summaryrefslogtreecommitdiff
path: root/arch/mips/sgi-ip27/ip27-irq.c
blob: 52dad1be6265235813b8c212c5f874e1ea297d6a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
/*
 * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
 *
 * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
 * Copyright (C) 1999 - 2001 Kanoj Sarcar
 */

#undef DEBUG

#include <linux/init.h>
#include <linux/irq.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/timex.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/smp_lock.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/delay.h>
#include <linux/bitops.h>

#include <asm/bootinfo.h>
#include <asm/io.h>
#include <asm/mipsregs.h>
#include <asm/system.h>

#include <asm/ptrace.h>
#include <asm/processor.h>
#include <asm/pci/bridge.h>
#include <asm/sn/addrs.h>
#include <asm/sn/agent.h>
#include <asm/sn/arch.h>
#include <asm/sn/hub.h>
#include <asm/sn/intr.h>

/*
 * Linux has a controller-independent x86 interrupt architecture.
 * every controller has a 'controller-template', that is used
 * by the main code to do the right thing. Each driver-visible
 * interrupt source is transparently wired to the apropriate
 * controller. Thus drivers need not be aware of the
 * interrupt-controller.
 *
 * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
 * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
 * (IO-APICs assumed to be messaging to Pentium local-APICs)
 *
 * the code is designed to be easily extended with new/different
 * interrupt controllers, without having to do assembly magic.
 */

extern asmlinkage void ip27_irq(void);

extern struct bridge_controller *irq_to_bridge[];
extern int irq_to_slot[];

/*
 * use these macros to get the encoded nasid and widget id
 * from the irq value
 */
#define IRQ_TO_BRIDGE(i)		irq_to_bridge[(i)]
#define	SLOT_FROM_PCI_IRQ(i)		irq_to_slot[i]

static inline int alloc_level(int cpu, int irq)
{
	struct hub_data *hub = hub_data(cpu_to_node(cpu));
	struct slice_data *si = cpu_data[cpu].data;
	int level;

	level = find_first_zero_bit(hub->irq_alloc_mask, LEVELS_PER_SLICE);
	if (level >= LEVELS_PER_SLICE)
		panic("Cpu %d flooded with devices\n", cpu);

	__set_bit(level, hub->irq_alloc_mask);
	si->level_to_irq[level] = irq;

	return level;
}

static inline int find_level(cpuid_t *cpunum, int irq)
{
	int cpu, i;

	for_each_online_cpu(cpu) {
		struct slice_data *si = cpu_data[cpu].data;

		for (i = BASE_PCI_IRQ; i < LEVELS_PER_SLICE; i++)
			if (si->level_to_irq[i] == irq) {
				*cpunum = cpu;

				return i;
			}
	}

	panic("Could not identify cpu/level for irq %d\n", irq);
}

/*
 * Find first bit set
 */
static int ms1bit(unsigned long x)
{
	int b = 0, s;

	s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s;
	s =  8; if (x >>  8 == 0) s = 0; b += s; x >>= s;
	s =  4; if (x >>  4 == 0) s = 0; b += s; x >>= s;
	s =  2; if (x >>  2 == 0) s = 0; b += s; x >>= s;
	s =  1; if (x >>  1 == 0) s = 0; b += s;

	return b;
}

/*
 * This code is unnecessarily complex, because we do IRQF_DISABLED
 * intr enabling. Basically, once we grab the set of intrs we need
 * to service, we must mask _all_ these interrupts; firstly, to make
 * sure the same intr does not intr again, causing recursion that
 * can lead to stack overflow. Secondly, we can not just mask the
 * one intr we are do_IRQing, because the non-masked intrs in the
 * first set might intr again, causing multiple servicings of the
 * same intr. This effect is mostly seen for intercpu intrs.
 * Kanoj 05.13.00
 */

static void ip27_do_irq_mask0(struct pt_regs *regs)
{
	int irq, swlevel;
	hubreg_t pend0, mask0;
	cpuid_t cpu = smp_processor_id();
	int pi_int_mask0 =
		(cputoslice(cpu) == 0) ?  PI_INT_MASK0_A : PI_INT_MASK0_B;

	/* copied from Irix intpend0() */
	pend0 = LOCAL_HUB_L(PI_INT_PEND0);
	mask0 = LOCAL_HUB_L(pi_int_mask0);

	pend0 &= mask0;		/* Pick intrs we should look at */
	if (!pend0)
		return;

	swlevel = ms1bit(pend0);
#ifdef CONFIG_SMP
	if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) {
		LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);
	} else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) {
		LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);
	} else if (pend0 & (1UL << CPU_CALL_A_IRQ)) {
		LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);
		smp_call_function_interrupt();
	} else if (pend0 & (1UL << CPU_CALL_B_IRQ)) {
		LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);
		smp_call_function_interrupt();
	} else
#endif
	{
		/* "map" swlevel to irq */
		struct slice_data *si = cpu_data[cpu].data;

		irq = si->level_to_irq[swlevel];
		do_IRQ(irq, regs);
	}

	LOCAL_HUB_L(PI_INT_PEND0);
}

static void ip27_do_irq_mask1(struct pt_regs *regs)
{
	int irq, swlevel;
	hubreg_t pend1, mask1;
	cpuid_t cpu = smp_processor_id();
	int pi_int_mask1 = (cputoslice(cpu) == 0) ?  PI_INT_MASK1_A : PI_INT_MASK1_B;
	struct slice_data *si = cpu_data[cpu].data;

	/* copied from Irix intpend0() */
	pend1 = LOCAL_HUB_L(PI_INT_PEND1);
	mask1 = LOCAL_HUB_L(pi_int_mask1);

	pend1 &= mask1;		/* Pick intrs we should look at */
	if (!pend1)
		return;

	swlevel = ms1bit(pend1);
	/* "map" swlevel to irq */
	irq = si->level_to_irq[swlevel];
	LOCAL_HUB_CLR_INTR(swlevel);
	do_IRQ(irq, regs);

	LOCAL_HUB_L(PI_INT_PEND1);
}

static void ip27_prof_timer(struct pt_regs *regs)
{
	panic("CPU %d got a profiling interrupt", smp_processor_id());
}

static void ip27_hub_error(struct pt_regs *regs)
{
	panic("CPU %d got a hub error interrupt", smp_processor_id());
}

static int intr_connect_level(int cpu, int bit)
{
	nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
	struct slice_data *si = cpu_data[cpu].data;
	unsigned long flags;

	set_bit(bit, si->irq_enable_mask);

	local_irq_save(flags);
	if (!cputoslice(cpu)) {
		REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
		REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
	} else {
		REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
		REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
	}
	local_irq_restore(flags);

	return 0;
}

static int intr_disconnect_level(int cpu, int bit)
{
	nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
	struct slice_data *si = cpu_data[cpu].data;

	clear_bit(bit, si->irq_enable_mask);

	if (!cputoslice(cpu)) {
		REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
		REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
	} else {
		REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
		REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
	}

	return 0;
}

/* Startup one of the (PCI ...) IRQs routes over a bridge.  */
static unsigned int startup_bridge_irq(unsigned int irq)
{
	struct bridge_controller *bc;
	bridgereg_t device;
	bridge_t *bridge;
	int pin, swlevel;
	cpuid_t cpu;

	pin = SLOT_FROM_PCI_IRQ(irq);
	bc = IRQ_TO_BRIDGE(irq);
	bridge = bc->base;

	pr_debug("bridge_startup(): irq= 0x%x  pin=%d\n", irq, pin);
	/*
	 * "map" irq to a swlevel greater than 6 since the first 6 bits
	 * of INT_PEND0 are taken
	 */
	swlevel = find_level(&cpu, irq);
	bridge->b_int_addr[pin].addr = (0x20000 | swlevel | (bc->nasid << 8));
	bridge->b_int_enable |= (1 << pin);
	bridge->b_int_enable |= 0x7ffffe00;	/* more stuff in int_enable */

	/*
	 * Enable sending of an interrupt clear packt to the hub on a high to
	 * low transition of the interrupt pin.
	 *
	 * IRIX sets additional bits in the address which are documented as
	 * reserved in the bridge docs.
	 */
	bridge->b_int_mode |= (1UL << pin);

	/*
	 * We assume the bridge to have a 1:1 mapping between devices
	 * (slots) and intr pins.
	 */
	device = bridge->b_int_device;
	device &= ~(7 << (pin*3));
	device |= (pin << (pin*3));
	bridge->b_int_device = device;

        bridge->b_wid_tflush;

        return 0;       /* Never anything pending.  */
}

/* Shutdown one of the (PCI ...) IRQs routes over a bridge.  */
static void shutdown_bridge_irq(unsigned int irq)
{
	struct bridge_controller *bc = IRQ_TO_BRIDGE(irq);
	struct hub_data *hub = hub_data(cpu_to_node(bc->irq_cpu));
	bridge_t *bridge = bc->base;
	int pin, swlevel;
	cpuid_t cpu;

	pr_debug("bridge_shutdown: irq 0x%x\n", irq);
	pin = SLOT_FROM_PCI_IRQ(irq);

	/*
	 * map irq to a swlevel greater than 6 since the first 6 bits
	 * of INT_PEND0 are taken
	 */
	swlevel = find_level(&cpu, irq);
	intr_disconnect_level(cpu, swlevel);

	__clear_bit(swlevel, hub->irq_alloc_mask);

	bridge->b_int_enable &= ~(1 << pin);
	bridge->b_wid_tflush;
}

static inline void enable_bridge_irq(unsigned int irq)
{
	cpuid_t cpu;
	int swlevel;

	swlevel = find_level(&cpu, irq);	/* Criminal offence */
	intr_connect_level(cpu, swlevel);
}

static inline void disable_bridge_irq(unsigned int irq)
{
	cpuid_t cpu;
	int swlevel;

	swlevel = find_level(&cpu, irq);	/* Criminal offence */
	intr_disconnect_level(cpu, swlevel);
}

static void mask_and_ack_bridge_irq(unsigned int irq)
{
	disable_bridge_irq(irq);
}

static void end_bridge_irq(unsigned int irq)
{
	if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS)) &&
	    irq_desc[irq].action)
		enable_bridge_irq(irq);
}

static struct hw_interrupt_type bridge_irq_type = {
	.typename	= "bridge",
	.startup	= startup_bridge_irq,
	.shutdown	= shutdown_bridge_irq,
	.enable		= enable_bridge_irq,
	.disable	= disable_bridge_irq,
	.ack		= mask_and_ack_bridge_irq,
	.end		= end_bridge_irq,
};

static unsigned long irq_map[NR_IRQS / BITS_PER_LONG];

int allocate_irqno(void)
{
	int irq;

again:
	irq = find_first_zero_bit(irq_map, NR_IRQS);

	if (irq >= NR_IRQS)
		return -ENOSPC;

	if (test_and_set_bit(irq, irq_map))
		goto again;

	return irq;
}

void free_irqno(unsigned int irq)
{
	clear_bit(irq, irq_map);
}

void __devinit register_bridge_irq(unsigned int irq)
{
	irq_desc[irq].status	= IRQ_DISABLED;
	irq_desc[irq].action	= 0;
	irq_desc[irq].depth	= 1;
	irq_desc[irq].chip	= &bridge_irq_type;
}

int __devinit request_bridge_irq(struct bridge_controller *bc)
{
	int irq = allocate_irqno();
	int swlevel, cpu;
	nasid_t nasid;

	if (irq < 0)
		return irq;

	/*
	 * "map" irq to a swlevel greater than 6 since the first 6 bits
	 * of INT_PEND0 are taken
	 */
	cpu = bc->irq_cpu;
	swlevel = alloc_level(cpu, irq);
	if (unlikely(swlevel < 0)) {
		free_irqno(irq);

		return -EAGAIN;
	}

	/* Make sure it's not already pending when we connect it. */
	nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
	REMOTE_HUB_CLR_INTR(nasid, swlevel);

	intr_connect_level(cpu, swlevel);

	register_bridge_irq(irq);

	return irq;
}

extern void ip27_rt_timer_interrupt(struct pt_regs *regs);

asmlinkage void plat_irq_dispatch(struct pt_regs *regs)
{
	unsigned long pending = read_c0_cause() & read_c0_status();

	if (pending & CAUSEF_IP4)
		ip27_rt_timer_interrupt(regs);
	else if (pending & CAUSEF_IP2)	/* PI_INT_PEND_0 or CC_PEND_{A|B} */
		ip27_do_irq_mask0(regs);
	else if (pending & CAUSEF_IP3)	/* PI_INT_PEND_1 */
		ip27_do_irq_mask1(regs);
	else if (pending & CAUSEF_IP5)
		ip27_prof_timer(regs);
	else if (pending & CAUSEF_IP6)
		ip27_hub_error(regs);
}

void __init arch_init_irq(void)
{
}

void install_ipi(void)
{
	int slice = LOCAL_HUB_L(PI_CPU_NUM);
	int cpu = smp_processor_id();
	struct slice_data *si = cpu_data[cpu].data;
	struct hub_data *hub = hub_data(cpu_to_node(cpu));
	int resched, call;

	resched = CPU_RESCHED_A_IRQ + slice;
	__set_bit(resched, hub->irq_alloc_mask);
	__set_bit(resched, si->irq_enable_mask);
	LOCAL_HUB_CLR_INTR(resched);

	call = CPU_CALL_A_IRQ + slice;
	__set_bit(call, hub->irq_alloc_mask);
	__set_bit(call, si->irq_enable_mask);
	LOCAL_HUB_CLR_INTR(call);

	if (slice == 0) {
		LOCAL_HUB_S(PI_INT_MASK0_A, si->irq_enable_mask[0]);
		LOCAL_HUB_S(PI_INT_MASK1_A, si->irq_enable_mask[1]);
	} else {
		LOCAL_HUB_S(PI_INT_MASK0_B, si->irq_enable_mask[0]);
		LOCAL_HUB_S(PI_INT_MASK1_B, si->irq_enable_mask[1]);
	}
}