1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
/* Glue code for SHA256 hashing optimized for sparc64 crypto opcodes.
*
* This is based largely upon crypto/sha256_generic.c
*
* Copyright (c) Jean-Luc Cooke <jlcooke@certainkey.com>
* Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk>
* Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
* SHA224 Support Copyright 2007 Intel Corporation <jonathan.lynch@intel.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <crypto/internal/hash.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/cryptohash.h>
#include <linux/types.h>
#include <crypto/sha.h>
#include <asm/pstate.h>
#include <asm/elf.h>
#include "opcodes.h"
asmlinkage void sha256_sparc64_transform(u32 *digest, const char *data,
unsigned int rounds);
static int sha224_sparc64_init(struct shash_desc *desc)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
sctx->state[0] = SHA224_H0;
sctx->state[1] = SHA224_H1;
sctx->state[2] = SHA224_H2;
sctx->state[3] = SHA224_H3;
sctx->state[4] = SHA224_H4;
sctx->state[5] = SHA224_H5;
sctx->state[6] = SHA224_H6;
sctx->state[7] = SHA224_H7;
sctx->count = 0;
return 0;
}
static int sha256_sparc64_init(struct shash_desc *desc)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
sctx->state[0] = SHA256_H0;
sctx->state[1] = SHA256_H1;
sctx->state[2] = SHA256_H2;
sctx->state[3] = SHA256_H3;
sctx->state[4] = SHA256_H4;
sctx->state[5] = SHA256_H5;
sctx->state[6] = SHA256_H6;
sctx->state[7] = SHA256_H7;
sctx->count = 0;
return 0;
}
static void __sha256_sparc64_update(struct sha256_state *sctx, const u8 *data,
unsigned int len, unsigned int partial)
{
unsigned int done = 0;
sctx->count += len;
if (partial) {
done = SHA256_BLOCK_SIZE - partial;
memcpy(sctx->buf + partial, data, done);
sha256_sparc64_transform(sctx->state, sctx->buf, 1);
}
if (len - done >= SHA256_BLOCK_SIZE) {
const unsigned int rounds = (len - done) / SHA256_BLOCK_SIZE;
sha256_sparc64_transform(sctx->state, data + done, rounds);
done += rounds * SHA256_BLOCK_SIZE;
}
memcpy(sctx->buf, data + done, len - done);
}
static int sha256_sparc64_update(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
unsigned int partial = sctx->count % SHA256_BLOCK_SIZE;
/* Handle the fast case right here */
if (partial + len < SHA256_BLOCK_SIZE) {
sctx->count += len;
memcpy(sctx->buf + partial, data, len);
} else
__sha256_sparc64_update(sctx, data, len, partial);
return 0;
}
static int sha256_sparc64_final(struct shash_desc *desc, u8 *out)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
unsigned int i, index, padlen;
__be32 *dst = (__be32 *)out;
__be64 bits;
static const u8 padding[SHA256_BLOCK_SIZE] = { 0x80, };
bits = cpu_to_be64(sctx->count << 3);
/* Pad out to 56 mod 64 and append length */
index = sctx->count % SHA256_BLOCK_SIZE;
padlen = (index < 56) ? (56 - index) : ((SHA256_BLOCK_SIZE+56) - index);
/* We need to fill a whole block for __sha256_sparc64_update() */
if (padlen <= 56) {
sctx->count += padlen;
memcpy(sctx->buf + index, padding, padlen);
} else {
__sha256_sparc64_update(sctx, padding, padlen, index);
}
__sha256_sparc64_update(sctx, (const u8 *)&bits, sizeof(bits), 56);
/* Store state in digest */
for (i = 0; i < 8; i++)
dst[i] = cpu_to_be32(sctx->state[i]);
/* Wipe context */
memset(sctx, 0, sizeof(*sctx));
return 0;
}
static int sha224_sparc64_final(struct shash_desc *desc, u8 *hash)
{
u8 D[SHA256_DIGEST_SIZE];
sha256_sparc64_final(desc, D);
memcpy(hash, D, SHA224_DIGEST_SIZE);
memset(D, 0, SHA256_DIGEST_SIZE);
return 0;
}
static int sha256_sparc64_export(struct shash_desc *desc, void *out)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
memcpy(out, sctx, sizeof(*sctx));
return 0;
}
static int sha256_sparc64_import(struct shash_desc *desc, const void *in)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
memcpy(sctx, in, sizeof(*sctx));
return 0;
}
static struct shash_alg sha256 = {
.digestsize = SHA256_DIGEST_SIZE,
.init = sha256_sparc64_init,
.update = sha256_sparc64_update,
.final = sha256_sparc64_final,
.export = sha256_sparc64_export,
.import = sha256_sparc64_import,
.descsize = sizeof(struct sha256_state),
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "sha256",
.cra_driver_name= "sha256-sparc64",
.cra_priority = SPARC_CR_OPCODE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static struct shash_alg sha224 = {
.digestsize = SHA224_DIGEST_SIZE,
.init = sha224_sparc64_init,
.update = sha256_sparc64_update,
.final = sha224_sparc64_final,
.descsize = sizeof(struct sha256_state),
.base = {
.cra_name = "sha224",
.cra_driver_name= "sha224-sparc64",
.cra_priority = SPARC_CR_OPCODE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static bool __init sparc64_has_sha256_opcode(void)
{
unsigned long cfr;
if (!(sparc64_elf_hwcap & HWCAP_SPARC_CRYPTO))
return false;
__asm__ __volatile__("rd %%asr26, %0" : "=r" (cfr));
if (!(cfr & CFR_SHA256))
return false;
return true;
}
static int __init sha256_sparc64_mod_init(void)
{
if (sparc64_has_sha256_opcode()) {
int ret = crypto_register_shash(&sha224);
if (ret < 0)
return ret;
ret = crypto_register_shash(&sha256);
if (ret < 0) {
crypto_unregister_shash(&sha224);
return ret;
}
pr_info("Using sparc64 sha256 opcode optimized SHA-256/SHA-224 implementation\n");
return 0;
}
pr_info("sparc64 sha256 opcode not available.\n");
return -ENODEV;
}
static void __exit sha256_sparc64_mod_fini(void)
{
crypto_unregister_shash(&sha224);
crypto_unregister_shash(&sha256);
}
module_init(sha256_sparc64_mod_init);
module_exit(sha256_sparc64_mod_fini);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SHA-224 and SHA-256 Secure Hash Algorithm, sparc64 sha256 opcode accelerated");
MODULE_ALIAS_CRYPTO("sha224");
MODULE_ALIAS_CRYPTO("sha256");
#include "crop_devid.c"
|