1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
|
/*
* simple driver for PWM (Pulse Width Modulator) controller
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Derived from pxa PWM driver by eric miao <eric.miao@marvell.com>
* Copyright 2009-2012 Freescale Semiconductor, Inc.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/pwm.h>
#include <linux/fsl_devices.h>
#include <mach/hardware.h>
/* i.MX1 and i.MX21 share the same PWM function block: */
#define MX1_PWMC 0x00 /* PWM Control Register */
#define MX1_PWMS 0x04 /* PWM Sample Register */
#define MX1_PWMP 0x08 /* PWM Period Register */
/* i.MX27, i.MX31, i.MX35 share the same PWM function block: */
#define MX3_PWMCR 0x00 /* PWM Control Register */
#define MX3_PWMSAR 0x0C /* PWM Sample Register */
#define MX3_PWMPR 0x10 /* PWM Period Register */
#define MX3_PWMCR_PRESCALER(x) (((x - 1) & 0xFFF) << 4)
#define MX3_PWMCR_CLKSRC_IPG_HIGH (2 << 16)
#define MX3_PWMCR_CLKSRC_IPG (1 << 16)
#define MX3_PWMCR_EN (1 << 0)
#define MX3_PWMCR_STOPEN (1 << 25)
#define MX3_PWMCR_DOZEEN (1 << 24)
#define MX3_PWMCR_WAITEN (1 << 23)
#define MX3_PWMCR_DBGEN (1 << 22)
#define MX3_PWMCR_CLKSRC_IPG (1 << 16)
#define MX3_PWMCR_CLKSRC_IPG_32k (3 << 16)
/*
* Vybrid(CONFIG_ARCH_MVF) FlexTimer PWM registers defination
*/
#define MVF_PWM_FTM_SC 0x00 /* status and controls */
#define MVF_PWM_FTM_CNT 0x04 /* counter */
#define MVF_PWM_FTM_MOD 0x08 /* modulo */
#define MVF_PWM_FTM_C0SC 0x0C /* channel(0) status and control */
#define MVF_PWM_FTM_C0V 0x10 /* channel(0) value */
#define MVF_PWM_FTM_C1SC 0x14 /* channel(1) */
#define MVF_PWM_FTM_C1V 0x18 /* channel(1) */
#define MVF_PWM_FTM_C2SC 0x1C /* channel(2) */
#define MVF_PWM_FTM_C2V 0x20 /* channel(2) */
#define MVF_PWM_FTM_C3SC 0x24 /* channel(3) */
#define MVF_PWM_FTM_C3V 0x28 /* channel(3) */
#define MVF_PWM_FTM_C4SC 0x2C /* channel(4) */
#define MVF_PWM_FTM_C4V 0x30 /* channel(4) */
#define MVF_PWM_FTM_C5SC 0x34 /* channel(5) */
#define MVF_PWM_FTM_C5V 0x38 /* channel(5) */
#define MVF_PWM_FTM_C6SC 0x3C /* channel(6) */
#define MVF_PWM_FTM_C6V 0x40 /* channel(6) */
#define MVF_PWM_FTM_C7SC 0x44 /* channel(7) */
#define MVF_PWM_FTM_C7V 0x48 /* channel(7) */
#define MVF_PWM_FTM_CNTIN 0x4C /* counter initial value */
#define MVF_PWM_FTM_STATUS 0x50 /* capture and compare status */
#define MVF_PWM_FTM_MODE 0x54 /* mode select */
#define MVF_PWM_FTM_SYNC 0x58 /* synchronization */
#define MVF_PWM_FTM_OUTINIT 0x5C /* initial state for channels output */
#define MVF_PWM_FTM_OUTMASK 0x60 /* output mask */
#define MVF_PWM_FTM_COMBINE 0x64 /* function for linked channels */
#define MVF_PWM_FTM_DEADTIME 0x68 /* deadtime insertion control */
#define MVF_PWM_FTM_EXTTRIG 0x6C /* external trigger */
#define MVF_PWM_FTM_POL 0x70 /* channels polarity */
#define MVF_PWM_FTM_FMS 0x74 /* fault mode status */
#define MVF_PWM_FTM_FILTER 0x78 /* input capture filter control */
#define MVF_PWM_FTM_FLTCTRL 0x7C /* fault control */
#define MVF_PWM_FTM_QDCTRL 0x80 /* quadrature decoder ctrl and status */
#define MVF_PWM_FTM_CONF 0x84 /* configuration */
#define MVF_PWM_FTM_FLTPOL 0x88 /* fault input polarity */
#define MVF_PWM_FTM_SYNCONF 0x8C /* synchronization configuration */
#define MVF_PWM_FTM_INVCTRL 0x90 /* inverting control */
#define MVF_PWM_FTM_SWOCTRL 0x94 /* software output control */
#define MVF_PWM_FTM_PWMLOAD 0x98 /* PWM load */
#define PWM_TYPE_EPWM 0x01 /* Edge-aligned pwm */
#define PWM_TYPE_CPWM 0x02 /* Center-aligned pwm */
#define PWM_FTMSC_CPWMS (0x01 << 5)
#define PWM_FTMSC_CLK_MASK 0x3
#define PWM_FTMSC_CLK_OFFSET 3
#define PWM_FTMSC_CLKSYS (0x1 << 3)
#define PWM_FTMSC_CLKFIX (0x2 << 3)
#define PWM_FTMSC_CLKEXT (0x3 << 3)
#define PWM_FTMSC_PS_MASK 0x7
#define PWM_FTMSC_PS_OFFSET 0
#define PWM_FTMSC_PS1 0x0
#define PWM_FTMSC_PS2 0x1
#define PWM_FTMSC_PS4 0x2
#define PWM_FTMSC_PS8 0x3
#define PWM_FTMSC_PS16 0x4
#define PWM_FTMSC_PS32 0x5
#define PWM_FTMSC_PS64 0x6
#define PWM_FTMSC_PS128 0x7
#define PWM_FTMCnSC_MSB (0x1 << 5)
#define PWM_FTMCnSC_MSA (0x1 << 4)
#define PWM_FTMCnSC_ELSB (0x1 << 3)
#define PWM_FTMCnSC_ELSA (0x1 << 2)
#define FTM_PWMMODE (PWM_FTMCnSC_MSB)
#define FTM_PWM_HIGH_TRUE (PWM_FTMCnSC_ELSB)
#define FTM_PWM_LOW_TRUE (PWM_FTMCnSC_ELSA)
#define PWM_FTMMODE_FTMEN 0x01
#define PWM_FTMMODE_INIT 0x02
#define PWM_FTMMODE_PWMSYNC (0x01 << 3)
struct pwm_device {
struct list_head node;
struct platform_device *pdev;
const char *label;
struct clk *clk;
int clk_enabled;
void __iomem *mmio_base;
unsigned int use_count;
unsigned int pwm_id;
int pwmo_invert;
unsigned int cpwm; /* CPWM mode */
unsigned int clk_ps; /* clock prescaler:1/2/4/8/16/32/64/128 */
void (*enable_pwm_pad)(void);
void (*disable_pwm_pad)(void);
};
int pwm_config(struct pwm_device *pwm, int duty_ns, int period_ns)
{
if (pwm == NULL || period_ns == 0 || duty_ns > period_ns)
return -EINVAL;
if (!(cpu_is_mx1() || cpu_is_mx21() || cpu_is_mvf())) {
unsigned long long c;
unsigned long period_cycles, duty_cycles, prescale;
u32 cr;
if (pwm->pwmo_invert)
duty_ns = period_ns - duty_ns;
c = clk_get_rate(pwm->clk);
c = c * period_ns;
do_div(c, 1000000000);
period_cycles = c;
prescale = period_cycles / 0x10000 + 1;
period_cycles /= prescale;
/* the chip document says the counter counts up to
* period_cycles + 1 and then is reset to 0, so the
* actual period of the PWM wave is period_cycles + 2
*/
c = (unsigned long long)(period_cycles + 2) * duty_ns;
do_div(c, period_ns);
duty_cycles = c;
writel(duty_cycles, pwm->mmio_base + MX3_PWMSAR);
writel(period_cycles, pwm->mmio_base + MX3_PWMPR);
cr = MX3_PWMCR_PRESCALER(prescale) |
MX3_PWMCR_STOPEN | MX3_PWMCR_DOZEEN |
MX3_PWMCR_WAITEN | MX3_PWMCR_DBGEN;
if (cpu_is_mx25())
cr |= MX3_PWMCR_CLKSRC_IPG;
else
cr |= MX3_PWMCR_CLKSRC_IPG_HIGH;
writel(cr, pwm->mmio_base + MX3_PWMCR);
} else if (cpu_is_mx1() || cpu_is_mx21()) {
/* The PWM subsystem allows for exact frequencies. However,
* I cannot connect a scope on my device to the PWM line and
* thus cannot provide the program the PWM controller
* exactly. Instead, I'm relying on the fact that the
* Bootloader (u-boot or WinCE+haret) has programmed the PWM
* function group already. So I'll just modify the PWM sample
* register to follow the ratio of duty_ns vs. period_ns
* accordingly.
*
* This is good enough for programming the brightness of
* the LCD backlight.
*
* The real implementation would divide PERCLK[0] first by
* both the prescaler (/1 .. /128) and then by CLKSEL
* (/2 .. /16).
*/
u32 max = readl(pwm->mmio_base + MX1_PWMP);
u32 p;
if (pwm->pwmo_invert)
duty_ns = period_ns - duty_ns;
p = max * duty_ns / period_ns;
writel(max - p, pwm->mmio_base + MX1_PWMS);
} else if (cpu_is_mvf()) {
unsigned long long c;
unsigned long period_cycles, duty_cycles;
/* FTM clock source prescaler */
u32 ps = (0x1 << pwm->clk_ps) * 1000;
/* IPS bus clock source */
c = clk_get_rate(pwm->clk) / 1000000UL;
c = c * period_ns;
do_div(c, ps);
period_cycles = (unsigned long)c;
c = clk_get_rate(pwm->clk) / 1000000UL;
c = c * duty_ns;
do_div(c, ps);
duty_cycles = (unsigned long)c;
if (period_cycles > 0xFFFF) {
dev_warn(&pwm->pdev->dev,
"required PWM period cycles(%lu) overflow"
"16-bits counter!\n", period_cycles);
period_cycles = 0xFFFF;
}
if (duty_cycles >= 0xFFFF) {
dev_warn(&pwm->pdev->dev,
"required PWM duty cycles(%lu) overflow"
"16-bits counter!\n", duty_cycles);
duty_cycles = 0xFFFF - 1;
}
if (duty_cycles >= period_cycles)
duty_cycles = (period_cycles/10) * 9;
/* configure channel to pwm mode */
/* enable FTMEN */
if (pwm->cpwm) {
u32 reg;
reg = __raw_readl(pwm->mmio_base + MVF_PWM_FTM_SC);
reg |= 0x01 << 5;
__raw_writel(reg, pwm->mmio_base + MVF_PWM_FTM_SC);
}
__raw_writel(FTM_PWMMODE | FTM_PWM_HIGH_TRUE,
pwm->mmio_base + MVF_PWM_FTM_C0SC);
__raw_writel(FTM_PWMMODE | FTM_PWM_HIGH_TRUE,
pwm->mmio_base + MVF_PWM_FTM_C1SC);
__raw_writel(FTM_PWMMODE | FTM_PWM_HIGH_TRUE,
pwm->mmio_base + MVF_PWM_FTM_C2SC);
__raw_writel(FTM_PWMMODE | FTM_PWM_HIGH_TRUE,
pwm->mmio_base + MVF_PWM_FTM_C3SC);
__raw_writel(0xF0, pwm->mmio_base + MVF_PWM_FTM_OUTMASK);
__raw_writel(0x0F, pwm->mmio_base + MVF_PWM_FTM_OUTINIT);
__raw_writel(0x0, pwm->mmio_base + MVF_PWM_FTM_CNTIN);
if (pwm->cpwm) {
/*
* Center-aligned PWM:
* period = 2*(MOD - CNTIN)
* duty = 2*(CnV - CNTIN)
*/
__raw_writel(period_cycles / 2,
pwm->mmio_base + MVF_PWM_FTM_MOD);
__raw_writel(duty_cycles / 2,
pwm->mmio_base + MVF_PWM_FTM_C0V);
__raw_writel(duty_cycles / 2,
pwm->mmio_base + MVF_PWM_FTM_C1V);
__raw_writel(duty_cycles / 2,
pwm->mmio_base + MVF_PWM_FTM_C2V);
__raw_writel(duty_cycles / 2,
pwm->mmio_base + MVF_PWM_FTM_C3V);
} else {
/* Edge-aligend PWM
* period = MOD - CNTIN + 1
* duty = CnV - CNTIN
*/
__raw_writel(period_cycles - 1,
pwm->mmio_base + MVF_PWM_FTM_MOD);
__raw_writel(duty_cycles,
pwm->mmio_base + MVF_PWM_FTM_C0V);
__raw_writel(duty_cycles,
pwm->mmio_base + MVF_PWM_FTM_C1V);
__raw_writel(duty_cycles,
pwm->mmio_base + MVF_PWM_FTM_C2V);
__raw_writel(duty_cycles,
pwm->mmio_base + MVF_PWM_FTM_C3V);
}
} else {
BUG();
}
return 0;
}
EXPORT_SYMBOL(pwm_config);
int pwm_enable(struct pwm_device *pwm)
{
unsigned long reg;
int rc = 0;
if (!pwm->clk_enabled) {
rc = clk_enable(pwm->clk);
if (!rc)
pwm->clk_enabled = 1;
}
if (cpu_is_mvf()) {
reg = __raw_readl(pwm->mmio_base + MVF_PWM_FTM_SC);
reg &= ~((PWM_FTMSC_CLK_MASK << PWM_FTMSC_CLK_OFFSET) |
(PWM_FTMSC_PS_MASK << PWM_FTMSC_PS_OFFSET));
/* select IPS bus clock source
* prescale 128
*/
reg |= (PWM_FTMSC_CLKSYS | pwm->clk_ps);
__raw_writel(reg, pwm->mmio_base + MVF_PWM_FTM_SC);
} else {
reg = readl(pwm->mmio_base + MX3_PWMCR);
reg |= MX3_PWMCR_EN;
writel(reg, pwm->mmio_base + MX3_PWMCR);
if (pwm->enable_pwm_pad)
pwm->enable_pwm_pad();
}
return rc;
}
EXPORT_SYMBOL(pwm_enable);
void pwm_disable(struct pwm_device *pwm)
{
u32 reg;
if (cpu_is_mvf()) {
__raw_writel(0xFF, pwm->mmio_base + MVF_PWM_FTM_OUTMASK);
reg = __raw_readl(pwm->mmio_base + MVF_PWM_FTM_SC);
reg &= ~(PWM_FTMSC_CLK_MASK << PWM_FTMSC_CLK_OFFSET);
__raw_writel(reg, pwm->mmio_base + MVF_PWM_FTM_SC);
} else {
if (pwm->disable_pwm_pad)
pwm->disable_pwm_pad();
writel(0, pwm->mmio_base + MX3_PWMCR);
}
if (pwm->clk_enabled) {
clk_disable(pwm->clk);
pwm->clk_enabled = 0;
}
}
EXPORT_SYMBOL(pwm_disable);
static DEFINE_MUTEX(pwm_lock);
static LIST_HEAD(pwm_list);
struct pwm_device *pwm_request(int pwm_id, const char *label)
{
struct pwm_device *pwm;
int found = 0;
mutex_lock(&pwm_lock);
list_for_each_entry(pwm, &pwm_list, node) {
if (pwm->pwm_id == pwm_id) {
found = 1;
break;
}
}
if (found) {
if (pwm->use_count == 0) {
pwm->use_count++;
pwm->label = label;
} else
pwm = ERR_PTR(-EBUSY);
} else
pwm = ERR_PTR(-ENOENT);
mutex_unlock(&pwm_lock);
return pwm;
}
EXPORT_SYMBOL(pwm_request);
void pwm_free(struct pwm_device *pwm)
{
mutex_lock(&pwm_lock);
if (pwm->use_count) {
pwm->use_count--;
pwm->label = NULL;
} else
pr_warning("PWM device already freed\n");
mutex_unlock(&pwm_lock);
}
EXPORT_SYMBOL(pwm_free);
static int __devinit mxc_pwm_probe(struct platform_device *pdev)
{
struct pwm_device *pwm;
struct resource *r;
struct mxc_pwm_platform_data *plat_data = pdev->dev.platform_data;
int ret = 0;
pwm = kzalloc(sizeof(struct pwm_device), GFP_KERNEL);
if (pwm == NULL) {
dev_err(&pdev->dev, "failed to allocate memory\n");
return -ENOMEM;
}
pwm->clk = clk_get(&pdev->dev, "pwm");
if (IS_ERR(pwm->clk)) {
ret = PTR_ERR(pwm->clk);
goto err_free;
}
pwm->clk_enabled = 0;
pwm->use_count = 0;
pwm->pwm_id = pdev->id;
pwm->pdev = pdev;
/* default select IPS bus clock, and divided by 128 for MVF platform */
pwm->clk_ps = PWM_FTMSC_PS128;
#ifdef CONFIG_MXC_PWM_CPWM
pwm->cpwm = 1;
#endif
if (plat_data != NULL) {
pwm->pwmo_invert = plat_data->pwmo_invert;
pwm->enable_pwm_pad = plat_data->enable_pwm_pad;
pwm->disable_pwm_pad = plat_data->disable_pwm_pad;
}
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (r == NULL) {
dev_err(&pdev->dev, "no memory resource defined\n");
ret = -ENODEV;
goto err_free_clk;
}
r = request_mem_region(r->start, r->end - r->start + 1, pdev->name);
if (r == NULL) {
dev_err(&pdev->dev, "failed to request memory resource\n");
ret = -EBUSY;
goto err_free_clk;
}
pwm->mmio_base = ioremap(r->start, r->end - r->start + 1);
if (pwm->mmio_base == NULL) {
dev_err(&pdev->dev, "failed to ioremap() registers\n");
ret = -ENODEV;
goto err_free_mem;
}
mutex_lock(&pwm_lock);
list_add_tail(&pwm->node, &pwm_list);
mutex_unlock(&pwm_lock);
platform_set_drvdata(pdev, pwm);
return 0;
err_free_mem:
release_mem_region(r->start, r->end - r->start + 1);
err_free_clk:
clk_put(pwm->clk);
err_free:
kfree(pwm);
return ret;
}
static int __devexit mxc_pwm_remove(struct platform_device *pdev)
{
struct pwm_device *pwm;
struct resource *r;
pwm = platform_get_drvdata(pdev);
if (pwm == NULL)
return -ENODEV;
mutex_lock(&pwm_lock);
list_del(&pwm->node);
mutex_unlock(&pwm_lock);
iounmap(pwm->mmio_base);
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
release_mem_region(r->start, r->end - r->start + 1);
clk_put(pwm->clk);
kfree(pwm);
return 0;
}
static struct platform_driver mxc_pwm_driver = {
.driver = {
.name = "mxc_pwm",
},
.probe = mxc_pwm_probe,
.remove = __devexit_p(mxc_pwm_remove),
};
static int __init mxc_pwm_init(void)
{
return platform_driver_register(&mxc_pwm_driver);
}
arch_initcall(mxc_pwm_init);
static void __exit mxc_pwm_exit(void)
{
platform_driver_unregister(&mxc_pwm_driver);
}
module_exit(mxc_pwm_exit);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
|