1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
|
/*
* Copyright (C) 2011 Google, Inc.
*
* Author:
* Colin Cross <ccross@android.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/module.h>
#include <mach/iomap.h>
#include "tegra2_emc.h"
#define TEGRA_MRR_DIVLD (1<<20)
#define TEGRA_EMC_STATUS 0x02b4
#define TEGRA_EMC_MRR 0x00ec
static DEFINE_MUTEX(tegra_emc_mrr_lock);
#ifdef CONFIG_TEGRA_EMC_SCALING_ENABLE
static bool emc_enable = true;
#else
static bool emc_enable;
#endif
module_param(emc_enable, bool, 0644);
static void __iomem *emc = IO_ADDRESS(TEGRA_EMC_BASE);
static const struct tegra_emc_table *tegra_emc_table;
static int tegra_emc_table_size;
static unsigned long tegra_emc_max_bus_rate; /* 2 * 1000 * maximum emc_clock rate */
static unsigned long tegra_emc_min_bus_rate; /* 2 * 1000 * minimum emc_clock rate */
static inline void emc_writel(u32 val, unsigned long addr)
{
writel(val, emc + addr);
}
static inline u32 emc_readl(unsigned long addr)
{
return readl(emc + addr);
}
#ifndef CONFIG_MACH_COLIBRI_T20
/* read LPDDR2 memory modes */
static int tegra_emc_read_mrr(unsigned long addr)
{
u32 value;
int count = 100;
mutex_lock(&tegra_emc_mrr_lock);
do {
emc_readl(TEGRA_EMC_MRR);
} while (--count && (emc_readl(TEGRA_EMC_STATUS) & TEGRA_MRR_DIVLD));
if (count == 0) {
pr_err("%s: Failed to read memory type\n", __func__);
BUG();
}
value = (1 << 30) | (addr << 16);
emc_writel(value, TEGRA_EMC_MRR);
count = 100;
while (--count && !(emc_readl(TEGRA_EMC_STATUS) & TEGRA_MRR_DIVLD));
if (count == 0) {
pr_err("%s: Failed to read memory type\n", __func__);
BUG();
}
value = emc_readl(TEGRA_EMC_MRR) & 0xFFFF;
mutex_unlock(&tegra_emc_mrr_lock);
return value;
}
#endif /* !CONFIG_MACH_COLIBRI_T20 */
static const unsigned long emc_reg_addr[TEGRA_EMC_NUM_REGS] = {
0x2c, /* RC */
0x30, /* RFC */
0x34, /* RAS */
0x38, /* RP */
0x3c, /* R2W */
0x40, /* W2R */
0x44, /* R2P */
0x48, /* W2P */
0x4c, /* RD_RCD */
0x50, /* WR_RCD */
0x54, /* RRD */
0x58, /* REXT */
0x5c, /* WDV */
0x60, /* QUSE */
0x64, /* QRST */
0x68, /* QSAFE */
0x6c, /* RDV */
0x70, /* REFRESH */
0x74, /* BURST_REFRESH_NUM */
0x78, /* PDEX2WR */
0x7c, /* PDEX2RD */
0x80, /* PCHG2PDEN */
0x84, /* ACT2PDEN */
0x88, /* AR2PDEN */
0x8c, /* RW2PDEN */
0x90, /* TXSR */
0x94, /* TCKE */
0x98, /* TFAW */
0x9c, /* TRPAB */
0xa0, /* TCLKSTABLE */
0xa4, /* TCLKSTOP */
0xa8, /* TREFBW */
0xac, /* QUSE_EXTRA */
0x114, /* FBIO_CFG6 */
0xb0, /* ODT_WRITE */
0xb4, /* ODT_READ */
0x104, /* FBIO_CFG5 */
0x2bc, /* CFG_DIG_DLL */
0x2c0, /* DLL_XFORM_DQS */
0x2c4, /* DLL_XFORM_QUSE */
0x2e0, /* ZCAL_REF_CNT */
0x2e4, /* ZCAL_WAIT_CNT */
0x2a8, /* AUTO_CAL_INTERVAL */
0x2d0, /* CFG_CLKTRIM_0 */
0x2d4, /* CFG_CLKTRIM_1 */
0x2d8, /* CFG_CLKTRIM_2 */
};
/* Select the closest EMC rate that is higher than the requested rate */
long tegra_emc_round_rate(unsigned long rate)
{
int i;
int best = -1;
unsigned long distance = ULONG_MAX;
if (!tegra_emc_table)
return -EINVAL;
if (!emc_enable)
return -EINVAL;
if (rate >= tegra_emc_max_bus_rate) {
best = tegra_emc_table_size - 1;
goto round_out;
} else if (rate <= tegra_emc_min_bus_rate) {
best = 0;
goto round_out;
}
pr_debug("%s: %lu\n", __func__, rate);
/*
* The EMC clock rate is twice the bus rate, and the bus rate is
* measured in kHz
*/
rate = rate / 2 / 1000;
for (i = 0; i < tegra_emc_table_size; i++) {
if (tegra_emc_table[i].rate >= rate &&
(tegra_emc_table[i].rate - rate) < distance) {
distance = tegra_emc_table[i].rate - rate;
best = i;
}
}
if (best < 0)
return -EINVAL;
round_out:
pr_debug("%s: using %lu\n", __func__, tegra_emc_table[best].rate);
return tegra_emc_table[best].rate * 2 * 1000;
}
/*
* The EMC registers have shadow registers. When the EMC clock is updated
* in the clock controller, the shadow registers are copied to the active
* registers, allowing glitchless memory bus frequency changes.
* This function updates the shadow registers for a new clock frequency,
* and relies on the clock lock on the emc clock to avoid races between
* multiple frequency changes
*/
int tegra_emc_set_rate(unsigned long rate)
{
int i;
int j;
if (!tegra_emc_table)
return -EINVAL;
/*
* The EMC clock rate is twice the bus rate, and the bus rate is
* measured in kHz
*/
rate = rate / 2 / 1000;
for (i = tegra_emc_table_size - 1; i >= 0; i--)
if (tegra_emc_table[i].rate == rate)
break;
if (i < 0)
return -EINVAL;
pr_debug("%s: setting to %lu\n", __func__, rate);
for (j = 0; j < TEGRA_EMC_NUM_REGS; j++)
emc_writel(tegra_emc_table[i].regs[j], emc_reg_addr[j]);
emc_readl(tegra_emc_table[i].regs[TEGRA_EMC_NUM_REGS - 1]);
return 0;
}
void tegra_init_emc(const struct tegra_emc_chip *chips, int chips_size)
{
int i;
#ifndef CONFIG_MACH_COLIBRI_T20
int vid;
int rev_id1;
int rev_id2;
int pid;
#endif /* !CONFIG_MACH_COLIBRI_T20 */
int chip_matched = -1;
#ifndef CONFIG_MACH_COLIBRI_T20
//somehow this only seems to work for LPDDR2 but we have regular DDR2
vid = tegra_emc_read_mrr(5);
rev_id1 = tegra_emc_read_mrr(6);
rev_id2 = tegra_emc_read_mrr(7);
pid = tegra_emc_read_mrr(8);
#endif /* !CONFIG_MACH_COLIBRI_T20 */
for (i = 0; i < chips_size; i++) {
#ifndef CONFIG_MACH_COLIBRI_T20
//for now just go with the one and only chip table
if (chips[i].mem_manufacturer_id >= 0) {
if (chips[i].mem_manufacturer_id != vid)
continue;
}
if (chips[i].mem_revision_id1 >= 0) {
if (chips[i].mem_revision_id1 != rev_id1)
continue;
}
if (chips[i].mem_revision_id2 >= 0) {
if (chips[i].mem_revision_id2 != rev_id2)
continue;
}
if (chips[i].mem_pid >= 0) {
if (chips[i].mem_pid != pid)
continue;
}
#endif /* !CONFIG_MACH_COLIBRI_T20 */
chip_matched = i;
break;
}
if (chip_matched >= 0) {
pr_info("%s: %s memory found\n", __func__,
chips[chip_matched].description);
tegra_emc_table = chips[chip_matched].table;
tegra_emc_table_size = chips[chip_matched].table_size;
tegra_emc_min_bus_rate = tegra_emc_table[0].rate * 2 * 1000;
tegra_emc_max_bus_rate = tegra_emc_table[tegra_emc_table_size - 1].rate * 2 * 1000;
} else {
pr_err("%s: Memory not recognized, memory scaling disabled\n",
__func__);
#ifndef CONFIG_MACH_COLIBRI_T20
pr_info("%s: Memory vid = 0x%04x", __func__, vid);
pr_info("%s: Memory rev_id1 = 0x%04x", __func__, rev_id1);
pr_info("%s: Memory rev_id2 = 0x%04x", __func__, rev_id2);
pr_info("%s: Memory pid = 0x%04x", __func__, pid);
#endif /* !CONFIG_MACH_COLIBRI_T20 */
}
}
|