summaryrefslogtreecommitdiff
path: root/arch/cris/arch-v10/drivers/axisflashmap.c
blob: bdc25aa4346850b2fe793082dadd17310f2ec44d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
/*
 * Physical mapping layer for MTD using the Axis partitiontable format
 *
 * Copyright (c) 2001, 2002 Axis Communications AB
 *
 * This file is under the GPL.
 *
 * First partition is always sector 0 regardless of if we find a partitiontable
 * or not. In the start of the next sector, there can be a partitiontable that
 * tells us what other partitions to define. If there isn't, we use a default
 * partition split defined below.
 *
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/slab.h>

#include <linux/mtd/concat.h>
#include <linux/mtd/map.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/mtdram.h>
#include <linux/mtd/partitions.h>

#include <asm/axisflashmap.h>
#include <asm/mmu.h>
#include <arch/sv_addr_ag.h>

#ifdef CONFIG_CRIS_LOW_MAP
#define FLASH_UNCACHED_ADDR  KSEG_8
#define FLASH_CACHED_ADDR    KSEG_5
#else
#define FLASH_UNCACHED_ADDR  KSEG_E
#define FLASH_CACHED_ADDR    KSEG_F
#endif

#if CONFIG_ETRAX_FLASH_BUSWIDTH==1
#define flash_data __u8
#elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
#define flash_data __u16
#elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
#define flash_data __u32
#endif

/* From head.S */
extern unsigned long romfs_start, romfs_length, romfs_in_flash;

/* The master mtd for the entire flash. */
struct mtd_info* axisflash_mtd = NULL;

/* Map driver functions. */

static map_word flash_read(struct map_info *map, unsigned long ofs)
{
	map_word tmp;
	tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs);
	return tmp;
}

static void flash_copy_from(struct map_info *map, void *to,
			    unsigned long from, ssize_t len)
{
	memcpy(to, (void *)(map->map_priv_1 + from), len);
}

static void flash_write(struct map_info *map, map_word d, unsigned long adr)
{
	*(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0];
}

/*
 * The map for chip select e0.
 *
 * We run into tricky coherence situations if we mix cached with uncached
 * accesses to we only use the uncached version here.
 *
 * The size field is the total size where the flash chips may be mapped on the
 * chip select. MTD probes should find all devices there and it does not matter
 * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD
 * probes will ignore them.
 *
 * The start address in map_priv_1 is in virtual memory so we cannot use
 * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start
 * address of cse0.
 */
static struct map_info map_cse0 = {
	.name = "cse0",
	.size = MEM_CSE0_SIZE,
	.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
	.read = flash_read,
	.copy_from = flash_copy_from,
	.write = flash_write,
	.map_priv_1 = FLASH_UNCACHED_ADDR
};

/*
 * The map for chip select e1.
 *
 * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong
 * address, but there isn't.
 */
static struct map_info map_cse1 = {
	.name = "cse1",
	.size = MEM_CSE1_SIZE,
	.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
	.read = flash_read,
	.copy_from = flash_copy_from,
	.write = flash_write,
	.map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE
};

/* If no partition-table was found, we use this default-set. */
#define MAX_PARTITIONS         7
#define NUM_DEFAULT_PARTITIONS 3

/*
 * Default flash size is 2MB. CONFIG_ETRAX_PTABLE_SECTOR is most likely the
 * size of one flash block and "filesystem"-partition needs 5 blocks to be able
 * to use JFFS.
 */
static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
	{
		.name = "boot firmware",
		.size = CONFIG_ETRAX_PTABLE_SECTOR,
		.offset = 0
	},
	{
		.name = "kernel",
		.size = 0x200000 - (6 * CONFIG_ETRAX_PTABLE_SECTOR),
		.offset = CONFIG_ETRAX_PTABLE_SECTOR
	},
	{
		.name = "filesystem",
		.size = 5 * CONFIG_ETRAX_PTABLE_SECTOR,
		.offset = 0x200000 - (5 * CONFIG_ETRAX_PTABLE_SECTOR)
	}
};

/* Initialize the ones normally used. */
static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
	{
		.name = "part0",
		.size = CONFIG_ETRAX_PTABLE_SECTOR,
		.offset = 0
	},
	{
		.name = "part1",
		.size = 0,
		.offset = 0
	},
	{
		.name = "part2",
		.size = 0,
		.offset = 0
	},
	{
		.name = "part3",
		.size = 0,
		.offset = 0
	},
	{
		.name = "part4",
		.size = 0,
		.offset = 0
	},
	{
		.name = "part5",
		.size = 0,
		.offset = 0
	},
	{
		.name = "part6",
		.size = 0,
		.offset = 0
	},
};

#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
/* Main flash device */
static struct mtd_partition main_partition = {
	.name = "main",
	.size = 0,
	.offset = 0
};
#endif

/*
 * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
 * chips in that order (because the amd_flash-driver is faster).
 */
static struct mtd_info *probe_cs(struct map_info *map_cs)
{
	struct mtd_info *mtd_cs = NULL;

	printk(KERN_INFO
               "%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",
	       map_cs->name, map_cs->size, map_cs->map_priv_1);

#ifdef CONFIG_MTD_CFI
	mtd_cs = do_map_probe("cfi_probe", map_cs);
#endif
#ifdef CONFIG_MTD_JEDECPROBE
	if (!mtd_cs)
		mtd_cs = do_map_probe("jedec_probe", map_cs);
#endif

	return mtd_cs;
}

/*
 * Probe each chip select individually for flash chips. If there are chips on
 * both cse0 and cse1, the mtd_info structs will be concatenated to one struct
 * so that MTD partitions can cross chip boundaries.
 *
 * The only known restriction to how you can mount your chips is that each
 * chip select must hold similar flash chips. But you need external hardware
 * to do that anyway and you can put totally different chips on cse0 and cse1
 * so it isn't really much of a restriction.
 */
static struct mtd_info *flash_probe(void)
{
	struct mtd_info *mtd_cse0;
	struct mtd_info *mtd_cse1;
	struct mtd_info *mtd_cse;

	mtd_cse0 = probe_cs(&map_cse0);
	mtd_cse1 = probe_cs(&map_cse1);

	if (!mtd_cse0 && !mtd_cse1) {
		/* No chip found. */
		return NULL;
	}

	if (mtd_cse0 && mtd_cse1) {
		struct mtd_info *mtds[] = { mtd_cse0, mtd_cse1 };

		/* Since the concatenation layer adds a small overhead we
		 * could try to figure out if the chips in cse0 and cse1 are
		 * identical and reprobe the whole cse0+cse1 window. But since
		 * flash chips are slow, the overhead is relatively small.
		 * So we use the MTD concatenation layer instead of further
		 * complicating the probing procedure.
		 */
		mtd_cse = mtd_concat_create(mtds, ARRAY_SIZE(mtds),
					    "cse0+cse1");
		if (!mtd_cse) {
			printk(KERN_ERR "%s and %s: Concatenation failed!\n",
			       map_cse0.name, map_cse1.name);

			/* The best we can do now is to only use what we found
			 * at cse0.
			 */
			mtd_cse = mtd_cse0;
			map_destroy(mtd_cse1);
		}
	} else {
		mtd_cse = mtd_cse0? mtd_cse0 : mtd_cse1;
	}

	return mtd_cse;
}

/*
 * Probe the flash chip(s) and, if it succeeds, read the partition-table
 * and register the partitions with MTD.
 */
static int __init init_axis_flash(void)
{
	struct mtd_info *mymtd;
	int err = 0;
	int pidx = 0;
	struct partitiontable_head *ptable_head = NULL;
	struct partitiontable_entry *ptable;
	int use_default_ptable = 1; /* Until proven otherwise. */
	const char pmsg[] = "  /dev/flash%d at 0x%08x, size 0x%08x\n";

	if (!(mymtd = flash_probe())) {
		/* There's no reason to use this module if no flash chip can
		 * be identified. Make sure that's understood.
		 */
		printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
	} else {
		printk(KERN_INFO "%s: 0x%08x bytes of flash memory.\n",
		       mymtd->name, mymtd->size);
		axisflash_mtd = mymtd;
	}

	if (mymtd) {
		mymtd->owner = THIS_MODULE;
		ptable_head = (struct partitiontable_head *)(FLASH_CACHED_ADDR +
			      CONFIG_ETRAX_PTABLE_SECTOR +
			      PARTITION_TABLE_OFFSET);
	}
	pidx++;  /* First partition is always set to the default. */

	if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
	    && (ptable_head->size <
		(MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
		PARTITIONTABLE_END_MARKER_SIZE))
	    && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
				  ptable_head->size -
				  PARTITIONTABLE_END_MARKER_SIZE)
		== PARTITIONTABLE_END_MARKER)) {
		/* Looks like a start, sane length and end of a
		 * partition table, lets check csum etc.
		 */
		int ptable_ok = 0;
		struct partitiontable_entry *max_addr =
			(struct partitiontable_entry *)
			((unsigned long)ptable_head + sizeof(*ptable_head) +
			 ptable_head->size);
		unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
		unsigned char *p;
		unsigned long csum = 0;

		ptable = (struct partitiontable_entry *)
			((unsigned long)ptable_head + sizeof(*ptable_head));

		/* Lets be PARANOID, and check the checksum. */
		p = (unsigned char*) ptable;

		while (p <= (unsigned char*)max_addr) {
			csum += *p++;
			csum += *p++;
			csum += *p++;
			csum += *p++;
		}
		ptable_ok = (csum == ptable_head->checksum);

		/* Read the entries and use/show the info.  */
		printk(KERN_INFO " Found a%s partition table at 0x%p-0x%p.\n",
		       (ptable_ok ? " valid" : "n invalid"), ptable_head,
		       max_addr);

		/* We have found a working bootblock.  Now read the
		 * partition table.  Scan the table.  It ends when
		 * there is 0xffffffff, that is, empty flash.
		 */
		while (ptable_ok
		       && ptable->offset != 0xffffffff
		       && ptable < max_addr
		       && pidx < MAX_PARTITIONS) {

			axis_partitions[pidx].offset = offset + ptable->offset;
			axis_partitions[pidx].size = ptable->size;

			printk(pmsg, pidx, axis_partitions[pidx].offset,
			       axis_partitions[pidx].size);
			pidx++;
			ptable++;
		}
		use_default_ptable = !ptable_ok;
	}

	if (romfs_in_flash) {
		/* Add an overlapping device for the root partition (romfs). */

		axis_partitions[pidx].name = "romfs";
		axis_partitions[pidx].size = romfs_length;
		axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
		axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;

		printk(KERN_INFO
                       " Adding readonly flash partition for romfs image:\n");
		printk(pmsg, pidx, axis_partitions[pidx].offset,
		       axis_partitions[pidx].size);
		pidx++;
	}

#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
	if (mymtd) {
		main_partition.size = mymtd->size;
		err = mtd_device_register(mymtd, &main_partition, 1);
		if (err)
			panic("axisflashmap: Could not initialize "
			      "partition for whole main mtd device!\n");
	}
#endif

        if (mymtd) {
		if (use_default_ptable) {
			printk(KERN_INFO " Using default partition table.\n");
			err = mtd_device_register(mymtd,
						  axis_default_partitions,
						  NUM_DEFAULT_PARTITIONS);
		} else {
			err = mtd_device_register(mymtd, axis_partitions,
						  pidx);
		}

		if (err)
			panic("axisflashmap could not add MTD partitions!\n");
	}

	if (!romfs_in_flash) {
		/* Create an RAM device for the root partition (romfs). */

#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0)
		/* No use trying to boot this kernel from RAM. Panic! */
		printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
		       "device due to kernel (mis)configuration!\n");
		panic("This kernel cannot boot from RAM!\n");
#else
		struct mtd_info *mtd_ram;

		mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
		if (!mtd_ram)
			panic("axisflashmap couldn't allocate memory for "
			      "mtd_info!\n");

		printk(KERN_INFO " Adding RAM partition for romfs image:\n");
		printk(pmsg, pidx, (unsigned)romfs_start,
			(unsigned)romfs_length);

		err = mtdram_init_device(mtd_ram,
			(void *)romfs_start,
			romfs_length,
			"romfs");
		if (err)
			panic("axisflashmap could not initialize MTD RAM "
			      "device!\n");
#endif
	}
	return err;
}

/* This adds the above to the kernels init-call chain. */
module_init(init_axis_flash);

EXPORT_SYMBOL(axisflash_mtd);