summaryrefslogtreecommitdiff
path: root/arch/mips/kernel/smtc.c
blob: 25e825aea3270c29c08f1d0cfefd361af5ff3596 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
 * Copyright (C) 2004 Mips Technologies, Inc
 * Copyright (C) 2008 Kevin D. Kissell
 */

#include <linux/clockchips.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/cpumask.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ftrace.h>
#include <linux/slab.h>

#include <asm/cpu.h>
#include <asm/processor.h>
#include <asm/atomic.h>
#include <asm/system.h>
#include <asm/hardirq.h>
#include <asm/hazards.h>
#include <asm/irq.h>
#include <asm/mmu_context.h>
#include <asm/mipsregs.h>
#include <asm/cacheflush.h>
#include <asm/time.h>
#include <asm/addrspace.h>
#include <asm/smtc.h>
#include <asm/smtc_proc.h>

/*
 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
 * in do_IRQ. These are passed in setup_irq_smtc() and stored
 * in this table.
 */
unsigned long irq_hwmask[NR_IRQS];

#define LOCK_MT_PRA() \
	local_irq_save(flags); \
	mtflags = dmt()

#define UNLOCK_MT_PRA() \
	emt(mtflags); \
	local_irq_restore(flags)

#define LOCK_CORE_PRA() \
	local_irq_save(flags); \
	mtflags = dvpe()

#define UNLOCK_CORE_PRA() \
	evpe(mtflags); \
	local_irq_restore(flags)

/*
 * Data structures purely associated with SMTC parallelism
 */


/*
 * Table for tracking ASIDs whose lifetime is prolonged.
 */

asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];

/*
 * Number of InterProcessor Interrupt (IPI) message buffers to allocate
 */

#define IPIBUF_PER_CPU 4

struct smtc_ipi_q IPIQ[NR_CPUS];
static struct smtc_ipi_q freeIPIq;


/* Forward declarations */

void ipi_decode(struct smtc_ipi *);
static void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
static void setup_cross_vpe_interrupts(unsigned int nvpe);
void init_smtc_stats(void);

/* Global SMTC Status */

unsigned int smtc_status;

/* Boot command line configuration overrides */

static int vpe0limit;
static int ipibuffers;
static int nostlb;
static int asidmask;
unsigned long smtc_asid_mask = 0xff;

static int __init vpe0tcs(char *str)
{
	get_option(&str, &vpe0limit);

	return 1;
}

static int __init ipibufs(char *str)
{
	get_option(&str, &ipibuffers);
	return 1;
}

static int __init stlb_disable(char *s)
{
	nostlb = 1;
	return 1;
}

static int __init asidmask_set(char *str)
{
	get_option(&str, &asidmask);
	switch (asidmask) {
	case 0x1:
	case 0x3:
	case 0x7:
	case 0xf:
	case 0x1f:
	case 0x3f:
	case 0x7f:
	case 0xff:
		smtc_asid_mask = (unsigned long)asidmask;
		break;
	default:
		printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
	}
	return 1;
}

__setup("vpe0tcs=", vpe0tcs);
__setup("ipibufs=", ipibufs);
__setup("nostlb", stlb_disable);
__setup("asidmask=", asidmask_set);

#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG

static int hang_trig;

static int __init hangtrig_enable(char *s)
{
	hang_trig = 1;
	return 1;
}


__setup("hangtrig", hangtrig_enable);

#define DEFAULT_BLOCKED_IPI_LIMIT 32

static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;

static int __init tintq(char *str)
{
	get_option(&str, &timerq_limit);
	return 1;
}

__setup("tintq=", tintq);

static int imstuckcount[2][8];
/* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
static int vpemask[2][8] = {
	{0, 0, 1, 0, 0, 0, 0, 1},
	{0, 0, 0, 0, 0, 0, 0, 1}
};
int tcnoprog[NR_CPUS];
static atomic_t idle_hook_initialized = {0};
static int clock_hang_reported[NR_CPUS];

#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */

/*
 * Configure shared TLB - VPC configuration bit must be set by caller
 */

static void smtc_configure_tlb(void)
{
	int i, tlbsiz, vpes;
	unsigned long mvpconf0;
	unsigned long config1val;

	/* Set up ASID preservation table */
	for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
	    for(i = 0; i < MAX_SMTC_ASIDS; i++) {
		smtc_live_asid[vpes][i] = 0;
	    }
	}
	mvpconf0 = read_c0_mvpconf0();

	if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
			>> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
	    /* If we have multiple VPEs, try to share the TLB */
	    if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
		/*
		 * If TLB sizing is programmable, shared TLB
		 * size is the total available complement.
		 * Otherwise, we have to take the sum of all
		 * static VPE TLB entries.
		 */
		if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
				>> MVPCONF0_PTLBE_SHIFT)) == 0) {
		    /*
		     * If there's more than one VPE, there had better
		     * be more than one TC, because we need one to bind
		     * to each VPE in turn to be able to read
		     * its configuration state!
		     */
		    settc(1);
		    /* Stop the TC from doing anything foolish */
		    write_tc_c0_tchalt(TCHALT_H);
		    mips_ihb();
		    /* No need to un-Halt - that happens later anyway */
		    for (i=0; i < vpes; i++) {
		    	write_tc_c0_tcbind(i);
			/*
			 * To be 100% sure we're really getting the right
			 * information, we exit the configuration state
			 * and do an IHB after each rebinding.
			 */
			write_c0_mvpcontrol(
				read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
			mips_ihb();
			/*
			 * Only count if the MMU Type indicated is TLB
			 */
			if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
				config1val = read_vpe_c0_config1();
				tlbsiz += ((config1val >> 25) & 0x3f) + 1;
			}

			/* Put core back in configuration state */
			write_c0_mvpcontrol(
				read_c0_mvpcontrol() | MVPCONTROL_VPC );
			mips_ihb();
		    }
		}
		write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
		ehb();

		/*
		 * Setup kernel data structures to use software total,
		 * rather than read the per-VPE Config1 value. The values
		 * for "CPU 0" gets copied to all the other CPUs as part
		 * of their initialization in smtc_cpu_setup().
		 */

		/* MIPS32 limits TLB indices to 64 */
		if (tlbsiz > 64)
			tlbsiz = 64;
		cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
		smtc_status |= SMTC_TLB_SHARED;
		local_flush_tlb_all();

		printk("TLB of %d entry pairs shared by %d VPEs\n",
			tlbsiz, vpes);
	    } else {
		printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
	    }
	}
}


/*
 * Incrementally build the CPU map out of constituent MIPS MT cores,
 * using the specified available VPEs and TCs.  Plaform code needs
 * to ensure that each MIPS MT core invokes this routine on reset,
 * one at a time(!).
 *
 * This version of the build_cpu_map and prepare_cpus routines assumes
 * that *all* TCs of a MIPS MT core will be used for Linux, and that
 * they will be spread across *all* available VPEs (to minimise the
 * loss of efficiency due to exception service serialization).
 * An improved version would pick up configuration information and
 * possibly leave some TCs/VPEs as "slave" processors.
 *
 * Use c0_MVPConf0 to find out how many TCs are available, setting up
 * cpu_possible_map and the logical/physical mappings.
 */

int __init smtc_build_cpu_map(int start_cpu_slot)
{
	int i, ntcs;

	/*
	 * The CPU map isn't actually used for anything at this point,
	 * so it's not clear what else we should do apart from set
	 * everything up so that "logical" = "physical".
	 */
	ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
	for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
		set_cpu_possible(i, true);
		__cpu_number_map[i] = i;
		__cpu_logical_map[i] = i;
	}
#ifdef CONFIG_MIPS_MT_FPAFF
	/* Initialize map of CPUs with FPUs */
	cpus_clear(mt_fpu_cpumask);
#endif

	/* One of those TC's is the one booting, and not a secondary... */
	printk("%i available secondary CPU TC(s)\n", i - 1);

	return i;
}

/*
 * Common setup before any secondaries are started
 * Make sure all CPU's are in a sensible state before we boot any of the
 * secondaries.
 *
 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
 * as possible across the available VPEs.
 */

static void smtc_tc_setup(int vpe, int tc, int cpu)
{
	settc(tc);
	write_tc_c0_tchalt(TCHALT_H);
	mips_ihb();
	write_tc_c0_tcstatus((read_tc_c0_tcstatus()
			& ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
			| TCSTATUS_A);
	/*
	 * TCContext gets an offset from the base of the IPIQ array
	 * to be used in low-level code to detect the presence of
	 * an active IPI queue
	 */
	write_tc_c0_tccontext((sizeof(struct smtc_ipi_q) * cpu) << 16);
	/* Bind tc to vpe */
	write_tc_c0_tcbind(vpe);
	/* In general, all TCs should have the same cpu_data indications */
	memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
	/* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
	if (cpu_data[0].cputype == CPU_34K ||
	    cpu_data[0].cputype == CPU_1004K)
		cpu_data[cpu].options &= ~MIPS_CPU_FPU;
	cpu_data[cpu].vpe_id = vpe;
	cpu_data[cpu].tc_id = tc;
	/* Multi-core SMTC hasn't been tested, but be prepared */
	cpu_data[cpu].core = (read_vpe_c0_ebase() >> 1) & 0xff;
}

/*
 * Tweak to get Count registes in as close a sync as possible.
 * Value seems good for 34K-class cores.
 */

#define CP0_SKEW 8

void smtc_prepare_cpus(int cpus)
{
	int i, vpe, tc, ntc, nvpe, tcpervpe[NR_CPUS], slop, cpu;
	unsigned long flags;
	unsigned long val;
	int nipi;
	struct smtc_ipi *pipi;

	/* disable interrupts so we can disable MT */
	local_irq_save(flags);
	/* disable MT so we can configure */
	dvpe();
	dmt();

	spin_lock_init(&freeIPIq.lock);

	/*
	 * We probably don't have as many VPEs as we do SMP "CPUs",
	 * but it's possible - and in any case we'll never use more!
	 */
	for (i=0; i<NR_CPUS; i++) {
		IPIQ[i].head = IPIQ[i].tail = NULL;
		spin_lock_init(&IPIQ[i].lock);
		IPIQ[i].depth = 0;
		IPIQ[i].resched_flag = 0; /* No reschedules queued initially */
	}

	/* cpu_data index starts at zero */
	cpu = 0;
	cpu_data[cpu].vpe_id = 0;
	cpu_data[cpu].tc_id = 0;
	cpu_data[cpu].core = (read_c0_ebase() >> 1) & 0xff;
	cpu++;

	/* Report on boot-time options */
	mips_mt_set_cpuoptions();
	if (vpelimit > 0)
		printk("Limit of %d VPEs set\n", vpelimit);
	if (tclimit > 0)
		printk("Limit of %d TCs set\n", tclimit);
	if (nostlb) {
		printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
	}
	if (asidmask)
		printk("ASID mask value override to 0x%x\n", asidmask);

	/* Temporary */
#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
	if (hang_trig)
		printk("Logic Analyser Trigger on suspected TC hang\n");
#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */

	/* Put MVPE's into 'configuration state' */
	write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );

	val = read_c0_mvpconf0();
	nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
	if (vpelimit > 0 && nvpe > vpelimit)
		nvpe = vpelimit;
	ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
	if (ntc > NR_CPUS)
		ntc = NR_CPUS;
	if (tclimit > 0 && ntc > tclimit)
		ntc = tclimit;
	slop = ntc % nvpe;
	for (i = 0; i < nvpe; i++) {
		tcpervpe[i] = ntc / nvpe;
		if (slop) {
			if((slop - i) > 0) tcpervpe[i]++;
		}
	}
	/* Handle command line override for VPE0 */
	if (vpe0limit > ntc) vpe0limit = ntc;
	if (vpe0limit > 0) {
		int slopslop;
		if (vpe0limit < tcpervpe[0]) {
		    /* Reducing TC count - distribute to others */
		    slop = tcpervpe[0] - vpe0limit;
		    slopslop = slop % (nvpe - 1);
		    tcpervpe[0] = vpe0limit;
		    for (i = 1; i < nvpe; i++) {
			tcpervpe[i] += slop / (nvpe - 1);
			if(slopslop && ((slopslop - (i - 1) > 0)))
				tcpervpe[i]++;
		    }
		} else if (vpe0limit > tcpervpe[0]) {
		    /* Increasing TC count - steal from others */
		    slop = vpe0limit - tcpervpe[0];
		    slopslop = slop % (nvpe - 1);
		    tcpervpe[0] = vpe0limit;
		    for (i = 1; i < nvpe; i++) {
			tcpervpe[i] -= slop / (nvpe - 1);
			if(slopslop && ((slopslop - (i - 1) > 0)))
				tcpervpe[i]--;
		    }
		}
	}

	/* Set up shared TLB */
	smtc_configure_tlb();

	for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
		if (tcpervpe[vpe] == 0)
			continue;
		if (vpe != 0)
			printk(", ");
		printk("VPE %d: TC", vpe);
		for (i = 0; i < tcpervpe[vpe]; i++) {
			/*
			 * TC 0 is bound to VPE 0 at reset,
			 * and is presumably executing this
			 * code.  Leave it alone!
			 */
			if (tc != 0) {
				smtc_tc_setup(vpe, tc, cpu);
				cpu++;
			}
			printk(" %d", tc);
			tc++;
		}
		if (vpe != 0) {
			/*
			 * Allow this VPE to control others.
			 */
			write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() |
					      VPECONF0_MVP);

			/*
			 * Clear any stale software interrupts from VPE's Cause
			 */
			write_vpe_c0_cause(0);

			/*
			 * Clear ERL/EXL of VPEs other than 0
			 * and set restricted interrupt enable/mask.
			 */
			write_vpe_c0_status((read_vpe_c0_status()
				& ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
				| (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
				| ST0_IE));
			/*
			 * set config to be the same as vpe0,
			 *  particularly kseg0 coherency alg
			 */
			write_vpe_c0_config(read_c0_config());
			/* Clear any pending timer interrupt */
			write_vpe_c0_compare(0);
			/* Propagate Config7 */
			write_vpe_c0_config7(read_c0_config7());
			write_vpe_c0_count(read_c0_count() + CP0_SKEW);
			ehb();
		}
		/* enable multi-threading within VPE */
		write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
		/* enable the VPE */
		write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
	}

	/*
	 * Pull any physically present but unused TCs out of circulation.
	 */
	while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
		set_cpu_possible(tc, false);
		set_cpu_present(tc, false);
		tc++;
	}

	/* release config state */
	write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );

	printk("\n");

	/* Set up coprocessor affinity CPU mask(s) */

#ifdef CONFIG_MIPS_MT_FPAFF
	for (tc = 0; tc < ntc; tc++) {
		if (cpu_data[tc].options & MIPS_CPU_FPU)
			cpu_set(tc, mt_fpu_cpumask);
	}
#endif

	/* set up ipi interrupts... */

	/* If we have multiple VPEs running, set up the cross-VPE interrupt */

	setup_cross_vpe_interrupts(nvpe);

	/* Set up queue of free IPI "messages". */
	nipi = NR_CPUS * IPIBUF_PER_CPU;
	if (ipibuffers > 0)
		nipi = ipibuffers;

	pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
	if (pipi == NULL)
		panic("kmalloc of IPI message buffers failed\n");
	else
		printk("IPI buffer pool of %d buffers\n", nipi);
	for (i = 0; i < nipi; i++) {
		smtc_ipi_nq(&freeIPIq, pipi);
		pipi++;
	}

	/* Arm multithreading and enable other VPEs - but all TCs are Halted */
	emt(EMT_ENABLE);
	evpe(EVPE_ENABLE);
	local_irq_restore(flags);
	/* Initialize SMTC /proc statistics/diagnostics */
	init_smtc_stats();
}


/*
 * Setup the PC, SP, and GP of a secondary processor and start it
 * running!
 * smp_bootstrap is the place to resume from
 * __KSTK_TOS(idle) is apparently the stack pointer
 * (unsigned long)idle->thread_info the gp
 *
 */
void __cpuinit smtc_boot_secondary(int cpu, struct task_struct *idle)
{
	extern u32 kernelsp[NR_CPUS];
	unsigned long flags;
	int mtflags;

	LOCK_MT_PRA();
	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
		dvpe();
	}
	settc(cpu_data[cpu].tc_id);

	/* pc */
	write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);

	/* stack pointer */
	kernelsp[cpu] = __KSTK_TOS(idle);
	write_tc_gpr_sp(__KSTK_TOS(idle));

	/* global pointer */
	write_tc_gpr_gp((unsigned long)task_thread_info(idle));

	smtc_status |= SMTC_MTC_ACTIVE;
	write_tc_c0_tchalt(0);
	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
		evpe(EVPE_ENABLE);
	}
	UNLOCK_MT_PRA();
}

void smtc_init_secondary(void)
{
	local_irq_enable();
}

void smtc_smp_finish(void)
{
	int cpu = smp_processor_id();

	/*
	 * Lowest-numbered CPU per VPE starts a clock tick.
	 * Like per_cpu_trap_init() hack, this assumes that
	 * SMTC init code assigns TCs consdecutively and
	 * in ascending order across available VPEs.
	 */
	if (cpu > 0 && (cpu_data[cpu].vpe_id != cpu_data[cpu - 1].vpe_id))
		write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ);

	printk("TC %d going on-line as CPU %d\n",
		cpu_data[smp_processor_id()].tc_id, smp_processor_id());
}

void smtc_cpus_done(void)
{
}

/*
 * Support for SMTC-optimized driver IRQ registration
 */

/*
 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
 * in do_IRQ. These are passed in setup_irq_smtc() and stored
 * in this table.
 */

int setup_irq_smtc(unsigned int irq, struct irqaction * new,
			unsigned long hwmask)
{
#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
	unsigned int vpe = current_cpu_data.vpe_id;

	vpemask[vpe][irq - MIPS_CPU_IRQ_BASE] = 1;
#endif
	irq_hwmask[irq] = hwmask;

	return setup_irq(irq, new);
}

#ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
/*
 * Support for IRQ affinity to TCs
 */

void smtc_set_irq_affinity(unsigned int irq, cpumask_t affinity)
{
	/*
	 * If a "fast path" cache of quickly decodable affinity state
	 * is maintained, this is where it gets done, on a call up
	 * from the platform affinity code.
	 */
}

void smtc_forward_irq(unsigned int irq)
{
	int target;

	/*
	 * OK wise guy, now figure out how to get the IRQ
	 * to be serviced on an authorized "CPU".
	 *
	 * Ideally, to handle the situation where an IRQ has multiple
	 * eligible CPUS, we would maintain state per IRQ that would
	 * allow a fair distribution of service requests.  Since the
	 * expected use model is any-or-only-one, for simplicity
	 * and efficiency, we just pick the easiest one to find.
	 */

	target = cpumask_first(irq_desc[irq].affinity);

	/*
	 * We depend on the platform code to have correctly processed
	 * IRQ affinity change requests to ensure that the IRQ affinity
	 * mask has been purged of bits corresponding to nonexistent and
	 * offline "CPUs", and to TCs bound to VPEs other than the VPE
	 * connected to the physical interrupt input for the interrupt
	 * in question.  Otherwise we have a nasty problem with interrupt
	 * mask management.  This is best handled in non-performance-critical
	 * platform IRQ affinity setting code,  to minimize interrupt-time
	 * checks.
	 */

	/* If no one is eligible, service locally */
	if (target >= NR_CPUS) {
		do_IRQ_no_affinity(irq);
		return;
	}

	smtc_send_ipi(target, IRQ_AFFINITY_IPI, irq);
}

#endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */

/*
 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
 * Within a VPE one TC can interrupt another by different approaches.
 * The easiest to get right would probably be to make all TCs except
 * the target IXMT and set a software interrupt, but an IXMT-based
 * scheme requires that a handler must run before a new IPI could
 * be sent, which would break the "broadcast" loops in MIPS MT.
 * A more gonzo approach within a VPE is to halt the TC, extract
 * its Restart, Status, and a couple of GPRs, and program the Restart
 * address to emulate an interrupt.
 *
 * Within a VPE, one can be confident that the target TC isn't in
 * a critical EXL state when halted, since the write to the Halt
 * register could not have issued on the writing thread if the
 * halting thread had EXL set. So k0 and k1 of the target TC
 * can be used by the injection code.  Across VPEs, one can't
 * be certain that the target TC isn't in a critical exception
 * state. So we try a two-step process of sending a software
 * interrupt to the target VPE, which either handles the event
 * itself (if it was the target) or injects the event within
 * the VPE.
 */

static void smtc_ipi_qdump(void)
{
	int i;
	struct smtc_ipi *temp;

	for (i = 0; i < NR_CPUS ;i++) {
		pr_info("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
			i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
			IPIQ[i].depth);
		temp = IPIQ[i].head;

		while (temp != IPIQ[i].tail) {
			pr_debug("%d %d %d: ", temp->type, temp->dest,
			       (int)temp->arg);
#ifdef	SMTC_IPI_DEBUG
		    pr_debug("%u %lu\n", temp->sender, temp->stamp);
#else
		    pr_debug("\n");
#endif
		    temp = temp->flink;
		}
	}
}

/*
 * The standard atomic.h primitives don't quite do what we want
 * here: We need an atomic add-and-return-previous-value (which
 * could be done with atomic_add_return and a decrement) and an
 * atomic set/zero-and-return-previous-value (which can't really
 * be done with the atomic.h primitives). And since this is
 * MIPS MT, we can assume that we have LL/SC.
 */
static inline int atomic_postincrement(atomic_t *v)
{
	unsigned long result;

	unsigned long temp;

	__asm__ __volatile__(
	"1:	ll	%0, %2					\n"
	"	addu	%1, %0, 1				\n"
	"	sc	%1, %2					\n"
	"	beqz	%1, 1b					\n"
	__WEAK_LLSC_MB
	: "=&r" (result), "=&r" (temp), "=m" (v->counter)
	: "m" (v->counter)
	: "memory");

	return result;
}

void smtc_send_ipi(int cpu, int type, unsigned int action)
{
	int tcstatus;
	struct smtc_ipi *pipi;
	unsigned long flags;
	int mtflags;
	unsigned long tcrestart;
	extern void r4k_wait_irqoff(void), __pastwait(void);
	int set_resched_flag = (type == LINUX_SMP_IPI &&
				action == SMP_RESCHEDULE_YOURSELF);

	if (cpu == smp_processor_id()) {
		printk("Cannot Send IPI to self!\n");
		return;
	}
	if (set_resched_flag && IPIQ[cpu].resched_flag != 0)
		return; /* There is a reschedule queued already */

	/* Set up a descriptor, to be delivered either promptly or queued */
	pipi = smtc_ipi_dq(&freeIPIq);
	if (pipi == NULL) {
		bust_spinlocks(1);
		mips_mt_regdump(dvpe());
		panic("IPI Msg. Buffers Depleted\n");
	}
	pipi->type = type;
	pipi->arg = (void *)action;
	pipi->dest = cpu;
	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
		/* If not on same VPE, enqueue and send cross-VPE interrupt */
		IPIQ[cpu].resched_flag |= set_resched_flag;
		smtc_ipi_nq(&IPIQ[cpu], pipi);
		LOCK_CORE_PRA();
		settc(cpu_data[cpu].tc_id);
		write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
		UNLOCK_CORE_PRA();
	} else {
		/*
		 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
		 * since ASID shootdown on the other VPE may
		 * collide with this operation.
		 */
		LOCK_CORE_PRA();
		settc(cpu_data[cpu].tc_id);
		/* Halt the targeted TC */
		write_tc_c0_tchalt(TCHALT_H);
		mips_ihb();

		/*
	 	 * Inspect TCStatus - if IXMT is set, we have to queue
		 * a message. Otherwise, we set up the "interrupt"
		 * of the other TC
	 	 */
		tcstatus = read_tc_c0_tcstatus();

		if ((tcstatus & TCSTATUS_IXMT) != 0) {
			/*
			 * If we're in the the irq-off version of the wait
			 * loop, we need to force exit from the wait and
			 * do a direct post of the IPI.
			 */
			if (cpu_wait == r4k_wait_irqoff) {
				tcrestart = read_tc_c0_tcrestart();
				if (tcrestart >= (unsigned long)r4k_wait_irqoff
				    && tcrestart < (unsigned long)__pastwait) {
					write_tc_c0_tcrestart(__pastwait);
					tcstatus &= ~TCSTATUS_IXMT;
					write_tc_c0_tcstatus(tcstatus);
					goto postdirect;
				}
			}
			/*
			 * Otherwise we queue the message for the target TC
			 * to pick up when he does a local_irq_restore()
			 */
			write_tc_c0_tchalt(0);
			UNLOCK_CORE_PRA();
			IPIQ[cpu].resched_flag |= set_resched_flag;
			smtc_ipi_nq(&IPIQ[cpu], pipi);
		} else {
postdirect:
			post_direct_ipi(cpu, pipi);
			write_tc_c0_tchalt(0);
			UNLOCK_CORE_PRA();
		}
	}
}

/*
 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
 */
static void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
{
	struct pt_regs *kstack;
	unsigned long tcstatus;
	unsigned long tcrestart;
	extern u32 kernelsp[NR_CPUS];
	extern void __smtc_ipi_vector(void);
//printk("%s: on %d for %d\n", __func__, smp_processor_id(), cpu);

	/* Extract Status, EPC from halted TC */
	tcstatus = read_tc_c0_tcstatus();
	tcrestart = read_tc_c0_tcrestart();
	/* If TCRestart indicates a WAIT instruction, advance the PC */
	if ((tcrestart & 0x80000000)
	    && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
		tcrestart += 4;
	}
	/*
	 * Save on TC's future kernel stack
	 *
	 * CU bit of Status is indicator that TC was
	 * already running on a kernel stack...
	 */
	if (tcstatus & ST0_CU0)  {
		/* Note that this "- 1" is pointer arithmetic */
		kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
	} else {
		kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
	}

	kstack->cp0_epc = (long)tcrestart;
	/* Save TCStatus */
	kstack->cp0_tcstatus = tcstatus;
	/* Pass token of operation to be performed kernel stack pad area */
	kstack->pad0[4] = (unsigned long)pipi;
	/* Pass address of function to be called likewise */
	kstack->pad0[5] = (unsigned long)&ipi_decode;
	/* Set interrupt exempt and kernel mode */
	tcstatus |= TCSTATUS_IXMT;
	tcstatus &= ~TCSTATUS_TKSU;
	write_tc_c0_tcstatus(tcstatus);
	ehb();
	/* Set TC Restart address to be SMTC IPI vector */
	write_tc_c0_tcrestart(__smtc_ipi_vector);
}

static void ipi_resched_interrupt(void)
{
	/* Return from interrupt should be enough to cause scheduler check */
}

static void ipi_call_interrupt(void)
{
	/* Invoke generic function invocation code in smp.c */
	smp_call_function_interrupt();
}

DECLARE_PER_CPU(struct clock_event_device, mips_clockevent_device);

static void __irq_entry smtc_clock_tick_interrupt(void)
{
	unsigned int cpu = smp_processor_id();
	struct clock_event_device *cd;
	int irq = MIPS_CPU_IRQ_BASE + 1;

	irq_enter();
	kstat_incr_irqs_this_cpu(irq, irq_to_desc(irq));
	cd = &per_cpu(mips_clockevent_device, cpu);
	cd->event_handler(cd);
	irq_exit();
}

void ipi_decode(struct smtc_ipi *pipi)
{
	void *arg_copy = pipi->arg;
	int type_copy = pipi->type;

	smtc_ipi_nq(&freeIPIq, pipi);

	switch (type_copy) {
	case SMTC_CLOCK_TICK:
		smtc_clock_tick_interrupt();
		break;

	case LINUX_SMP_IPI:
		switch ((int)arg_copy) {
		case SMP_RESCHEDULE_YOURSELF:
			ipi_resched_interrupt();
			break;
		case SMP_CALL_FUNCTION:
			ipi_call_interrupt();
			break;
		default:
			printk("Impossible SMTC IPI Argument 0x%x\n",
				(int)arg_copy);
			break;
		}
		break;
#ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
	case IRQ_AFFINITY_IPI:
		/*
		 * Accept a "forwarded" interrupt that was initially
		 * taken by a TC who doesn't have affinity for the IRQ.
		 */
		do_IRQ_no_affinity((int)arg_copy);
		break;
#endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
	default:
		printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
		break;
	}
}

/*
 * Similar to smtc_ipi_replay(), but invoked from context restore,
 * so it reuses the current exception frame rather than set up a
 * new one with self_ipi.
 */

void deferred_smtc_ipi(void)
{
	int cpu = smp_processor_id();

	/*
	 * Test is not atomic, but much faster than a dequeue,
	 * and the vast majority of invocations will have a null queue.
	 * If irq_disabled when this was called, then any IPIs queued
	 * after we test last will be taken on the next irq_enable/restore.
	 * If interrupts were enabled, then any IPIs added after the
	 * last test will be taken directly.
	 */

	while (IPIQ[cpu].head != NULL) {
		struct smtc_ipi_q *q = &IPIQ[cpu];
		struct smtc_ipi *pipi;
		unsigned long flags;

		/*
		 * It may be possible we'll come in with interrupts
		 * already enabled.
		 */
		local_irq_save(flags);
		spin_lock(&q->lock);
		pipi = __smtc_ipi_dq(q);
		spin_unlock(&q->lock);
		if (pipi != NULL) {
			if (pipi->type == LINUX_SMP_IPI &&
			    (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
				IPIQ[cpu].resched_flag = 0;
			ipi_decode(pipi);
		}
		/*
		 * The use of the __raw_local restore isn't
		 * as obviously necessary here as in smtc_ipi_replay(),
		 * but it's more efficient, given that we're already
		 * running down the IPI queue.
		 */
		__raw_local_irq_restore(flags);
	}
}

/*
 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
 * set via cross-VPE MTTR manipulation of the Cause register. It would be
 * in some regards preferable to have external logic for "doorbell" hardware
 * interrupts.
 */

static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;

static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
{
	int my_vpe = cpu_data[smp_processor_id()].vpe_id;
	int my_tc = cpu_data[smp_processor_id()].tc_id;
	int cpu;
	struct smtc_ipi *pipi;
	unsigned long tcstatus;
	int sent;
	unsigned long flags;
	unsigned int mtflags;
	unsigned int vpflags;

	/*
	 * So long as cross-VPE interrupts are done via
	 * MFTR/MTTR read-modify-writes of Cause, we need
	 * to stop other VPEs whenever the local VPE does
	 * anything similar.
	 */
	local_irq_save(flags);
	vpflags = dvpe();
	clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
	set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
	irq_enable_hazard();
	evpe(vpflags);
	local_irq_restore(flags);

	/*
	 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
	 * queued for TCs on this VPE other than the current one.
	 * Return-from-interrupt should cause us to drain the queue
	 * for the current TC, so we ought not to have to do it explicitly here.
	 */

	for_each_online_cpu(cpu) {
		if (cpu_data[cpu].vpe_id != my_vpe)
			continue;

		pipi = smtc_ipi_dq(&IPIQ[cpu]);
		if (pipi != NULL) {
			if (cpu_data[cpu].tc_id != my_tc) {
				sent = 0;
				LOCK_MT_PRA();
				settc(cpu_data[cpu].tc_id);
				write_tc_c0_tchalt(TCHALT_H);
				mips_ihb();
				tcstatus = read_tc_c0_tcstatus();
				if ((tcstatus & TCSTATUS_IXMT) == 0) {
					post_direct_ipi(cpu, pipi);
					sent = 1;
				}
				write_tc_c0_tchalt(0);
				UNLOCK_MT_PRA();
				if (!sent) {
					smtc_ipi_req(&IPIQ[cpu], pipi);
				}
			} else {
				/*
				 * ipi_decode() should be called
				 * with interrupts off
				 */
				local_irq_save(flags);
				if (pipi->type == LINUX_SMP_IPI &&
				    (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
					IPIQ[cpu].resched_flag = 0;
				ipi_decode(pipi);
				local_irq_restore(flags);
			}
		}
	}

	return IRQ_HANDLED;
}

static void ipi_irq_dispatch(void)
{
	do_IRQ(cpu_ipi_irq);
}

static struct irqaction irq_ipi = {
	.handler	= ipi_interrupt,
	.flags		= IRQF_DISABLED | IRQF_PERCPU,
	.name		= "SMTC_IPI"
};

static void setup_cross_vpe_interrupts(unsigned int nvpe)
{
	if (nvpe < 1)
		return;

	if (!cpu_has_vint)
		panic("SMTC Kernel requires Vectored Interrupt support");

	set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);

	setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));

	set_irq_handler(cpu_ipi_irq, handle_percpu_irq);
}

/*
 * SMTC-specific hacks invoked from elsewhere in the kernel.
 */

 /*
  * smtc_ipi_replay is called from raw_local_irq_restore
  */

void smtc_ipi_replay(void)
{
	unsigned int cpu = smp_processor_id();

	/*
	 * To the extent that we've ever turned interrupts off,
	 * we may have accumulated deferred IPIs.  This is subtle.
	 * we should be OK:  If we pick up something and dispatch
	 * it here, that's great. If we see nothing, but concurrent
	 * with this operation, another TC sends us an IPI, IXMT
	 * is clear, and we'll handle it as a real pseudo-interrupt
	 * and not a pseudo-pseudo interrupt.  The important thing
	 * is to do the last check for queued message *after* the
	 * re-enabling of interrupts.
	 */
	while (IPIQ[cpu].head != NULL) {
		struct smtc_ipi_q *q = &IPIQ[cpu];
		struct smtc_ipi *pipi;
		unsigned long flags;

		/*
		 * It's just possible we'll come in with interrupts
		 * already enabled.
		 */
		local_irq_save(flags);

		spin_lock(&q->lock);
		pipi = __smtc_ipi_dq(q);
		spin_unlock(&q->lock);
		/*
		 ** But use a raw restore here to avoid recursion.
		 */
		__raw_local_irq_restore(flags);

		if (pipi) {
			self_ipi(pipi);
			smtc_cpu_stats[cpu].selfipis++;
		}
	}
}

EXPORT_SYMBOL(smtc_ipi_replay);

void smtc_idle_loop_hook(void)
{
#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
	int im;
	int flags;
	int mtflags;
	int bit;
	int vpe;
	int tc;
	int hook_ntcs;
	/*
	 * printk within DMT-protected regions can deadlock,
	 * so buffer diagnostic messages for later output.
	 */
	char *pdb_msg;
	char id_ho_db_msg[768]; /* worst-case use should be less than 700 */

	if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
		if (atomic_add_return(1, &idle_hook_initialized) == 1) {
			int mvpconf0;
			/* Tedious stuff to just do once */
			mvpconf0 = read_c0_mvpconf0();
			hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
			if (hook_ntcs > NR_CPUS)
				hook_ntcs = NR_CPUS;
			for (tc = 0; tc < hook_ntcs; tc++) {
				tcnoprog[tc] = 0;
				clock_hang_reported[tc] = 0;
	    		}
			for (vpe = 0; vpe < 2; vpe++)
				for (im = 0; im < 8; im++)
					imstuckcount[vpe][im] = 0;
			printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
			atomic_set(&idle_hook_initialized, 1000);
		} else {
			/* Someone else is initializing in parallel - let 'em finish */
			while (atomic_read(&idle_hook_initialized) < 1000)
				;
		}
	}

	/* Have we stupidly left IXMT set somewhere? */
	if (read_c0_tcstatus() & 0x400) {
		write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
		ehb();
		printk("Dangling IXMT in cpu_idle()\n");
	}

	/* Have we stupidly left an IM bit turned off? */
#define IM_LIMIT 2000
	local_irq_save(flags);
	mtflags = dmt();
	pdb_msg = &id_ho_db_msg[0];
	im = read_c0_status();
	vpe = current_cpu_data.vpe_id;
	for (bit = 0; bit < 8; bit++) {
		/*
		 * In current prototype, I/O interrupts
		 * are masked for VPE > 0
		 */
		if (vpemask[vpe][bit]) {
			if (!(im & (0x100 << bit)))
				imstuckcount[vpe][bit]++;
			else
				imstuckcount[vpe][bit] = 0;
			if (imstuckcount[vpe][bit] > IM_LIMIT) {
				set_c0_status(0x100 << bit);
				ehb();
				imstuckcount[vpe][bit] = 0;
				pdb_msg += sprintf(pdb_msg,
					"Dangling IM %d fixed for VPE %d\n", bit,
					vpe);
			}
		}
	}

	emt(mtflags);
	local_irq_restore(flags);
	if (pdb_msg != &id_ho_db_msg[0])
		printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */

	smtc_ipi_replay();
}

void smtc_soft_dump(void)
{
	int i;

	printk("Counter Interrupts taken per CPU (TC)\n");
	for (i=0; i < NR_CPUS; i++) {
		printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
	}
	printk("Self-IPI invocations:\n");
	for (i=0; i < NR_CPUS; i++) {
		printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
	}
	smtc_ipi_qdump();
	printk("%d Recoveries of \"stolen\" FPU\n",
	       atomic_read(&smtc_fpu_recoveries));
}


/*
 * TLB management routines special to SMTC
 */

void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
{
	unsigned long flags, mtflags, tcstat, prevhalt, asid;
	int tlb, i;

	/*
	 * It would be nice to be able to use a spinlock here,
	 * but this is invoked from within TLB flush routines
	 * that protect themselves with DVPE, so if a lock is
	 * held by another TC, it'll never be freed.
	 *
	 * DVPE/DMT must not be done with interrupts enabled,
	 * so even so most callers will already have disabled
	 * them, let's be really careful...
	 */

	local_irq_save(flags);
	if (smtc_status & SMTC_TLB_SHARED) {
		mtflags = dvpe();
		tlb = 0;
	} else {
		mtflags = dmt();
		tlb = cpu_data[cpu].vpe_id;
	}
	asid = asid_cache(cpu);

	do {
		if (!((asid += ASID_INC) & ASID_MASK) ) {
			if (cpu_has_vtag_icache)
				flush_icache_all();
			/* Traverse all online CPUs (hack requires contiguous range) */
			for_each_online_cpu(i) {
				/*
				 * We don't need to worry about our own CPU, nor those of
				 * CPUs who don't share our TLB.
				 */
				if ((i != smp_processor_id()) &&
				    ((smtc_status & SMTC_TLB_SHARED) ||
				     (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
					settc(cpu_data[i].tc_id);
					prevhalt = read_tc_c0_tchalt() & TCHALT_H;
					if (!prevhalt) {
						write_tc_c0_tchalt(TCHALT_H);
						mips_ihb();
					}
					tcstat = read_tc_c0_tcstatus();
					smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
					if (!prevhalt)
						write_tc_c0_tchalt(0);
				}
			}
			if (!asid)		/* fix version if needed */
				asid = ASID_FIRST_VERSION;
			local_flush_tlb_all();	/* start new asid cycle */
		}
	} while (smtc_live_asid[tlb][(asid & ASID_MASK)]);

	/*
	 * SMTC shares the TLB within VPEs and possibly across all VPEs.
	 */
	for_each_online_cpu(i) {
		if ((smtc_status & SMTC_TLB_SHARED) ||
		    (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
			cpu_context(i, mm) = asid_cache(i) = asid;
	}

	if (smtc_status & SMTC_TLB_SHARED)
		evpe(mtflags);
	else
		emt(mtflags);
	local_irq_restore(flags);
}

/*
 * Invoked from macros defined in mmu_context.h
 * which must already have disabled interrupts
 * and done a DVPE or DMT as appropriate.
 */

void smtc_flush_tlb_asid(unsigned long asid)
{
	int entry;
	unsigned long ehi;

	entry = read_c0_wired();

	/* Traverse all non-wired entries */
	while (entry < current_cpu_data.tlbsize) {
		write_c0_index(entry);
		ehb();
		tlb_read();
		ehb();
		ehi = read_c0_entryhi();
		if ((ehi & ASID_MASK) == asid) {
		    /*
		     * Invalidate only entries with specified ASID,
		     * makiing sure all entries differ.
		     */
		    write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
		    write_c0_entrylo0(0);
		    write_c0_entrylo1(0);
		    mtc0_tlbw_hazard();
		    tlb_write_indexed();
		}
		entry++;
	}
	write_c0_index(PARKED_INDEX);
	tlbw_use_hazard();
}

/*
 * Support for single-threading cache flush operations.
 */

static int halt_state_save[NR_CPUS];

/*
 * To really, really be sure that nothing is being done
 * by other TCs, halt them all.  This code assumes that
 * a DVPE has already been done, so while their Halted
 * state is theoretically architecturally unstable, in
 * practice, it's not going to change while we're looking
 * at it.
 */

void smtc_cflush_lockdown(void)
{
	int cpu;

	for_each_online_cpu(cpu) {
		if (cpu != smp_processor_id()) {
			settc(cpu_data[cpu].tc_id);
			halt_state_save[cpu] = read_tc_c0_tchalt();
			write_tc_c0_tchalt(TCHALT_H);
		}
	}
	mips_ihb();
}

/* It would be cheating to change the cpu_online states during a flush! */

void smtc_cflush_release(void)
{
	int cpu;

	/*
	 * Start with a hazard barrier to ensure
	 * that all CACHE ops have played through.
	 */
	mips_ihb();

	for_each_online_cpu(cpu) {
		if (cpu != smp_processor_id()) {
			settc(cpu_data[cpu].tc_id);
			write_tc_c0_tchalt(halt_state_save[cpu]);
		}
	}
	mips_ihb();
}