1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
|
/*
* arch/arm/mach-tegra/tegra_odm_fuses.c
*
* Copyright (c) 2010-2011, NVIDIA Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/*
* Fuses are one time programmable bits on the chip which are used by
* the chip manufacturer and device manufacturers to store chip/device
* configurations. The fuse bits are encapsulated in a 32 x 64 array.
* If a fuse bit is programmed to 1, it cannot be reverted to 0. Either
* another fuse bit has to be used for the same purpose or a new chip
* needs to be used.
*
* Each and every fuse word has its own shadow word which resides adjacent to
* a particular fuse word. e.g. Fuse words 0-1 form a fuse-shadow pair.
* So in theory we have only 32 fuse words to work with.
* The shadow fuse word is a mirror of the actual fuse word at all times
* and this is maintained while programming a particular fuse.
*/
#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/mutex.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/kobject.h>
#include <linux/regulator/consumer.h>
#include <linux/ctype.h>
#include <linux/wakelock.h>
#include <linux/clk.h>
#include <mach/tegra_odm_fuses.h>
#include <mach/iomap.h>
#include "fuse.h"
#define NFUSES 64
#define STATE_IDLE (0x4 << 16)
/* since fuse burning is irreversible, use this for testing */
#define ENABLE_FUSE_BURNING 1
/* fuse registers */
#define FUSE_CTRL 0x000
#define FUSE_REG_ADDR 0x004
#define FUSE_REG_READ 0x008
#define FUSE_REG_WRITE 0x00C
#define FUSE_TIME_PGM 0x01C
#define FUSE_PRIV2INTFC 0x020
#define FUSE_DIS_PGM 0x02C
#define FUSE_WRITE_ACCESS 0x030
#define FUSE_PWR_GOOD_SW 0x034
static struct kobject *fuse_kobj;
static ssize_t fuse_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf);
static ssize_t fuse_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count);
static struct kobj_attribute devkey_attr =
__ATTR(device_key, 0440, fuse_show, fuse_store);
static struct kobj_attribute jtagdis_attr =
__ATTR(jtag_disable, 0440, fuse_show, fuse_store);
static struct kobj_attribute odm_prod_mode_attr =
__ATTR(odm_production_mode, 0444, fuse_show, fuse_store);
static struct kobj_attribute sec_boot_dev_cfg_attr =
__ATTR(sec_boot_dev_cfg, 0440, fuse_show, fuse_store);
static struct kobj_attribute sec_boot_dev_sel_attr =
__ATTR(sec_boot_dev_sel, 0440, fuse_show, fuse_store);
static struct kobj_attribute sbk_attr =
__ATTR(secure_boot_key, 0440, fuse_show, fuse_store);
static struct kobj_attribute sw_rsvd_attr =
__ATTR(sw_reserved, 0440, fuse_show, fuse_store);
static struct kobj_attribute ignore_dev_sel_straps_attr =
__ATTR(ignore_dev_sel_straps, 0440, fuse_show, fuse_store);
static struct kobj_attribute odm_rsvd_attr =
__ATTR(odm_reserved, 0440, fuse_show, fuse_store);
static u32 fuse_pgm_data[NFUSES / 2];
static u32 fuse_pgm_mask[NFUSES / 2];
static u32 tmp_fuse_pgm_data[NFUSES / 2];
DEFINE_MUTEX(fuse_lock);
static struct fuse_data fuse_info;
struct regulator *vdd_fuse;
struct clk *clk_fuse;
#define FUSE_NAME_LEN 30
struct param_info {
u32 *addr;
int sz;
u32 start_off;
int start_bit;
int nbits;
int data_offset;
char sysfs_name[FUSE_NAME_LEN];
};
#if defined(CONFIG_ARCH_TEGRA_2x_SOC)
/* private_key4 */
#define DEVKEY_START_OFFSET 0x12
#define DEVKEY_START_BIT 8
/* arm_debug_dis */
#define JTAG_START_OFFSET 0x0
#define JTAG_START_BIT 24
/* security_mode */
#define ODM_PROD_START_OFFSET 0x0
#define ODM_PROD_START_BIT 23
/* boot_device_info */
#define SB_DEVCFG_START_OFFSET 0x14
#define SB_DEVCFG_START_BIT 8
/* reserved_sw[2:0] */
#define SB_DEVSEL_START_OFFSET 0x14
#define SB_DEVSEL_START_BIT 24
/* private_key0 -> private_key3 */
#define SBK_START_OFFSET 0x0A
#define SBK_START_BIT 8
/* reserved_sw[7:4] */
#define SW_RESERVED_START_OFFSET 0x14
#define SW_RESERVED_START_BIT 28
/* reserved_sw[3] */
#define IGNORE_DEVSEL_START_OFFSET 0x14
#define IGNORE_DEVSEL_START_BIT 27
/* reserved_odm0 -> reserved_odm7 */
#define ODM_RESERVED_DEVSEL_START_OFFSET 0x16
#define ODM_RESERVED_START_BIT 4
#elif defined(CONFIG_ARCH_TEGRA_3x_SOC)
/* private_key4 */
#define DEVKEY_START_OFFSET 0x16
#define DEVKEY_START_BIT 22
/* arm_debug_dis */
#define JTAG_START_OFFSET 0x0
#define JTAG_START_BIT 24
/* security_mode */
#define ODM_PROD_START_OFFSET 0x0
#define ODM_PROD_START_BIT 23
/* boot_device_info */
#define SB_DEVCFG_START_OFFSET 0x18
#define SB_DEVCFG_START_BIT 22
/* reserved_sw[2:0] */
#define SB_DEVSEL_START_OFFSET 0x1A
#define SB_DEVSEL_START_BIT 6
/* private_key0 -> private_key3 */
#define SBK_START_OFFSET 0x0E
#define SBK_START_BIT 22
/* reserved_sw[7:4] */
#define SW_RESERVED_START_OFFSET 0x1A
#define SW_RESERVED_START_BIT 10
/* reserved_sw[3] */
#define IGNORE_DEVSEL_START_OFFSET 0x1A
#define IGNORE_DEVSEL_START_BIT 9
/* reserved_odm0 -> reserved_odm7 */
#define ODM_RESERVED_DEVSEL_START_OFFSET 0x1A
#define ODM_RESERVED_START_BIT 14
#else
#define DEVKEY_START_OFFSET 0x2C
#define DEVKEY_START_BIT 0x07
#define JTAG_START_OFFSET 0x0
#define JTAG_START_BIT 0x3
#define ODM_PROD_START_OFFSET 0x0
#define ODM_PROD_START_BIT 0x4
#define SB_DEVCFG_START_OFFSET 0x2E
#define SB_DEVCFG_START_BIT 0x07
#define SB_DEVSEL_START_OFFSET 0x2E
#define SB_DEVSEL_START_BIT 0x23
#define SBK_START_OFFSET 0x24
#define SBK_START_BIT 0x07
#define SW_RESERVED_START_OFFSET 0x2E
#define SW_RESERVED_START_BIT 0x07
#define IGNORE_DEVSEL_START_OFFSET 0x2E
#define IGNORE_DEVSEL_START_BIT 0x26
#define ODM_RESERVED_DEVSEL_START_OFFSET 0X30
#define ODM_RESERVED_START_BIT 0X0
#endif
static struct param_info fuse_info_tbl[] = {
[DEVKEY] = {
.addr = &fuse_info.devkey,
.sz = sizeof(fuse_info.devkey),
.start_off = DEVKEY_START_OFFSET,
.start_bit = DEVKEY_START_BIT,
.nbits = 32,
.data_offset = 0,
.sysfs_name = "device_key",
},
[JTAG_DIS] = {
.addr = &fuse_info.jtag_dis,
.sz = sizeof(fuse_info.jtag_dis),
.start_off = JTAG_START_OFFSET,
.start_bit = JTAG_START_BIT,
.nbits = 1,
.data_offset = 1,
.sysfs_name = "jtag_disable",
},
[ODM_PROD_MODE] = {
.addr = &fuse_info.odm_prod_mode,
.sz = sizeof(fuse_info.odm_prod_mode),
.start_off = ODM_PROD_START_OFFSET,
.start_bit = ODM_PROD_START_BIT,
.nbits = 1,
.data_offset = 2,
.sysfs_name = "odm_production_mode",
},
[SEC_BOOT_DEV_CFG] = {
.addr = &fuse_info.bootdev_cfg,
.sz = sizeof(fuse_info.bootdev_cfg),
.start_off = SB_DEVCFG_START_OFFSET,
.start_bit = SB_DEVCFG_START_BIT,
.nbits = 16,
.data_offset = 3,
.sysfs_name = "sec_boot_dev_cfg",
},
[SEC_BOOT_DEV_SEL] = {
.addr = &fuse_info.bootdev_sel,
.sz = sizeof(fuse_info.bootdev_sel),
.start_off = SB_DEVSEL_START_OFFSET,
.start_bit = SB_DEVSEL_START_BIT,
.nbits = 3,
.data_offset = 4,
.sysfs_name = "sec_boot_dev_sel",
},
[SBK] = {
.addr = fuse_info.sbk,
.sz = sizeof(fuse_info.sbk),
.start_off = SBK_START_OFFSET,
.start_bit = SBK_START_BIT,
.nbits = 128,
.data_offset = 5,
.sysfs_name = "secure_boot_key",
},
[SW_RSVD] = {
.addr = &fuse_info.sw_rsvd,
.sz = sizeof(fuse_info.sw_rsvd),
.start_off = SW_RESERVED_START_OFFSET,
.start_bit = SW_RESERVED_START_BIT,
.nbits = 4,
.data_offset = 9,
.sysfs_name = "sw_reserved",
},
[IGNORE_DEV_SEL_STRAPS] = {
.addr = &fuse_info.ignore_devsel_straps,
.sz = sizeof(fuse_info.ignore_devsel_straps),
.start_off = IGNORE_DEVSEL_START_OFFSET,
.start_bit = IGNORE_DEVSEL_START_BIT,
.nbits = 1,
.data_offset = 10,
.sysfs_name = "ignore_dev_sel_straps",
},
[ODM_RSVD] = {
.addr = fuse_info.odm_rsvd,
.sz = sizeof(fuse_info.odm_rsvd),
.start_off = ODM_RESERVED_DEVSEL_START_OFFSET,
.start_bit = ODM_RESERVED_START_BIT,
.nbits = 256,
.data_offset = 11,
.sysfs_name = "odm_reserved",
},
[SBK_DEVKEY_STATUS] = {
.sz = SBK_DEVKEY_STATUS_SZ,
},
};
static void wait_for_idle(void)
{
u32 reg;
do {
udelay(1);
reg = tegra_fuse_readl(FUSE_CTRL);
} while ((reg & (0xF << 16)) != STATE_IDLE);
}
#define FUSE_READ 0x1
#define FUSE_WRITE 0x2
#define FUSE_SENSE 0x3
#define FUSE_CMD_MASK 0x3
static u32 fuse_cmd_read(u32 addr)
{
u32 reg;
wait_for_idle();
tegra_fuse_writel(addr, FUSE_REG_ADDR);
reg = tegra_fuse_readl(FUSE_CTRL);
reg &= ~FUSE_CMD_MASK;
reg |= FUSE_READ;
tegra_fuse_writel(reg, FUSE_CTRL);
wait_for_idle();
reg = tegra_fuse_readl(FUSE_REG_READ);
return reg;
}
static void fuse_cmd_write(u32 value, u32 addr)
{
u32 reg;
wait_for_idle();
tegra_fuse_writel(addr, FUSE_REG_ADDR);
tegra_fuse_writel(value, FUSE_REG_WRITE);
reg = tegra_fuse_readl(FUSE_CTRL);
reg &= ~FUSE_CMD_MASK;
reg |= FUSE_WRITE;
tegra_fuse_writel(reg, FUSE_CTRL);
wait_for_idle();
}
static void fuse_cmd_sense(void)
{
u32 reg;
wait_for_idle();
reg = tegra_fuse_readl(FUSE_CTRL);
reg &= ~FUSE_CMD_MASK;
reg |= FUSE_SENSE;
tegra_fuse_writel(reg, FUSE_CTRL);
wait_for_idle();
}
static void get_fuse(enum fuse_io_param io_param, u32 *out)
{
int start_bit = fuse_info_tbl[io_param].start_bit;
int nbits = fuse_info_tbl[io_param].nbits;
int offset = fuse_info_tbl[io_param].start_off;
u32 *dst = fuse_info_tbl[io_param].addr;
int dst_bit = 0;
int i;
u32 val;
int loops;
if (out)
dst = out;
do {
val = fuse_cmd_read(offset);
loops = min(nbits, 32 - start_bit);
for (i = 0; i < loops; i++) {
if (val & (BIT(start_bit + i)))
*dst |= BIT(dst_bit);
else
*dst &= ~BIT(dst_bit);
dst_bit++;
if (dst_bit == 32) {
dst++;
dst_bit = 0;
}
}
nbits -= loops;
offset += 2;
start_bit = 0;
} while (nbits > 0);
}
int tegra_fuse_read(enum fuse_io_param io_param, u32 *data, int size)
{
int nbits;
u32 sbk[4], devkey = 0;
if (IS_ERR_OR_NULL(clk_fuse)) {
pr_err("fuse read disabled");
return -ENODEV;
}
if (!data)
return -EINVAL;
if (size != fuse_info_tbl[io_param].sz) {
pr_err("%s: size mismatch(%d), %d vs %d\n", __func__,
(int)io_param, size, fuse_info_tbl[io_param].sz);
return -EINVAL;
}
mutex_lock(&fuse_lock);
clk_enable(clk_fuse);
fuse_cmd_sense();
if (io_param == SBK_DEVKEY_STATUS) {
*data = 0;
get_fuse(SBK, sbk);
get_fuse(DEVKEY, &devkey);
nbits = sizeof(sbk) * BITS_PER_BYTE;
if (find_first_bit((unsigned long *)sbk, nbits) != nbits)
*data = 1;
else if (devkey)
*data = 1;
} else {
get_fuse(io_param, data);
}
clk_disable(clk_fuse);
mutex_unlock(&fuse_lock);
return 0;
}
static bool fuse_odm_prod_mode(void)
{
u32 odm_prod_mode = 0;
clk_enable(clk_fuse);
get_fuse(ODM_PROD_MODE, &odm_prod_mode);
clk_disable(clk_fuse);
return (odm_prod_mode ? true : false);
}
static void set_fuse(enum fuse_io_param io_param, u32 *data)
{
int i, start_bit = fuse_info_tbl[io_param].start_bit;
int nbits = fuse_info_tbl[io_param].nbits, loops;
int offset = fuse_info_tbl[io_param].start_off >> 1;
int src_bit = 0;
u32 val;
do {
val = *data;
loops = min(nbits, 32 - start_bit);
for (i = 0; i < loops; i++) {
fuse_pgm_mask[offset] |= BIT(start_bit + i);
if (val & BIT(src_bit))
fuse_pgm_data[offset] |= BIT(start_bit + i);
else
fuse_pgm_data[offset] &= ~BIT(start_bit + i);
src_bit++;
if (src_bit == 32) {
data++;
val = *data;
src_bit = 0;
}
}
nbits -= loops;
offset++;
start_bit = 0;
} while (nbits > 0);
}
static void populate_fuse_arrs(struct fuse_data *info, u32 flags)
{
u32 *src = (u32 *)info;
int i;
memset(fuse_pgm_data, 0, sizeof(fuse_pgm_data));
memset(fuse_pgm_mask, 0, sizeof(fuse_pgm_mask));
if ((flags & FLAGS_ODMRSVD)) {
set_fuse(ODM_RSVD, info->odm_rsvd);
flags &= ~FLAGS_ODMRSVD;
}
/* do not burn any more if secure mode is set */
if (fuse_odm_prod_mode())
goto out;
for_each_set_bit(i, (unsigned long *)&flags, MAX_PARAMS)
set_fuse(i, src + fuse_info_tbl[i].data_offset);
out:
pr_debug("ready to program");
}
static void fuse_power_enable(void)
{
#if ENABLE_FUSE_BURNING
tegra_fuse_writel(0x1, FUSE_PWR_GOOD_SW);
udelay(1);
#endif
}
static void fuse_power_disable(void)
{
#if ENABLE_FUSE_BURNING
tegra_fuse_writel(0, FUSE_PWR_GOOD_SW);
udelay(1);
#endif
}
static void fuse_program_array(int pgm_cycles)
{
u32 reg, fuse_val[2];
u32 *data = tmp_fuse_pgm_data, addr = 0, *mask = fuse_pgm_mask;
int i = 0;
fuse_cmd_sense();
/* get the first 2 fuse bytes */
fuse_val[0] = fuse_cmd_read(0);
fuse_val[1] = fuse_cmd_read(1);
fuse_power_enable();
/*
* The fuse macro is a high density macro. Fuses are
* burned using an addressing mechanism, so no need to prepare
* the full list, but more write to control registers are needed.
* The only bit that can be written at first is bit 0, a special write
* protection bit by assumptions all other bits are at 0
*
* The programming pulse must have a precise width of
* [9000, 11000] ns.
*/
if (pgm_cycles > 0) {
reg = pgm_cycles;
tegra_fuse_writel(reg, FUSE_TIME_PGM);
}
fuse_val[0] = (0x1 & ~fuse_val[0]);
fuse_val[1] = (0x1 & ~fuse_val[1]);
fuse_cmd_write(fuse_val[0], 0);
fuse_cmd_write(fuse_val[1], 1);
fuse_power_disable();
/*
* this will allow programming of other fuses
* and the reading of the existing fuse values
*/
fuse_cmd_sense();
/* Clear out all bits that have already been burned or masked out */
memcpy(data, fuse_pgm_data, sizeof(fuse_pgm_data));
for (addr = 0; addr < NFUSES; addr += 2, data++, mask++) {
reg = fuse_cmd_read(addr);
pr_debug("%d: 0x%x 0x%x 0x%x\n", addr, (u32)(*data),
~reg, (u32)(*mask));
*data = (*data & ~reg) & *mask;
}
fuse_power_enable();
/*
* Finally loop on all fuses, program the non zero ones.
* Words 0 and 1 are written last and they contain control fuses. We
* need to invalidate after writing to a control word (with the exception
* of the master enable). This is also the reason we write them last.
*/
for (i = ARRAY_SIZE(fuse_pgm_data) - 1; i >= 0; i--) {
if (tmp_fuse_pgm_data[i]) {
fuse_cmd_write(tmp_fuse_pgm_data[i], i * 2);
fuse_cmd_write(tmp_fuse_pgm_data[i], (i * 2) + 1);
}
if (i < 2) {
wait_for_idle();
fuse_power_disable();
fuse_cmd_sense();
fuse_power_enable();
}
}
fuse_power_disable();
}
static int fuse_set(enum fuse_io_param io_param, u32 *param, int size)
{
int i, nwords = size / sizeof(u32);
u32 *data;
if (io_param > MAX_PARAMS)
return -EINVAL;
data = (u32*)kzalloc(size, GFP_KERNEL);
if (!data) {
pr_err("failed to alloc %d bytes\n", size);
return -ENOMEM;
}
get_fuse(io_param, data);
/* set only new fuse bits */
for (i = 0; i < nwords; i++) {
param[i] = (~data[i] & param[i]);
}
kfree(data);
return 0;
}
/*
* Function pointer to optional board specific function
*/
int (*tegra_fuse_regulator_en)(int);
EXPORT_SYMBOL(tegra_fuse_regulator_en);
#define CAR_OSC_CTRL 0x50
#define PMC_PLLP_OVERRIDE 0xF8
#define PMC_OSC_OVERRIDE BIT(0)
#define PMC_OSC_FREQ_MASK (BIT(2) | BIT(3))
#define PMC_OSC_FREQ_SHIFT 2
#define CAR_OSC_FREQ_SHIFT 30
#define FUSE_SENSE_DONE_BIT BIT(30)
#define START_DATA BIT(0)
#define SKIP_RAMREPAIR BIT(1)
#define FUSE_PGM_TIMEOUT_MS 50
#if defined(CONFIG_ARCH_TEGRA_2x_SOC)
/* cycles corresponding to 13MHz, 19.2MHz, 12MHz, 26MHz */
static int fuse_pgm_cycles[] = {130, 192, 120, 260};
#else
/* cycles corresponding to 13MHz, 16.8MHz, 19.2MHz, 38.4MHz, 12MHz, 48MHz, 26MHz */
static int fuse_pgm_cycles[] = {130, 168, 0, 0, 192, 384, 0, 0, 120, 480, 0, 0, 260};
#endif
int tegra_fuse_program(struct fuse_data *pgm_data, u32 flags)
{
u32 reg;
int i = 0;
int index;
int ret;
int delay = FUSE_PGM_TIMEOUT_MS;
if (!pgm_data || !flags) {
pr_err("invalid parameter");
return -EINVAL;
}
if (IS_ERR_OR_NULL(clk_fuse) ||
(!tegra_fuse_regulator_en && IS_ERR_OR_NULL(vdd_fuse))) {
pr_err("fuse write disabled");
return -ENODEV;
}
if (fuse_odm_prod_mode() && (flags != FLAGS_ODMRSVD)) {
pr_err("reserved odm fuses aren't allowed in secure mode");
return -EPERM;
}
if ((flags & FLAGS_ODM_PROD_MODE) &&
(flags & (FLAGS_SBK | FLAGS_DEVKEY))) {
pr_err("odm production mode and sbk/devkey not allowed");
return -EPERM;
}
clk_enable(clk_fuse);
/* check that fuse options write access hasn't been disabled */
mutex_lock(&fuse_lock);
reg = tegra_fuse_readl(FUSE_DIS_PGM);
mutex_unlock(&fuse_lock);
if (reg) {
pr_err("fuse programming disabled");
clk_disable(clk_fuse);
return -EACCES;
}
/* enable software writes to the fuse registers */
tegra_fuse_writel(0, FUSE_WRITE_ACCESS);
mutex_lock(&fuse_lock);
memcpy(&fuse_info, pgm_data, sizeof(fuse_info));
for_each_set_bit(i, (unsigned long *)&flags, MAX_PARAMS) {
fuse_set((u32)i, fuse_info_tbl[i].addr,
fuse_info_tbl[i].sz);
}
#if ENABLE_FUSE_BURNING
if (tegra_fuse_regulator_en)
ret = tegra_fuse_regulator_en(1);
else
ret = regulator_enable(vdd_fuse);
if (ret)
BUG_ON("regulator enable fail\n");
populate_fuse_arrs(&fuse_info, flags);
/* calculate the number of program cycles from the oscillator freq */
reg = readl(IO_ADDRESS(TEGRA_PMC_BASE) + PMC_PLLP_OVERRIDE);
if (reg & PMC_OSC_OVERRIDE) {
index = (reg & PMC_OSC_FREQ_MASK) >> PMC_OSC_FREQ_SHIFT;
} else {
reg = readl(IO_ADDRESS(TEGRA_CLK_RESET_BASE) + CAR_OSC_CTRL);
index = reg >> CAR_OSC_FREQ_SHIFT;
}
pr_debug("%s: use %d programming cycles\n", __func__, fuse_pgm_cycles[index]);
fuse_program_array(fuse_pgm_cycles[index]);
memset(&fuse_info, 0, sizeof(fuse_info));
if (tegra_fuse_regulator_en)
tegra_fuse_regulator_en(0);
else
regulator_disable(vdd_fuse);
#endif
mutex_unlock(&fuse_lock);
/* disable software writes to the fuse registers */
tegra_fuse_writel(1, FUSE_WRITE_ACCESS);
/* apply the fuse values immediately instead of resetting the chip */
fuse_cmd_sense();
tegra_fuse_writel(START_DATA | SKIP_RAMREPAIR, FUSE_PRIV2INTFC);
/* check sense and shift done in addition to IDLE */
do {
mdelay(1);
reg = tegra_fuse_readl(FUSE_CTRL);
reg &= (FUSE_SENSE_DONE_BIT | STATE_IDLE);
} while ((reg != (FUSE_SENSE_DONE_BIT | STATE_IDLE)) && (--delay > 0));
clk_disable(clk_fuse);
return ((delay > 0) ? 0 : -ETIMEDOUT);
}
static int fuse_name_to_param(const char *str)
{
int i;
for (i = DEVKEY; i < ARRAY_SIZE(fuse_info_tbl); i++) {
if (!strcmp(str, fuse_info_tbl[i].sysfs_name))
return i;
}
return -ENODATA;
}
static int char_to_xdigit(char c)
{
return (c>='0' && c<='9') ? c - '0' :
(c>='a' && c<='f') ? c - 'a' + 10 :
(c>='A' && c<='F') ? c - 'A' + 10 : -1;
}
#define CHK_ERR(x) \
{ \
if (x) \
{ \
pr_err("%s: sysfs_create_file fail(%d)!", __func__, x); \
return x; \
} \
}
static ssize_t fuse_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
enum fuse_io_param param = fuse_name_to_param(attr->attr.name);
int ret, i = 0;
int orig_count = count;
struct fuse_data data = {0};
u32 *raw_data = ((u32 *)&data) + fuse_info_tbl[param].data_offset;
u8 *raw_byte_data = (u8 *)raw_data;
struct wake_lock fuse_wk_lock;
if ((param == -1) || (param == -ENODATA)) {
pr_err("%s: invalid fuse\n", __func__);
return -EINVAL;
}
if (fuse_odm_prod_mode()) {
pr_err("%s: device locked. odm fuse already blown\n", __func__);
return -EPERM;
}
count--;
if (DIV_ROUND_UP(count, 2) > fuse_info_tbl[param].sz) {
pr_err("%s: fuse parameter too long, should be %d character(s)\n",
__func__, fuse_info_tbl[param].sz * 2);
return -EINVAL;
}
/* see if the string has 0x/x at the start */
if (*buf == 'x') {
count -= 1;
buf++;
} else if (*(buf + 1) == 'x') {
count -= 2;
buf += 2;
}
/* wakelock to avoid device powering down while programming */
wake_lock_init(&fuse_wk_lock, WAKE_LOCK_SUSPEND, "fuse_wk_lock");
wake_lock(&fuse_wk_lock);
/* we need to fit each character into a single nibble */
raw_byte_data += DIV_ROUND_UP(count, 2) - 1;
/* in case of odd number of writes, write the first one here */
if (count & BIT(0)) {
*raw_byte_data = char_to_xdigit(*buf);
buf++;
raw_byte_data--;
count--;
}
for (i = 1; i <= count; i++, buf++) {
if (i & BIT(0)) {
*raw_byte_data = char_to_xdigit(*buf);
} else {
*raw_byte_data <<= 4;
*raw_byte_data |= char_to_xdigit(*buf);
raw_byte_data--;
}
}
ret = tegra_fuse_program(&data, BIT(param));
if (ret) {
pr_err("%s: fuse program fail(%d)\n", __func__, ret);
orig_count = ret;
goto done;
}
/* if odm prodn mode fuse is burnt, change file permissions to 0440 */
if (param == ODM_PROD_MODE) {
CHK_ERR(sysfs_chmod_file(kobj, &attr->attr, 0440));
CHK_ERR(sysfs_chmod_file(kobj, &devkey_attr.attr, 0440));
CHK_ERR(sysfs_chmod_file(kobj, &jtagdis_attr.attr, 0440));
CHK_ERR(sysfs_chmod_file(kobj, &sec_boot_dev_cfg_attr.attr, 0440));
CHK_ERR(sysfs_chmod_file(kobj, &sec_boot_dev_sel_attr.attr, 0440));
CHK_ERR(sysfs_chmod_file(kobj, &sbk_attr.attr, 0440));
CHK_ERR(sysfs_chmod_file(kobj, &sw_rsvd_attr.attr, 0440));
CHK_ERR(sysfs_chmod_file(kobj, &ignore_dev_sel_straps_attr.attr, 0440));
CHK_ERR(sysfs_chmod_file(kobj, &odm_rsvd_attr.attr, 0440));
}
done:
wake_unlock(&fuse_wk_lock);
wake_lock_destroy(&fuse_wk_lock);
return orig_count;
}
static ssize_t fuse_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
enum fuse_io_param param = fuse_name_to_param(attr->attr.name);
u32 data[8];
char str[9]; /* extra byte for null character */
int ret, i;
if ((param == -1) || (param == -ENODATA)) {
pr_err("%s: invalid fuse\n", __func__);
return -EINVAL;
}
if ((param == SBK) && fuse_odm_prod_mode()) {
pr_err("device locked. sbk read not allowed\n");
return 0;
}
memset(data, 0, sizeof(data));
ret = tegra_fuse_read(param, data, fuse_info_tbl[param].sz);
if (ret) {
pr_err("%s: read fail(%d)\n", __func__, ret);
return ret;
}
strcpy(buf, "0x");
for (i = (fuse_info_tbl[param].sz/sizeof(u32)) - 1; i >= 0 ; i--) {
sprintf(str, "%08x", data[i]);
strcat(buf, str);
}
strcat(buf, "\n");
return strlen(buf);
}
static int __init tegra_fuse_program_init(void)
{
if (!tegra_fuse_regulator_en) {
/* get vdd_fuse regulator */
vdd_fuse = regulator_get(NULL, "vdd_fuse");
if (IS_ERR_OR_NULL(vdd_fuse))
pr_err("%s: no vdd_fuse. fuse write disabled\n", __func__);
}
clk_fuse = clk_get_sys("fuse-tegra", "fuse_burn");
if (IS_ERR_OR_NULL(clk_fuse)) {
pr_err("%s: no clk_fuse. fuse read/write disabled\n", __func__);
if (!IS_ERR_OR_NULL(vdd_fuse)) {
regulator_put(vdd_fuse);
vdd_fuse = NULL;
}
return -ENODEV;
}
fuse_kobj = kobject_create_and_add("fuse", firmware_kobj);
if (!fuse_kobj) {
pr_err("%s: fuse_kobj create fail\n", __func__);
regulator_put(vdd_fuse);
clk_put(clk_fuse);
return -ENODEV;
}
mutex_init(&fuse_lock);
/* change fuse file permissions, if ODM production fuse is not blown */
if (!fuse_odm_prod_mode())
{
devkey_attr.attr.mode = 0640;
jtagdis_attr.attr.mode = 0640;
sec_boot_dev_cfg_attr.attr.mode = 0640;
sec_boot_dev_sel_attr.attr.mode = 0640;
sbk_attr.attr.mode = 0640;
sw_rsvd_attr.attr.mode = 0640;
ignore_dev_sel_straps_attr.attr.mode = 0640;
odm_rsvd_attr.attr.mode = 0640;
odm_prod_mode_attr.attr.mode = 0644;
}
CHK_ERR(sysfs_create_file(fuse_kobj, &odm_prod_mode_attr.attr));
CHK_ERR(sysfs_create_file(fuse_kobj, &devkey_attr.attr));
CHK_ERR(sysfs_create_file(fuse_kobj, &jtagdis_attr.attr));
CHK_ERR(sysfs_create_file(fuse_kobj, &sec_boot_dev_cfg_attr.attr));
CHK_ERR(sysfs_create_file(fuse_kobj, &sec_boot_dev_sel_attr.attr));
CHK_ERR(sysfs_create_file(fuse_kobj, &sbk_attr.attr));
CHK_ERR(sysfs_create_file(fuse_kobj, &sw_rsvd_attr.attr));
CHK_ERR(sysfs_create_file(fuse_kobj, &ignore_dev_sel_straps_attr.attr));
CHK_ERR(sysfs_create_file(fuse_kobj, &odm_rsvd_attr.attr));
return 0;
}
static void __exit tegra_fuse_program_exit(void)
{
fuse_power_disable();
if (!IS_ERR_OR_NULL(vdd_fuse))
regulator_put(vdd_fuse);
if (!IS_ERR_OR_NULL(clk_fuse))
clk_put(clk_fuse);
sysfs_remove_file(fuse_kobj, &odm_prod_mode_attr.attr);
sysfs_remove_file(fuse_kobj, &devkey_attr.attr);
sysfs_remove_file(fuse_kobj, &jtagdis_attr.attr);
sysfs_remove_file(fuse_kobj, &sec_boot_dev_cfg_attr.attr);
sysfs_remove_file(fuse_kobj, &sec_boot_dev_sel_attr.attr);
sysfs_remove_file(fuse_kobj, &sbk_attr.attr);
sysfs_remove_file(fuse_kobj, &sw_rsvd_attr.attr);
sysfs_remove_file(fuse_kobj, &ignore_dev_sel_straps_attr.attr);
sysfs_remove_file(fuse_kobj, &odm_rsvd_attr.attr);
kobject_del(fuse_kobj);
}
late_initcall(tegra_fuse_program_init);
module_exit(tegra_fuse_program_exit);
|