1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
|
/*
* arch/arm/mach-tegra/tegra3_dvfs.c
*
* Copyright (C) 2010-2011 NVIDIA Corporation.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/module.h>
#include <linux/clk.h>
#include <linux/kobject.h>
#include <linux/err.h>
#include "clock.h"
#include "dvfs.h"
#include "fuse.h"
#include "board.h"
static bool tegra_dvfs_cpu_disabled;
static bool tegra_dvfs_core_disabled;
static const int cpu_millivolts[MAX_DVFS_FREQS] =
{750, 775, 800, 825, 850, 875, 900, 925, 950, 975, 1000, 1025, 1050, 1075, 1100, 1125, 1150};
static const int core_millivolts[MAX_DVFS_FREQS] =
{1000, 1050, 1100, 1150, 1200, 1250, 1300};
static const int core_speedo_nominal_millivolts[] =
/* speedo_id 0, 1, 2 */
{ 1200, 1200, 1300 };
static const int cpu_speedo_nominal_millivolts[] =
/* speedo_id 0, 1, 2, 3 */
{ 1125, 1150, 1150, 1150 };
#define KHZ 1000
#define MHZ 1000000
/* VDD_CPU >= (VDD_CORE - cpu_below_core) */
/* VDD_CORE >= min_level(VDD_CPU), see tegra3_get_core_floor_mv() below */
#define VDD_CPU_BELOW_VDD_CORE 300
static int cpu_below_core = VDD_CPU_BELOW_VDD_CORE;
#define VDD_SAFE_STEP 100
static struct dvfs_rail tegra3_dvfs_rail_vdd_cpu = {
.reg_id = "vdd_cpu",
.max_millivolts = 1150,
.min_millivolts = 850,
.step = VDD_SAFE_STEP,
};
static struct dvfs_rail tegra3_dvfs_rail_vdd_core = {
.reg_id = "vdd_core",
.max_millivolts = 1300,
.min_millivolts = 1000,
.step = VDD_SAFE_STEP,
};
static struct dvfs_rail *tegra3_dvfs_rails[] = {
&tegra3_dvfs_rail_vdd_cpu,
&tegra3_dvfs_rail_vdd_core,
};
static int tegra3_get_core_floor_mv(int cpu_mv)
{
if (cpu_mv <= 875)
return 1000;
if (cpu_mv <= 975)
return 1100;
if (tegra_cpu_speedo_id() < 2)
return 1200;
if (cpu_mv <= 1075)
return 1200;
if (cpu_mv <= 1150)
return 1300;
BUG();
}
/* vdd_core must be >= min_level as a function of vdd_cpu */
static int tegra3_dvfs_rel_vdd_cpu_vdd_core(struct dvfs_rail *vdd_cpu,
struct dvfs_rail *vdd_core)
{
int core_floor = max(vdd_cpu->new_millivolts, vdd_cpu->millivolts);
core_floor = tegra3_get_core_floor_mv(core_floor);
return max(vdd_core->new_millivolts, core_floor);
}
/* vdd_cpu must be >= (vdd_core - cpu_below_core) */
static int tegra3_dvfs_rel_vdd_core_vdd_cpu(struct dvfs_rail *vdd_core,
struct dvfs_rail *vdd_cpu)
{
int cpu_floor = max(vdd_core->new_millivolts, vdd_core->millivolts) -
cpu_below_core;
return max(vdd_cpu->new_millivolts, cpu_floor);
}
static struct dvfs_relationship tegra3_dvfs_relationships[] = {
{
.from = &tegra3_dvfs_rail_vdd_cpu,
.to = &tegra3_dvfs_rail_vdd_core,
.solve = tegra3_dvfs_rel_vdd_cpu_vdd_core,
.solved_at_nominal = true,
},
{
.from = &tegra3_dvfs_rail_vdd_core,
.to = &tegra3_dvfs_rail_vdd_cpu,
.solve = tegra3_dvfs_rel_vdd_core_vdd_cpu,
},
};
#define CPU_DVFS(_clk_name, _speedo_id, _process_id, _mult, _freqs...) \
{ \
.clk_name = _clk_name, \
.speedo_id = _speedo_id, \
.process_id = _process_id, \
.freqs = {_freqs}, \
.freqs_mult = _mult, \
.millivolts = cpu_millivolts, \
.auto_dvfs = true, \
.dvfs_rail = &tegra3_dvfs_rail_vdd_cpu, \
}
static struct dvfs cpu_dvfs_table[] = {
/* Cpu voltages (mV): 750, 775, 800, 825, 850, 875, 900, 925, 950, 975, 1000, 1025, 1050, 1075, 1100, 1125, 1150*/
CPU_DVFS("cpu_g", 0, 0, MHZ, 1, 1, 1, 1, 684, 684, 817, 817, 817, 1026, 1102, 1149, 1187, 1225, 1282, 1300),
CPU_DVFS("cpu_g", 0, 1, MHZ, 1, 1, 1, 1, 807, 807, 948, 948, 948, 1117, 1171, 1206, 1300),
CPU_DVFS("cpu_g", 0, 2, MHZ, 1, 1, 1, 1, 883, 883, 1039, 1039, 1039, 1178, 1206, 1300),
CPU_DVFS("cpu_g", 0, 3, MHZ, 1, 1, 1, 1, 931, 931, 1102, 1102, 1102, 1216, 1300),
CPU_DVFS("cpu_g", 1, 0, MHZ, 1, 1, 1, 1, 550, 550, 680, 680, 680, 820, 970, 1040, 1080, 1150, 1200, 1280, 1300),
CPU_DVFS("cpu_g", 1, 1, MHZ, 1, 1, 1, 1, 650, 650, 820, 820, 820, 1000, 1060, 1100, 1200, 1300),
CPU_DVFS("cpu_g", 1, 2, MHZ, 1, 1, 1, 1, 720, 720, 880, 880, 880, 1090, 1180, 1200, 1300),
CPU_DVFS("cpu_g", 1, 3, MHZ, 1, 1, 1, 1, 800, 800, 1000, 1000, 1000, 1180, 1230, 1300),
CPU_DVFS("cpu_g", 2, 1, MHZ, 1, 1, 1, 1, 650, 650, 820, 820, 820, 1000, 1060, 1100, 1200, 1250, 1300, 1330, 1400),
CPU_DVFS("cpu_g", 2, 2, MHZ, 1, 1, 1, 1, 720, 720, 880, 880, 880, 1090, 1180, 1200, 1300, 1310, 1350, 1400),
CPU_DVFS("cpu_g", 2, 3, MHZ, 1, 1, 1, 1, 800, 800, 1000, 1000, 1000, 1180, 1230, 1300, 1320, 1350, 1400),
CPU_DVFS("cpu_g", 3, 1, MHZ, 1, 1, 1, 1, 650, 650, 820, 820, 820, 1000, 1060, 1100, 1200, 1250, 1300, 1330, 1400),
CPU_DVFS("cpu_g", 3, 2, MHZ, 1, 1, 1, 1, 720, 720, 880, 880, 880, 1090, 1180, 1200, 1300, 1310, 1350, 1400),
CPU_DVFS("cpu_g", 3, 3, MHZ, 1, 1, 1, 1, 800, 800, 1000, 1000, 1000, 1180, 1230, 1300, 1320, 1350, 1400),
/*
* "Safe entry" to be used when no match for chip speedo, process
* corner is found (just to boot at low rate); must be the last one
*/
CPU_DVFS("cpu_g", -1, -1, MHZ, 1, 1, 1, 1, 216, 216, 300),
};
#define CORE_DVFS(_clk_name, _speedo_id, _auto, _mult, _freqs...) \
{ \
.clk_name = _clk_name, \
.speedo_id = _speedo_id, \
.process_id = -1, \
.freqs = {_freqs}, \
.freqs_mult = _mult, \
.millivolts = core_millivolts, \
.auto_dvfs = _auto, \
.dvfs_rail = &tegra3_dvfs_rail_vdd_core, \
}
static struct dvfs core_dvfs_table[] = {
/* Core voltages (mV): 1000, 1050, 1100, 1150, 1200, 1250, 1300 */
/* Clock limits for internal blocks, PLLs */
CORE_DVFS("cpu_lp", 0, 1, KHZ, 294000, 342000, 427000, 475000, 500000, 500000, 500000),
CORE_DVFS("cpu_lp", 1, 1, KHZ, 294000, 342000, 427000, 475000, 500000, 500000, 500000),
CORE_DVFS("cpu_lp", 2, 1, KHZ, 295000, 370000, 428000, 475000, 513000, 579000, 620000),
CORE_DVFS("emc", 0, 1, KHZ, 266500, 266500, 266500, 266500, 533000, 533000, 533000),
CORE_DVFS("emc", 1, 1, KHZ, 408000, 408000, 408000, 408000, 667000, 667000, 667000),
CORE_DVFS("emc", 2, 1, KHZ, 408000, 408000, 408000, 408000, 667000, 667000, 800000),
CORE_DVFS("sbus", 0, 1, KHZ, 136000, 164000, 191000, 216000, 216000, 216000, 216000),
CORE_DVFS("sbus", 1, 1, KHZ, 205000, 205000, 227000, 227000, 267000, 267000, 267000),
CORE_DVFS("sbus", 2, 1, KHZ, 205000, 205000, 227000, 227000, 267000, 334000, 334000),
CORE_DVFS("vi", 0, 1, KHZ, 216000, 285000, 300000, 300000, 300000, 300000, 300000),
CORE_DVFS("vi", 1, 1, KHZ, 216000, 267000, 300000, 371000, 409000, 409000, 409000),
CORE_DVFS("vi", 2, 1, KHZ, 219000, 267000, 300000, 371000, 409000, 425000, 425000),
CORE_DVFS("vde", 0, 1, KHZ, 228000, 275000, 332000, 380000, 416000, 416000, 416000),
CORE_DVFS("mpe", 0, 1, KHZ, 234000, 285000, 332000, 380000, 416000, 416000, 416000),
CORE_DVFS("2d", 0, 1, KHZ, 267000, 285000, 332000, 380000, 416000, 416000, 416000),
CORE_DVFS("epp", 0, 1, KHZ, 267000, 285000, 332000, 380000, 416000, 416000, 416000),
CORE_DVFS("3d", 0, 1, KHZ, 234000, 285000, 332000, 380000, 416000, 416000, 416000),
CORE_DVFS("3d2", 0, 1, KHZ, 234000, 285000, 332000, 380000, 416000, 416000, 416000),
CORE_DVFS("se", 0, 1, KHZ, 267000, 285000, 332000, 380000, 416000, 416000, 416000),
CORE_DVFS("vde", 1, 1, KHZ, 228000, 275000, 332000, 380000, 416000, 416000, 416000),
CORE_DVFS("mpe", 1, 1, KHZ, 234000, 285000, 332000, 380000, 416000, 416000, 416000),
CORE_DVFS("2d", 1, 1, KHZ, 267000, 285000, 332000, 380000, 416000, 416000, 416000),
CORE_DVFS("epp", 1, 1, KHZ, 267000, 285000, 332000, 380000, 416000, 416000, 416000),
CORE_DVFS("3d", 1, 1, KHZ, 234000, 285000, 332000, 380000, 416000, 416000, 416000),
CORE_DVFS("3d2", 1, 1, KHZ, 234000, 285000, 332000, 380000, 416000, 416000, 416000),
CORE_DVFS("se", 1, 1, KHZ, 267000, 285000, 332000, 380000, 416000, 416000, 416000),
CORE_DVFS("vde", 2, 1, KHZ, 247000, 304000, 352000, 400000, 437000, 484000, 520000),
CORE_DVFS("mpe", 2, 1, KHZ, 247000, 304000, 361000, 408000, 446000, 484000, 520000),
CORE_DVFS("2d", 2, 1, KHZ, 267000, 304000, 361000, 408000, 446000, 484000, 520000),
CORE_DVFS("epp", 2, 1, KHZ, 267000, 304000, 361000, 408000, 446000, 484000, 520000),
CORE_DVFS("3d", 2, 1, KHZ, 247000, 304000, 361000, 408000, 446000, 484000, 520000),
CORE_DVFS("3d2", 2, 1, KHZ, 247000, 304000, 361000, 408000, 446000, 484000, 520000),
CORE_DVFS("se", 2, 1, KHZ, 267000, 304000, 361000, 408000, 446000, 484000, 520000),
CORE_DVFS("host1x",-1, 1, KHZ, 152000, 188000, 222000, 254000, 267000, 267000, 267000),
CORE_DVFS("cbus", 0, 1, KHZ, 228000, 275000, 332000, 380000, 416000, 416000, 416000),
CORE_DVFS("cbus", 1, 1, KHZ, 228000, 275000, 332000, 380000, 416000, 416000, 416000),
CORE_DVFS("cbus", 2, 1, KHZ, 247000, 304000, 352000, 400000, 437000, 484000, 520000),
CORE_DVFS("pll_c", -1, 1, KHZ, 667000, 667000, 800000, 800000, 1066000, 1066000, 1066000),
CORE_DVFS("pll_m", -1, 1, KHZ, 667000, 667000, 800000, 800000, 1066000, 1066000, 1066000),
/* Core voltages (mV): 1000, 1050, 1100, 1150, 1200, 1250, 1300 */
/* Clock limits for I/O peripherals */
CORE_DVFS("mipi", 0, 1, KHZ, 1, 1, 1, 1, 1, 1, 1),
CORE_DVFS("mipi", 1, 1, KHZ, 1, 1, 1, 1, 60000, 60000, 60000),
CORE_DVFS("mipi", 2, 1, KHZ, 1, 1, 1, 1, 60000, 60000, 60000),
CORE_DVFS("fuse_burn", -1, 1, KHZ, 1, 1, 1, 26000, 26000, 26000, 26000),
CORE_DVFS("sdmmc1",-1, 1, KHZ, 104000, 104000, 104000, 104000, 208000, 208000, 208000),
CORE_DVFS("sdmmc3",-1, 1, KHZ, 104000, 104000, 104000, 104000, 208000, 208000, 208000),
CORE_DVFS("ndflash", -1, 1, KHZ, 120000, 120000, 120000, 200000, 200000, 200000, 200000),
CORE_DVFS("nor", -1, 1, KHZ, 115000, 130000, 130000, 133000, 133000, 133000, 133000),
CORE_DVFS("sbc1", -1, 1, KHZ, 40000, 60000, 60000, 60000, 100000, 100000, 100000),
CORE_DVFS("sbc2", -1, 1, KHZ, 40000, 60000, 60000, 60000, 100000, 100000, 100000),
CORE_DVFS("sbc3", -1, 1, KHZ, 40000, 60000, 60000, 60000, 100000, 100000, 100000),
CORE_DVFS("sbc4", -1, 1, KHZ, 40000, 60000, 60000, 60000, 100000, 100000, 100000),
CORE_DVFS("sbc5", -1, 1, KHZ, 40000, 60000, 60000, 60000, 100000, 100000, 100000),
CORE_DVFS("sbc6", -1, 1, KHZ, 40000, 60000, 60000, 60000, 100000, 100000, 100000),
CORE_DVFS("tvo", -1, 1, KHZ, 1, 297000, 297000, 297000, 297000, 297000, 297000),
CORE_DVFS("cve", -1, 1, KHZ, 1, 297000, 297000, 297000, 297000, 297000, 297000),
CORE_DVFS("dsia", -1, 1, KHZ, 275000, 275000, 275000, 275000, 275000, 275000, 275000),
CORE_DVFS("dsib", -1, 1, KHZ, 275000, 275000, 275000, 275000, 275000, 275000, 275000),
/*
* The clock rate for the display controllers that determines the
* necessary core voltage depends on a divider that is internal
* to the display block. Disable auto-dvfs on the display clocks,
* and let the display driver call tegra_dvfs_set_rate manually
*/
CORE_DVFS("disp1", 0, 0, KHZ, 120000, 120000, 120000, 120000, 190000, 190000, 190000),
CORE_DVFS("disp1", 1, 0, KHZ, 151000, 268000, 268000, 268000, 268000, 268000, 268000),
CORE_DVFS("disp1", 2, 0, KHZ, 151000, 268000, 268000, 268000, 268000, 268000, 268000),
CORE_DVFS("disp2", 0, 0, KHZ, 120000, 120000, 120000, 120000, 190000, 190000, 190000),
CORE_DVFS("disp2", 1, 0, KHZ, 151000, 268000, 268000, 268000, 268000, 268000, 268000),
CORE_DVFS("disp2", 2, 0, KHZ, 151000, 268000, 268000, 268000, 268000, 268000, 268000),
};
int tegra_dvfs_disable_core_set(const char *arg, const struct kernel_param *kp)
{
int ret;
ret = param_set_bool(arg, kp);
if (ret)
return ret;
if (tegra_dvfs_core_disabled)
tegra_dvfs_rail_disable(&tegra3_dvfs_rail_vdd_core);
else
tegra_dvfs_rail_enable(&tegra3_dvfs_rail_vdd_core);
return 0;
}
int tegra_dvfs_disable_cpu_set(const char *arg, const struct kernel_param *kp)
{
int ret;
ret = param_set_bool(arg, kp);
if (ret)
return ret;
if (tegra_dvfs_cpu_disabled)
tegra_dvfs_rail_disable(&tegra3_dvfs_rail_vdd_cpu);
else
tegra_dvfs_rail_enable(&tegra3_dvfs_rail_vdd_cpu);
return 0;
}
int tegra_dvfs_disable_get(char *buffer, const struct kernel_param *kp)
{
return param_get_bool(buffer, kp);
}
static struct kernel_param_ops tegra_dvfs_disable_core_ops = {
.set = tegra_dvfs_disable_core_set,
.get = tegra_dvfs_disable_get,
};
static struct kernel_param_ops tegra_dvfs_disable_cpu_ops = {
.set = tegra_dvfs_disable_cpu_set,
.get = tegra_dvfs_disable_get,
};
module_param_cb(disable_core, &tegra_dvfs_disable_core_ops,
&tegra_dvfs_core_disabled, 0644);
module_param_cb(disable_cpu, &tegra_dvfs_disable_cpu_ops,
&tegra_dvfs_cpu_disabled, 0644);
static void __init init_dvfs_one(struct dvfs *d, int nominal_mv_index)
{
int ret;
struct clk *c = tegra_get_clock_by_name(d->clk_name);
if (!c) {
pr_debug("tegra3_dvfs: no clock found for %s\n",
d->clk_name);
return;
}
if (d->auto_dvfs) {
/* Update max rate for auto-dvfs clocks */
BUG_ON(!d->freqs[nominal_mv_index]);
tegra_init_max_rate(
c, d->freqs[nominal_mv_index] * d->freqs_mult);
}
d->max_millivolts = d->dvfs_rail->nominal_millivolts;
ret = tegra_enable_dvfs_on_clk(c, d);
if (ret)
pr_err("tegra3_dvfs: failed to enable dvfs on %s\n",
c->name);
}
static bool __init match_dvfs_one(struct dvfs *d, int speedo_id, int process_id)
{
if ((d->process_id != -1 && d->process_id != process_id) ||
(d->speedo_id != -1 && d->speedo_id != speedo_id)) {
pr_debug("tegra3_dvfs: rejected %s speedo %d,"
" process %d\n", d->clk_name, d->speedo_id,
d->process_id);
return false;
}
return true;
}
static int __init get_cpu_nominal_mv_index(
int speedo_id, int process_id, struct dvfs **cpu_dvfs)
{
int i, j, mv;
struct dvfs *d;
struct clk *c;
/*
* Start with nominal level for the chips with this speedo_id. Then,
* make sure cpu nominal voltage is below core ("solve from cpu to
* core at nominal").
*/
BUG_ON(speedo_id >= ARRAY_SIZE(cpu_speedo_nominal_millivolts));
mv = cpu_speedo_nominal_millivolts[speedo_id];
if (tegra3_dvfs_rail_vdd_core.nominal_millivolts) {
int core_mv = tegra3_dvfs_rail_vdd_core.nominal_millivolts;
while ((mv > tegra3_dvfs_rail_vdd_cpu.min_millivolts) &&
(tegra3_get_core_floor_mv(mv) > core_mv))
mv -= 25;
}
/*
* Find matching cpu dvfs entry, and use it to determine index to the
* final nominal voltage, that satisfies the following requirements:
* - allows CPU to run at minimum of the maximum rates specified in
* the dvfs entry and clock tree
* - does not violate cpu_to_core dependency as determined above
*/
for (i = 0, j = 0; j < ARRAY_SIZE(cpu_dvfs_table); j++) {
d = &cpu_dvfs_table[j];
if (match_dvfs_one(d, speedo_id, process_id)) {
c = tegra_get_clock_by_name(d->clk_name);
BUG_ON(!c);
for (; i < MAX_DVFS_FREQS; i++) {
if ((d->freqs[i] == 0) ||
(cpu_millivolts[i] == 0) ||
(mv < cpu_millivolts[i]))
break;
if (c->max_rate <= d->freqs[i]*d->freqs_mult) {
i++;
break;
}
}
break;
}
}
BUG_ON(i == 0);
if (j == (ARRAY_SIZE(cpu_dvfs_table) - 1))
pr_err("tegra3_dvfs: WARNING!!!\n"
"tegra3_dvfs: no cpu dvfs table found for chip speedo_id"
" %d and process_id %d: set CPU rate limit at %lu\n"
"tegra3_dvfs: WARNING!!!\n",
speedo_id, process_id, d->freqs[i-1] * d->freqs_mult);
*cpu_dvfs = d;
return (i - 1);
}
static int __init get_core_nominal_mv_index(int speedo_id)
{
int i, mv;
int core_edp_limit = get_core_edp();
/*
* Start with nominal level for the chips with this speedo_id. Then,
* make sure core nominal voltage is below edp limit for the board
* (if edp limit is set).
*/
BUG_ON(speedo_id >= ARRAY_SIZE(core_speedo_nominal_millivolts));
mv = core_speedo_nominal_millivolts[speedo_id];
if (core_edp_limit)
mv = min(mv, core_edp_limit);
/* Round nominal level down to the nearest core scaling step */
for (i = 0; i < MAX_DVFS_FREQS; i++) {
if ((core_millivolts[i] == 0) || (mv < core_millivolts[i]))
break;
}
if (i == 0) {
pr_err("tegra3_dvfs: unable to adjust core dvfs table to"
" nominal voltage %d\n", mv);
return -ENOSYS;
}
return (i - 1);
}
void __init tegra_soc_init_dvfs(void)
{
int cpu_speedo_id = tegra_cpu_speedo_id();
int soc_speedo_id = tegra_soc_speedo_id();
int cpu_process_id = tegra_cpu_process_id();
int core_process_id = tegra_core_process_id();
int i;
int core_nominal_mv_index;
int cpu_nominal_mv_index;
struct dvfs *cpu_dvfs = NULL;
#ifndef CONFIG_TEGRA_CORE_DVFS
tegra_dvfs_core_disabled = true;
#endif
#ifndef CONFIG_TEGRA_CPU_DVFS
tegra_dvfs_cpu_disabled = true;
#endif
/*
* Find nominal voltages for core (1st) and cpu rails before rail
* init. Nominal voltage index in the scaling ladder will also be
* used to determine max dvfs frequency for the respective domains.
*/
core_nominal_mv_index = get_core_nominal_mv_index(soc_speedo_id);
if (core_nominal_mv_index < 0) {
tegra3_dvfs_rail_vdd_core.disabled = true;
tegra_dvfs_core_disabled = true;
core_nominal_mv_index = 0;
}
tegra3_dvfs_rail_vdd_core.nominal_millivolts =
core_millivolts[core_nominal_mv_index];
cpu_nominal_mv_index = get_cpu_nominal_mv_index(
cpu_speedo_id, cpu_process_id, &cpu_dvfs);
BUG_ON((cpu_nominal_mv_index < 0) || (!cpu_dvfs));
tegra3_dvfs_rail_vdd_cpu.nominal_millivolts =
cpu_millivolts[cpu_nominal_mv_index];
/* Init rail structures and dependencies */
tegra_dvfs_init_rails(tegra3_dvfs_rails, ARRAY_SIZE(tegra3_dvfs_rails));
tegra_dvfs_add_relationships(tegra3_dvfs_relationships,
ARRAY_SIZE(tegra3_dvfs_relationships));
/* Search core dvfs table for speedo/process matching entries and
initialize dvfs-ed clocks */
for (i = 0; i < ARRAY_SIZE(core_dvfs_table); i++) {
struct dvfs *d = &core_dvfs_table[i];
if (!match_dvfs_one(d, soc_speedo_id, core_process_id))
continue;
init_dvfs_one(d, core_nominal_mv_index);
}
/* Initialize matching cpu dvfs entry already found when nominal
voltage was determined */
init_dvfs_one(cpu_dvfs, cpu_nominal_mv_index);
/* Finally disable dvfs on rails if necessary */
if (tegra_dvfs_core_disabled)
tegra_dvfs_rail_disable(&tegra3_dvfs_rail_vdd_core);
if (tegra_dvfs_cpu_disabled)
tegra_dvfs_rail_disable(&tegra3_dvfs_rail_vdd_cpu);
pr_info("tegra dvfs: VDD_CPU nominal %dmV, scaling %s\n",
tegra3_dvfs_rail_vdd_cpu.nominal_millivolts,
tegra_dvfs_cpu_disabled ? "disabled" : "enabled");
pr_info("tegra dvfs: VDD_CORE nominal %dmV, scaling %s\n",
tegra3_dvfs_rail_vdd_core.nominal_millivolts,
tegra_dvfs_core_disabled ? "disabled" : "enabled");
}
/*
* sysfs and dvfs interfaces to cap tegra core domains frequencies
*/
static DEFINE_MUTEX(core_cap_lock);
struct core_cap {
int refcnt;
int level;
};
static struct core_cap tegra3_core_cap;
static struct core_cap kdvfs_core_cap;
static struct core_cap user_core_cap;
static struct kobject *cap_kobj;
/* Arranged in order required for enabling/lowering the cap */
static struct {
const char *cap_name;
struct clk *cap_clk;
unsigned long freqs[MAX_DVFS_FREQS];
} core_cap_table[] = {
{ .cap_name = "cap.cbus" },
{ .cap_name = "cap.sclk" },
{ .cap_name = "cap.emc" },
};
static void core_cap_level_set(int level)
{
int i, j;
for (j = 0; j < ARRAY_SIZE(core_millivolts); j++) {
int v = core_millivolts[j];
if ((v == 0) || (level < v))
break;
}
j = (j == 0) ? 0 : j - 1;
level = core_millivolts[j];
if (level < tegra3_core_cap.level) {
for (i = 0; i < ARRAY_SIZE(core_cap_table); i++)
if (core_cap_table[i].cap_clk)
clk_set_rate(core_cap_table[i].cap_clk,
core_cap_table[i].freqs[j]);
} else if (level > tegra3_core_cap.level) {
for (i = ARRAY_SIZE(core_cap_table) - 1; i >= 0; i--)
if (core_cap_table[i].cap_clk)
clk_set_rate(core_cap_table[i].cap_clk,
core_cap_table[i].freqs[j]);
}
tegra3_core_cap.level = level;
}
static void core_cap_update(void)
{
int new_level = tegra3_dvfs_rail_vdd_core.max_millivolts;
if (kdvfs_core_cap.refcnt)
new_level = min(new_level, kdvfs_core_cap.level);
if (user_core_cap.refcnt)
new_level = min(new_level, user_core_cap.level);
if (tegra3_core_cap.level != new_level)
core_cap_level_set(new_level);
}
static void core_cap_enable(bool enable)
{
int i;
if (enable) {
tegra3_core_cap.refcnt++;
if (tegra3_core_cap.refcnt == 1)
for (i = 0; i < ARRAY_SIZE(core_cap_table); i++)
if (core_cap_table[i].cap_clk)
clk_enable(core_cap_table[i].cap_clk);
} else if (tegra3_core_cap.refcnt) {
tegra3_core_cap.refcnt--;
if (tegra3_core_cap.refcnt == 0)
for (i = ARRAY_SIZE(core_cap_table) - 1; i >= 0; i--)
if (core_cap_table[i].cap_clk)
clk_disable(core_cap_table[i].cap_clk);
}
core_cap_update();
}
static ssize_t
core_cap_state_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
return sprintf(buf, "%d (%d)\n", tegra3_core_cap.refcnt ? 1 : 0,
user_core_cap.refcnt ? 1 : 0);
}
static ssize_t
core_cap_state_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
int state;
if (sscanf(buf, "%d", &state) != 1)
return -1;
mutex_lock(&core_cap_lock);
if (state) {
user_core_cap.refcnt++;
if (user_core_cap.refcnt == 1)
core_cap_enable(true);
} else if (user_core_cap.refcnt) {
user_core_cap.refcnt--;
if (user_core_cap.refcnt == 0)
core_cap_enable(false);
}
mutex_unlock(&core_cap_lock);
return count;
}
static ssize_t
core_cap_level_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
return sprintf(buf, "%d (%d)\n", tegra3_core_cap.level,
user_core_cap.level);
}
static ssize_t
core_cap_level_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
int level;
if (sscanf(buf, "%d", &level) != 1)
return -1;
mutex_lock(&core_cap_lock);
user_core_cap.level = level;
core_cap_update();
mutex_unlock(&core_cap_lock);
return count;
}
static struct kobj_attribute cap_state_attribute =
__ATTR(core_cap_state, 0644, core_cap_state_show, core_cap_state_store);
static struct kobj_attribute cap_level_attribute =
__ATTR(core_cap_level, 0644, core_cap_level_show, core_cap_level_store);
const struct attribute *cap_attributes[] = {
&cap_state_attribute.attr,
&cap_level_attribute.attr,
NULL,
};
void tegra_dvfs_core_cap_enable(bool enable)
{
mutex_lock(&core_cap_lock);
if (enable) {
kdvfs_core_cap.refcnt++;
if (kdvfs_core_cap.refcnt == 1)
core_cap_enable(true);
} else if (kdvfs_core_cap.refcnt) {
kdvfs_core_cap.refcnt--;
if (kdvfs_core_cap.refcnt == 0)
core_cap_enable(false);
}
mutex_unlock(&core_cap_lock);
}
void tegra_dvfs_core_cap_level_set(int level)
{
mutex_lock(&core_cap_lock);
kdvfs_core_cap.level = level;
core_cap_update();
mutex_unlock(&core_cap_lock);
}
static int __init init_core_cap_one(struct clk *c, unsigned long *freqs)
{
int i, v, next_v;
unsigned long rate, next_rate = 0;
for (i = 0; i < ARRAY_SIZE(core_millivolts); i++) {
v = core_millivolts[i];
if (v == 0)
break;
for (;;) {
rate = next_rate;
next_rate = clk_round_rate(c, rate + 1000);
if (IS_ERR_VALUE(next_rate)) {
pr_debug("tegra3_dvfs: failed to round %s"
" rate %lu", c->name, rate);
return -EINVAL;
}
if (rate == next_rate)
break;
next_v = tegra_dvfs_predict_millivolts(
c->parent, next_rate);
if (IS_ERR_VALUE(next_rate)) {
pr_debug("tegra3_dvfs: failed to predict %s mV"
" for rate %lu", c->name, next_rate);
return -EINVAL;
}
if (next_v > v)
break;
}
if (rate == 0) {
rate = next_rate;
pr_warn("tegra3_dvfs: minimum %s cap %lu requires"
" %d mV", c->name, rate, next_v);
}
freqs[i] = rate;
next_rate = rate;
}
return 0;
}
static int __init tegra_dvfs_init_core_cap(void)
{
int i;
struct clk *c = NULL;
tegra3_core_cap.level = kdvfs_core_cap.level = user_core_cap.level =
tegra3_dvfs_rail_vdd_core.max_millivolts;
for (i = 0; i < ARRAY_SIZE(core_cap_table); i++) {
c = tegra_get_clock_by_name(core_cap_table[i].cap_name);
if (!c || !c->parent ||
init_core_cap_one(c, core_cap_table[i].freqs)) {
pr_err("tegra3_dvfs: failed to initialize %s frequency"
" table", core_cap_table[i].cap_name);
continue;
}
core_cap_table[i].cap_clk = c;
}
cap_kobj = kobject_create_and_add("tegra_cap", kernel_kobj);
if (!cap_kobj) {
pr_err("tegra3_dvfs: failed to create sysfs cap object");
return 0;
}
if (sysfs_create_files(cap_kobj, cap_attributes)) {
pr_err("tegra3_dvfs: failed to create sysfs cap interface");
return 0;
}
pr_info("tegra dvfs: tegra sysfs cap interface is initialized\n");
return 0;
}
late_initcall(tegra_dvfs_init_core_cap);
|