dfll_mv, min_dfll_mv;
unsigned long fmax_at_vmin = 0;
unsigned long fmax_pll_mode = 0;
unsigned long fmin_use_dfll = 0;
struct cvb_dvfs_table *table = NULL;
int speedo = tegra_cpu_speedo_value();
struct dvfs_rail *rail = &tegra13_dvfs_rail_vdd_cpu;
struct rail_alignment *align = &rail->alignment;
set_cpu_dfll_tuning_data(d, speedo);
min_dfll_mv = d->dfll_tune_data.min_millivolts;
min_dfll_mv = round_voltage(min_dfll_mv, align, true);
d->max_mv = round_voltage(d->max_mv, align, false);
BUG_ON(min_dfll_mv < rail->min_millivolts);
/*
* Use CVB table to fill in CPU dvfs frequencies and voltages. Each
* CVB entry specifies CPU frequency and CVB coefficients to calculate
* the respective voltage when either DFLL or PLL is used as CPU clock
* source.
*
* Minimum voltage limit is applied only to DFLL source. For PLL source
* voltage can go as low as table specifies. Maximum voltage limit is
* applied to both sources, but differently: directly clip voltage for
* DFLL, and limit maximum frequency for PLL.
*/
for (j = 0; j < MAX_DVFS_FREQS; j++) {
table = &d->cvb_table[j];
if (!table->freq || (table->freq > max_freq))
break;
dfll_mv = get_cvb_voltage(
speedo, d->speedo_scale, &table->cvb_dfll_param);
dfll_mv = round_cvb_voltage(dfll_mv, d->voltage_scale, align);
mv = get_cvb_voltage(
speedo, d->speedo_scale, &table->cvb_pll_param);
mv = round_cvb_voltage(mv, d->voltage_scale, align);
/*
* Check maximum frequency at minimum voltage for dfll source;
* round down unless all table entries are above Vmin, then use
* the 1st entry as is.
*/
dfll_mv = max(dfll_mv, min_dfll_mv);
if (dfll_mv > min_dfll_mv) {
if (!j)
fmax_at_vmin = table->freq;
if (!fmax_at_vmin)
fmax_at_vmin = cpu_dvfs->freqs[j - 1];
}
/* Clip maximum frequency at maximum voltage for pll source */
if (mv > d->max_mv) {
if (!j)
break; /* 1st entry already above Vmax */
if (!fmax_pll_mode)
fmax_pll_mode = cpu_dvfs->freqs[j - 1];
}
/* Minimum rate with pll source voltage above dfll Vmin */
if ((mv >= min_dfll_mv) && (!fmin_use_dfll))
fmin_use_dfll = table->freq;
/* fill in dvfs tables */
cpu_dvfs->freqs[j] = table->freq;
cpu_dfll_millivolts[j] = min(dfll_mv, d->max_mv);
cpu_millivolts[j] = mv;
}
/* Table must not be empty, must have at least one entry above Vmin */
if (!j || !fmax_at_vmin) {
pr_err("tegra13_dvfs: invalid cpu dvfs table\n");
return -ENOENT;
}
/* In the dfll operating range dfll voltage at any rate should be
better (below) than pll voltage */
if (!fmin_use_dfll || (fmin_use_dfll > fmax_at_vmin)) {
WARN(1, "tegra13_dvfs: pll voltage is below dfll in the dfll"
" operating range\n");
fmin_use_dfll = fmax_at_vmin;
}
/* dvfs tables are successfully populated - fill in the rest */
cpu_dvfs->speedo_id = d->speedo_id;
cpu_dvfs->process_id = d->process_id;
cpu_dvfs->freqs_mult = d->freqs_mult;
cpu_dvfs->dvfs_rail->nominal_millivolts = min(d->max_mv,
max(cpu_millivolts[j - 1], cpu_dfll_millivolts[j - 1]));
*max_freq_index = j - 1;
cpu_dvfs->dfll_data = d->dfll_tune_data;
cpu_dvfs->dfll_data.max_rate_boost = fmax_pll_mode ?
(cpu_dvfs->freqs[j - 1] - fmax_pll_mode) * d->freqs_mult : 0;
cpu_dvfs->dfll_data.out_rate_min = fmax_at_vmin * d->freqs_mult;
cpu_dvfs->dfll_data.use_dfll_rate_min = fmin_use_dfll * d->freqs_mult;
cpu_dvfs->dfll_data.min_millivolts = min_dfll_mv;
cpu_dvfs->dfll_data.is_bypass_down = is_lp_cluster;
/* Init cpu thermal floors */
set_cpu_dfll_vmin_data(d, cpu_dvfs, speedo, align);
/* Init cpu thermal caps */
#ifndef CONFIG_TEGRA_CPU_VOLT_CAP
tegra_dvfs_rail_init_vmax_thermal_profile(
vdd_cpu_vmax_trips_table, vdd_cpu_therm_caps_table,
rail, &cpu_dvfs->dfll_data);
#endif
if (cpu_dvfs->speedo_id == 0)
return 0;
/* Init cpu Vmin SiMon offsets */
tegra_dvfs_rail_init_simon_vmin_offsets(cpu_vmin_offsets,
ARRAY_SIZE(cpu_vmin_offsets), rail);
/* check Vmin SiMon offset: ignore SiMon if it pushes too low */
if (rail->therm_mv_floors && rail->simon_vmin_offsets) {
mv = rail->therm_mv_floors[rail->therm_mv_floors_num - 1];
mv += rail->simon_vmin_offsets[rail->simon_vmin_offs_num - 1];
mv = round_voltage(mv, align, true);
if (mv < min_dfll_mv) {
WARN(1, "tegra13_dvfs: cpu simon min %dmV below dfll min %dmV\n",
mv, min_dfll_mv);
rail->simon_vmin_offsets = NULL;
rail->simon_vmin_offs_num = 0;
}
}
return 0;
}
static int __init set_gpu_dvfs_data(unsigned long max_freq,
struct gpu_cvb_dvfs *d, struct dvfs *gpu_dvfs, int *max_freq_index)
{
int i, j, thermal_ranges, simon_offs, mv;
struct cvb_dvfs_table *table = NULL;
int speedo = tegra_gpu_speedo_value();
struct dvfs_rail *rail = &tegra13_dvfs_rail_vdd_gpu;
struct rail_alignment *align = &rail->alignment;
d->max_mv = round_voltage(d->max_mv, align, false);
/* Init gpu Vmin SiMon offsets (Tegra13 has exactly 2 offsests) */
BUILD_BUG_ON(ARRAY_SIZE(gpu_vmin_offsets) != 2);
tegra_dvfs_rail_init_simon_vmin_offsets(gpu_vmin_offsets, 2, rail);
simon_offs = rail->simon_vmin_offsets ? rail->simon_vmin_offsets[1] : 0;
/*
* Init thermal trips, find number of thermal ranges; note that the
* first trip-point is used for voltage calculations within the lowest
* range, but should not be actually set. Hence, at least 2 trip-points
* must be specified.
*/
if (tegra_dvfs_rail_init_thermal_dvfs_trips(d->vts_trips_table, rail))
return -ENOENT;
thermal_ranges = rail->vts_cdev->trip_temperatures_num;
rail->vts_cdev->trip_temperatures_num--;
if (thermal_ranges < 2)
WARN(1, "tegra13_dvfs: %d gpu trip: thermal dvfs is broken\n",
thermal_ranges);
/*
* Use CVB table to calculate Vmin for each temperature range
*/
mv = get_cvb_voltage(
speedo, d->speedo_scale, &d->cvb_vmin.cvb_pll_param);
for (j = 0; j < thermal_ranges; j++) {
int mvj = mv;
int t = rail->vts_cdev->trip_temperatures[j];
/* add Vmin thermal offset for this trip-point */
mvj += get_cvb_t_voltage(speedo, d->speedo_scale,
t, d->thermal_scale, &d->cvb_vmin.cvb_pll_param);
mvj = round_cvb_voltage(mvj, d->voltage_scale, align);
if (mvj < rail->min_millivolts) {
WARN(1, "tegra13_dvfs: gpu Vmin %d below rail min %d\n",
mvj, rail->min_millivolts);
mvj = rail->min_millivolts;
}
/* check Vmin SiMon offset: ignore SiMon if it pushes too low */
if (mvj + simon_offs < rail->min_millivolts) {
WARN(1, "tegra13_dvfs: gpu simon min %dmV below rail min %dmV\n",
mvj + simon_offs, rail->min_millivolts);
rail->simon_vmin_offsets = NULL;
rail->simon_vmin_offs_num = 0;
simon_offs = 0;
}
gpu_vmin[j] = mvj;
}
/*
* Use CVB table to fill in gpu dvfs frequencies and voltages. Each
* CVB entry specifies gpu frequency and CVB coefficients to calculate
* the respective voltage.
*/
for (i = 0; i < MAX_DVFS_FREQS; i++) {
table = &d->cvb_table[i];
if (!table->freq || (table->freq > max_freq))
break;
mv = get_cvb_voltage(
speedo, d->speedo_scale, &table->cvb_pll_param);
for (j = 0; j < thermal_ranges; j++) {
int mvj_offs, mvj = mv;
int t = rail->vts_cdev->trip_temperatures[j];
/* get thermal offset for this trip-point */
mvj += get_cvb_t_voltage(speedo, d->speedo_scale,
t, d->thermal_scale, &table->cvb_pll_param);
mvj = round_cvb_voltage(mvj, d->voltage_scale, align);
/* clip to minimum, abort if above maximum */
mvj_offs = max(mvj, gpu_vmin[j] + simon_offs);
mvj = max(mvj, gpu_vmin[j]);
if (mvj > d->max_mv)
break;
/* update voltage for adjacent ranges bounded by this
trip-point (cvb & dvfs are transpose matrices) */
gpu_millivolts[j][i] = mvj;
if (j && (gpu_millivolts[j-1][i] < mvj))
gpu_millivolts[j-1][i] = mvj;
gpu_millivolts_offs[j][i] = mvj_offs;
if (j && (gpu_millivolts_offs[j-1][i] < mvj_offs))
gpu_millivolts_offs[j-1][i] = mvj_offs;
}
/* Make sure all voltages for this frequency are below max */
if (j < thermal_ranges)
break;
/* fill in gpu dvfs tables */
gpu_dvfs->freqs[i] = table->freq;
}
/*
* Table must not be empty, must have at least one entry in range, and
* must specify monotonically increasing voltage on frequency dependency
* in each temperature range.
*/
if (!i || tegra_dvfs_init_thermal_dvfs_voltages(&gpu_millivolts[0][0],
gpu_peak_millivolts, i, thermal_ranges, gpu_dvfs)) {
pr_err("tegra13_dvfs: invalid gpu dvfs table\n");
return -ENOENT;
}
/* Shift out the 1st trip-point */
for (j = 1; j < thermal_ranges; j++)
rail->vts_cdev->trip_temperatures[j - 1] =
rail->vts_cdev->trip_temperatures[j];
/* dvfs tables are successfully populated - fill in the gpu dvfs */
gpu_dvfs->speedo_id = d->speedo_id;
gpu_dvfs->process_id = d->process_id;
gpu_dvfs->freqs_mult = d->freqs_mult;
gpu_dvfs->dvfs_rail->nominal_millivolts = d->max_mv;
*max_freq_index = i - 1;
/* Init thermal floors */
tegra_dvfs_rail_init_vmin_thermal_profile(d->vmin_trips_table,
d->therm_floors_table, &tegra13_dvfs_rail_vdd_gpu, NULL);
return 0;
}
static int gpu_simon_grade_notify_cb(struct notifier_block *nb,
unsigned long grade, void *v)
{
struct dvfs_rail *rail = &tegra13_dvfs_rail_vdd_gpu;
int curr_domain = (int)((long)v);
int ret;
if (curr_domain != rail->simon_domain)
return NOTIFY_DONE;
/* Only 2 grades are supported; both voltage tables must be valid */
ret = tegra_dvfs_replace_voltage_table(&gpu_dvfs,
grade ? &gpu_millivolts_offs[0][0] : &gpu_millivolts[0][0]);
if (!WARN_ON(ret == -EINVAL))
pr_info("tegra_dvfs: set %s simon grade %lu\n",
rail->reg_id, grade);
return NOTIFY_OK;
};
static int __init tegra13_register_gpu_simon_notifier(void)
{
int ret;
struct dvfs_rail *rail = &tegra13_dvfs_rail_vdd_gpu;
/* Stay at default if no simon offsets or thermal dvfs is broken */
if (!gpu_dvfs.therm_dvfs || !rail->simon_vmin_offsets)
return 0;
gpu_simon_grade_nb.notifier_call = gpu_simon_grade_notify_cb;
ret = tegra_register_simon_notifier(&gpu_simon_grade_nb);
if (ret) {
pr_err("tegra13_dvfs: failed to register %s simon notifier\n",
rail->reg_id);
return ret;
}
pr_info("tegra dvfs: registered %s simon notifier\n", rail->reg_id);
return 0;
}
late_initcall(tegra13_register_gpu_simon_notifier);
static int __init get_core_nominal_mv_index(int speedo_id)
{
int i;
int mv = tegra_core_speedo_mv();
int core_edp_voltage = get_core_edp();
/*
* Start with nominal level for the chips with this speedo_id. Then,
* make sure core nominal voltage is below edp limit for the board
* (if edp limit is set).
*/
if (!core_edp_voltage)
core_edp_voltage = 1150; /* default 1.15V EDP limit */
mv = min(mv, core_edp_voltage);
/* Round nominal level down to the nearest core scaling step */
for (i = 0; i < MAX_DVFS_FREQS; i++) {
if ((core_millivolts[i] == 0) || (mv < core_millivolts[i]))
break;
}
if (i == 0) {
pr_err("tegra13_dvfs: unable to adjust core dvfs table to"
" nominal voltage %d\n", mv);
return -ENOSYS;
}
return i - 1;
}
#define INIT_CORE_DVFS_TABLE(table, table_size) \
do { \
for (i = 0; i < (table_size); i++) { \
struct dvfs *d = &(table)[i]; \
if (!match_dvfs_one(d->clk_name, d->speedo_id, \
d->process_id, soc_speedo_id, core_process_id))\
continue; \
init_dvfs_one(d, core_nominal_mv_index); \
} \
} while (0)
int tegra_cpu_dvfs_alter(int edp_thermal_index, const cpumask_t *cpus,
bool before_clk_update, int cpu_event)
{
/* empty definition for tegra13 */
return 0;
}
void __init tegra13x_init_dvfs(void)
{
int cpu_speedo_id = tegra_cpu_speedo_id();
int cpu_process_id = tegra_cpu_process_id();
int soc_speedo_id = tegra_soc_speedo_id();
int core_process_id = tegra_core_process_id();
int gpu_speedo_id = tegra_gpu_speedo_id();
int gpu_process_id = tegra_gpu_process_id();
int i, ret;
int core_nominal_mv_index;
int gpu_max_freq_index = 0;
int cpu_max_freq_index = 0;
#ifndef CONFIG_TEGRA_CORE_DVFS
tegra_dvfs_core_disabled = true;
#endif
#ifndef CONFIG_TEGRA_CPU_DVFS
tegra_dvfs_cpu_disabled = true;
#endif
#ifndef CONFIG_TEGRA_GPU_DVFS
tegra_dvfs_gpu_disabled = true;
#endif
#ifdef CONFIG_TEGRA_PRE_SILICON_SUPPORT
if (!tegra_platform_is_silicon()) {
tegra_dvfs_core_disabled = true;
tegra_dvfs_cpu_disabled = true;
}
#endif
/*
* Find nominal voltages for core (1st) and cpu rails before rail
* init. Nominal voltage index in core scaling ladder can also be
* used to determine max dvfs frequencies for all core clocks. In
* case of error disable core scaling and set index to 0, so that
* core clocks would not exceed rates allowed at minimum voltage.
*/
core_nominal_mv_index = get_core_nominal_mv_index(soc_speedo_id);
if (core_nominal_mv_index < 0) {
tegra13_dvfs_rail_vdd_core.disabled = true;
tegra_dvfs_core_disabled = true;
core_nominal_mv_index = 0;
}
tegra13_dvfs_rail_vdd_core.nominal_millivolts =
core_millivolts[core_nominal_mv_index];
tegra13_dvfs_rail_vdd_core.resolve_override = resolve_core_override;
/*
* Setup cpu dvfs and dfll tables from cvb data, determine nominal
* voltage for cpu rail, and cpu maximum frequency. Note that entire
* frequency range is guaranteed only when dfll is used as cpu clock
* source. Reaching maximum frequency with pll as cpu clock source
* may not be possible within nominal voltage range (dvfs mechanism
* would automatically fail frequency request in this case, so that
* voltage limit is not violated). Error when cpu dvfs table can not
* be constructed must never happen.
*/
BUG_ON(cpu_speedo_id >= ARRAY_SIZE(cpu_max_freq));
for (ret = 0, i = 0; i < ARRAY_SIZE(cpu_cvb_dvfs_table); i++) {
struct cpu_cvb_dvfs *d = &cpu_cvb_dvfs_table[i];
unsigned long max_freq = cpu_max_freq[cpu_speedo_id];
if (match_dvfs_one("cpu cvb", d->speedo_id, d->process_id,
cpu_speedo_id, cpu_process_id)) {
ret = set_cpu_dvfs_data(max_freq,
d, &cpu_dvfs, &cpu_max_freq_index);
break;
}
}
BUG_ON((i == ARRAY_SIZE(cpu_cvb_dvfs_table)) || ret);
/*
* Setup gpu dvfs tables from cvb data, determine nominal voltage for
* gpu rail, and gpu maximum frequency. Error when gpu dvfs table can
* not be constructed must never happen.
*/
BUG_ON(gpu_speedo_id >= ARRAY_SIZE(gpu_max_freq));
for (ret = 0, i = 0; i < ARRAY_SIZE(gpu_cvb_dvfs_table); i++) {
struct gpu_cvb_dvfs *d = &gpu_cvb_dvfs_table[i];
unsigned long max_freq = gpu_max_freq[gpu_speedo_id];
if (match_dvfs_one("gpu cvb", d->speedo_id, d->process_id,
gpu_speedo_id, gpu_process_id)) {
ret = set_gpu_dvfs_data(max_freq,
d, &gpu_dvfs, &gpu_max_freq_index);
break;
}
}
BUG_ON((i == ARRAY_SIZE(gpu_cvb_dvfs_table)) || ret);
/* Init core thermal profile */
tegra_dvfs_rail_init_vmin_thermal_profile(vdd_core_vmin_trips_table,
vdd_core_therm_floors_table, &tegra13_dvfs_rail_vdd_core, NULL);
tegra_dvfs_rail_init_vmax_thermal_profile(vdd_core_vmax_trips_table,
vdd_core_therm_caps_table, &tegra13_dvfs_rail_vdd_core, NULL);
/* Init rail structures and dependencies */
tegra_dvfs_init_rails(tegra13_dvfs_rails,
ARRAY_SIZE(tegra13_dvfs_rails));
if ((tegra_revision == TEGRA_REVISION_A01) ||
(tegra_revision == TEGRA_REVISION_A02))
tegra_dvfs_add_relationships(tegra13_dvfs_relationships,
ARRAY_SIZE(tegra13_dvfs_relationships));
/* Search core dvfs table for speedo/process matching entries and
initialize dvfs-ed clocks */
if (!tegra_platform_is_linsim()) {
INIT_CORE_DVFS_TABLE(core_dvfs_table,
ARRAY_SIZE(core_dvfs_table));
INIT_CORE_DVFS_TABLE(disp_dvfs_table,
ARRAY_SIZE(disp_dvfs_table));
for (i = 0; i < ARRAY_SIZE(disp_alt_dvfs_table); i++)
init_alt_dvfs_one(&disp_alt_dvfs_table[i]);
}
/* Initialize matching gpu dvfs entry already found when nominal
voltage was determined */
init_dvfs_one(&gpu_dvfs, gpu_max_freq_index);
/* Initialize matching cpu dvfs entry already found when nominal
voltage was determined */
init_dvfs_one(&cpu_dvfs, cpu_max_freq_index);
/* Finally disable dvfs on rails if necessary */
if (tegra_dvfs_core_disabled)
tegra_dvfs_rail_disable(&tegra13_dvfs_rail_vdd_core);
if (tegra_dvfs_cpu_disabled)
tegra_dvfs_rail_disable(&tegra13_dvfs_rail_vdd_cpu);
if (tegra_dvfs_gpu_disabled)
tegra_dvfs_rail_disable(&tegra13_dvfs_rail_vdd_gpu);
pr_info("tegra dvfs: VDD_CPU nominal %dmV, scaling %s\n",
tegra13_dvfs_rail_vdd_cpu.nominal_millivolts,
tegra_dvfs_cpu_disabled ? "disabled" : "enabled");
pr_info("tegra dvfs: VDD_CORE nominal %dmV, scaling %s\n",
tegra13_dvfs_rail_vdd_core.nominal_millivolts,
tegra_dvfs_core_disabled ? "disabled" : "enabled");
pr_info("tegra dvfs: VDD_GPU nominal %dmV, scaling %s\n",
tegra13_dvfs_rail_vdd_gpu.nominal_millivolts,
tegra_dvfs_gpu_disabled ? "disabled" : "enabled");
}
int tegra_dvfs_rail_disable_prepare(struct dvfs_rail *rail)
{
return 0;
}
int tegra_dvfs_rail_post_enable(struct dvfs_rail *rail)
{
return 0;
}
/* Core voltage and bus cap object and tables */
static struct kobject *cap_kobj;
static struct kobject *gpu_kobj;
static struct kobject *emc_kobj;
static struct core_dvfs_cap_table tegra13_core_cap_table[] = {
#ifdef CONFIG_TEGRA_DUAL_CBUS
{ .cap_name = "cap.vcore.c2bus" },
{ .cap_name = "cap.vcore.c3bus" },
#else
{ .cap_name = "cap.vcore.cbus" },
#endif
{ .cap_name = "cap.vcore.sclk" },
{ .cap_name = "cap.vcore.emc" },
{ .cap_name = "cap.vcore.host1x" },
{ .cap_name = "cap.vcore.mselect" },
};
static struct core_bus_limit_table tegra13_gpu_cap_syfs = {
.limit_clk_name = "cap.profile.gbus",
.refcnt_attr = {.attr = {.name = "gpu_cap_state", .mode = 0644} },
.level_attr = {.attr = {.name = "gpu_cap_rate", .mode = 0644} },
.pm_qos_class = PM_QOS_GPU_FREQ_MAX,
};
static struct core_bus_limit_table tegra13_gpu_floor_sysfs = {
.limit_clk_name = "floor.profile.gbus",
.refcnt_attr = {.attr = {.name = "gpu_floor_state", .mode = 0644} },
.level_attr = {.attr = {.name = "gpu_floor_rate", .mode = 0644} },
.pm_qos_class = PM_QOS_GPU_FREQ_MIN,
};
static struct core_bus_rates_table tegra13_gpu_rates_sysfs = {
.bus_clk_name = "gbus",
.rate_attr = {.attr = {.name = "gpu_rate", .mode = 0444} },
.available_rates_attr = {
.attr = {.name = "gpu_available_rates", .mode = 0444} },
};
static struct core_bus_rates_table tegra13_emc_rates_sysfs = {
.bus_clk_name = "emc",
.rate_attr = {.attr = {.name = "emc_rate", .mode = 0444} },
.available_rates_attr = {
.attr = {.name = "emc_available_rates", .mode = 0444} },
};
static int __init tegra13_dvfs_init_core_cap(void)
{
int ret;
const int hack_core_millivolts = 0;
cap_kobj = kobject_create_and_add("tegra_cap", kernel_kobj);
if (!cap_kobj) {
pr_err("tegra13_dvfs: failed to create sysfs cap object\n");
return 0;
}
/* FIXME: skip core cap init b/c it's too slow on QT */
if (tegra_platform_is_qt())
ret = tegra_init_core_cap(
tegra13_core_cap_table, ARRAY_SIZE(tegra13_core_cap_table),
&hack_core_millivolts, 1, cap_kobj);
else
ret = tegra_init_core_cap(
tegra13_core_cap_table, ARRAY_SIZE(tegra13_core_cap_table),
core_millivolts, ARRAY_SIZE(core_millivolts), cap_kobj);
if (ret) {
pr_err("tegra13_dvfs: failed to init core cap interface (%d)\n",
ret);
kobject_del(cap_kobj);
return 0;
}
/* core cap must be initialized for vmax cdev operations */
tegra_dvfs_rail_register_vmax_cdev(&tegra13_dvfs_rail_vdd_core);
tegra_core_cap_debug_init();
pr_info("tegra dvfs: tegra sysfs cap interface is initialized\n");
gpu_kobj = kobject_create_and_add("tegra_gpu", kernel_kobj);
if (!gpu_kobj) {
pr_err("tegra13_dvfs: failed to create sysfs gpu object\n");
return 0;
}
ret = tegra_init_shared_bus_cap(&tegra13_gpu_cap_syfs,
1, gpu_kobj);
if (ret) {
pr_err("tegra13_dvfs: failed to init gpu cap interface (%d)\n",
ret);
kobject_del(gpu_kobj);
return 0;
}
ret = tegra_init_shared_bus_floor(&tegra13_gpu_floor_sysfs,
1, gpu_kobj);
if (ret) {
pr_err("tegra13_dvfs: failed to init gpu floor interface (%d)\n",
ret);
kobject_del(gpu_kobj);
return 0;
}
ret = tegra_init_sysfs_shared_bus_rate(&tegra13_gpu_rates_sysfs,
1, gpu_kobj);
if (ret) {
pr_err("tegra13_dvfs: failed to init gpu rates interface (%d)\n",
ret);
kobject_del(gpu_kobj);
return 0;
}
emc_kobj = kobject_create_and_add("tegra_emc", kernel_kobj);
if (!emc_kobj) {
pr_err("tegra13_dvfs: failed to create sysfs emc object\n");
return 0;
}
ret = tegra_init_sysfs_shared_bus_rate(&tegra13_emc_rates_sysfs,
1, emc_kobj);
if (ret) {
pr_err("tegra13_dvfs: failed to init emc rates interface (%d)\n",
ret);
kobject_del(emc_kobj);
return 0;
}
pr_info("tegra dvfs: tegra sysfs gpu & emc interface is initialized\n");
return 0;
}
late_initcall(tegra13_dvfs_init_core_cap);
|