1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|
/*
* Copyright (C) 2013 ARM Ltd.
* Copyright (C) 2013 Linaro.
*
* This code is based on glibc cortex strings work originally authored by Linaro
* and re-licensed under GPLv2 for the Linux kernel. The original code can
* be found @
*
* http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/
* files/head:/src/aarch64/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/linkage.h>
#include <asm/assembler.h>
#include <asm/cache.h>
/*
* Fill in the buffer with character c (alignment handled by the hardware)
*
* Parameters:
* x0 - buf
* x1 - c
* x2 - n
* Returns:
* x0 - buf
*/
dstin .req x0
val .req w1
count .req x2
tmp1 .req x3
tmp1w .req w3
tmp2 .req x4
tmp2w .req w4
zva_len_x .req x5
zva_len .req w5
zva_bits_x .req x6
A_l .req x7
A_lw .req w7
dst .req x8
tmp3w .req w9
tmp3 .req x9
.weak memset
ENTRY(__memset)
ENTRY(memset)
mov dst, dstin /* Preserve return value. */
and A_lw, val, #255
orr A_lw, A_lw, A_lw, lsl #8
orr A_lw, A_lw, A_lw, lsl #16
orr A_l, A_l, A_l, lsl #32
cmp count, #15
b.hi .Lover16_proc
/*All store maybe are non-aligned..*/
tbz count, #3, 1f
str A_l, [dst], #8
1:
tbz count, #2, 2f
str A_lw, [dst], #4
2:
tbz count, #1, 3f
strh A_lw, [dst], #2
3:
tbz count, #0, 4f
strb A_lw, [dst]
4:
ret
.Lover16_proc:
/*Whether the start address is aligned with 16.*/
neg tmp2, dst
ands tmp2, tmp2, #15
b.eq .Laligned
/*
* The count is not less than 16, we can use stp to store the start 16 bytes,
* then adjust the dst aligned with 16.This process will make the current
* memory address at alignment boundary.
*/
stp A_l, A_l, [dst] /*non-aligned store..*/
/*make the dst aligned..*/
sub count, count, tmp2
add dst, dst, tmp2
.Laligned:
cbz A_l, .Lzero_mem
.Ltail_maybe_long:
cmp count, #64
b.ge .Lnot_short
.Ltail63:
ands tmp1, count, #0x30
b.eq 3f
cmp tmp1w, #0x20
b.eq 1f
b.lt 2f
stp A_l, A_l, [dst], #16
1:
stp A_l, A_l, [dst], #16
2:
stp A_l, A_l, [dst], #16
/*
* The last store length is less than 16,use stp to write last 16 bytes.
* It will lead some bytes written twice and the access is non-aligned.
*/
3:
ands count, count, #15
cbz count, 4f
add dst, dst, count
stp A_l, A_l, [dst, #-16] /* Repeat some/all of last store. */
4:
ret
/*
* Critical loop. Start at a new cache line boundary. Assuming
* 64 bytes per line, this ensures the entire loop is in one line.
*/
.p2align L1_CACHE_SHIFT
.Lnot_short:
sub dst, dst, #16/* Pre-bias. */
sub count, count, #64
1:
stp A_l, A_l, [dst, #16]
stp A_l, A_l, [dst, #32]
stp A_l, A_l, [dst, #48]
stp A_l, A_l, [dst, #64]!
subs count, count, #64
b.ge 1b
tst count, #0x3f
add dst, dst, #16
b.ne .Ltail63
.Lexitfunc:
ret
/*
* For zeroing memory, check to see if we can use the ZVA feature to
* zero entire 'cache' lines.
*/
.Lzero_mem:
cmp count, #63
b.le .Ltail63
/*
* For zeroing small amounts of memory, it's not worth setting up
* the line-clear code.
*/
cmp count, #128
b.lt .Lnot_short /*count is at least 128 bytes*/
mrs tmp1, dczid_el0
tbnz tmp1, #4, .Lnot_short
mov tmp3w, #4
and zva_len, tmp1w, #15 /* Safety: other bits reserved. */
lsl zva_len, tmp3w, zva_len
ands tmp3w, zva_len, #63
/*
* ensure the zva_len is not less than 64.
* It is not meaningful to use ZVA if the block size is less than 64.
*/
b.ne .Lnot_short
.Lzero_by_line:
/*
* Compute how far we need to go to become suitably aligned. We're
* already at quad-word alignment.
*/
cmp count, zva_len_x
b.lt .Lnot_short /* Not enough to reach alignment. */
sub zva_bits_x, zva_len_x, #1
neg tmp2, dst
ands tmp2, tmp2, zva_bits_x
b.eq 2f /* Already aligned. */
/* Not aligned, check that there's enough to copy after alignment.*/
sub tmp1, count, tmp2
/*
* grantee the remain length to be ZVA is bigger than 64,
* avoid to make the 2f's process over mem range.*/
cmp tmp1, #64
ccmp tmp1, zva_len_x, #8, ge /* NZCV=0b1000 */
b.lt .Lnot_short
/*
* We know that there's at least 64 bytes to zero and that it's safe
* to overrun by 64 bytes.
*/
mov count, tmp1
1:
stp A_l, A_l, [dst]
stp A_l, A_l, [dst, #16]
stp A_l, A_l, [dst, #32]
subs tmp2, tmp2, #64
stp A_l, A_l, [dst, #48]
add dst, dst, #64
b.ge 1b
/* We've overrun a bit, so adjust dst downwards.*/
add dst, dst, tmp2
2:
sub count, count, zva_len_x
3:
dc zva, dst
add dst, dst, zva_len_x
subs count, count, zva_len_x
b.ge 3b
ands count, count, zva_bits_x
b.ne .Ltail_maybe_long
ret
ENDPIPROC(memset)
ENDPROC(__memset)
|