1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
|
/*
* Copyright 2010 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mmzone.h>
#include <linux/bootmem.h>
#include <linux/module.h>
#include <linux/node.h>
#include <linux/cpu.h>
#include <linux/ioport.h>
#include <linux/irq.h>
#include <linux/kexec.h>
#include <linux/pci.h>
#include <linux/initrd.h>
#include <linux/io.h>
#include <linux/highmem.h>
#include <linux/smp.h>
#include <linux/timex.h>
#include <asm/setup.h>
#include <asm/sections.h>
#include <asm/sections.h>
#include <asm/cacheflush.h>
#include <asm/cacheflush.h>
#include <asm/pgalloc.h>
#include <asm/mmu_context.h>
#include <hv/hypervisor.h>
#include <arch/interrupts.h>
/* <linux/smp.h> doesn't provide this definition. */
#ifndef CONFIG_SMP
#define setup_max_cpus 1
#endif
static inline int ABS(int x) { return x >= 0 ? x : -x; }
/* Chip information */
char chip_model[64] __write_once;
struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
EXPORT_SYMBOL(node_data);
/* We only create bootmem data on node 0. */
static bootmem_data_t __initdata node0_bdata;
/* Information on the NUMA nodes that we compute early */
unsigned long __cpuinitdata node_start_pfn[MAX_NUMNODES];
unsigned long __cpuinitdata node_end_pfn[MAX_NUMNODES];
unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
unsigned long __initdata node_free_pfn[MAX_NUMNODES];
#ifdef CONFIG_HIGHMEM
/* Page frame index of end of lowmem on each controller. */
unsigned long __cpuinitdata node_lowmem_end_pfn[MAX_NUMNODES];
/* Number of pages that can be mapped into lowmem. */
static unsigned long __initdata mappable_physpages;
#endif
/* Data on which physical memory controller corresponds to which NUMA node */
int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
#ifdef CONFIG_HIGHMEM
/* Map information from VAs to PAs */
unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
__write_once __attribute__((aligned(L2_CACHE_BYTES)));
EXPORT_SYMBOL(pbase_map);
/* Map information from PAs to VAs */
void *vbase_map[NR_PA_HIGHBIT_VALUES]
__write_once __attribute__((aligned(L2_CACHE_BYTES)));
EXPORT_SYMBOL(vbase_map);
#endif
/* Node number as a function of the high PA bits */
int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
EXPORT_SYMBOL(highbits_to_node);
static unsigned int __initdata maxmem_pfn = -1U;
static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
[0 ... MAX_NUMNODES-1] = -1U
};
static nodemask_t __initdata isolnodes;
#ifdef CONFIG_PCI
enum { DEFAULT_PCI_RESERVE_MB = 64 };
static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
unsigned long __initdata pci_reserve_start_pfn = -1U;
unsigned long __initdata pci_reserve_end_pfn = -1U;
#endif
static int __init setup_maxmem(char *str)
{
long maxmem_mb;
if (str == NULL || strict_strtol(str, 0, &maxmem_mb) != 0 ||
maxmem_mb == 0)
return -EINVAL;
maxmem_pfn = (maxmem_mb >> (HPAGE_SHIFT - 20)) <<
(HPAGE_SHIFT - PAGE_SHIFT);
pr_info("Forcing RAM used to no more than %dMB\n",
maxmem_pfn >> (20 - PAGE_SHIFT));
return 0;
}
early_param("maxmem", setup_maxmem);
static int __init setup_maxnodemem(char *str)
{
char *endp;
long maxnodemem_mb, node;
node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
if (node >= MAX_NUMNODES || *endp != ':' ||
strict_strtol(endp+1, 0, &maxnodemem_mb) != 0)
return -EINVAL;
maxnodemem_pfn[node] = (maxnodemem_mb >> (HPAGE_SHIFT - 20)) <<
(HPAGE_SHIFT - PAGE_SHIFT);
pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
return 0;
}
early_param("maxnodemem", setup_maxnodemem);
static int __init setup_isolnodes(char *str)
{
char buf[MAX_NUMNODES * 5];
if (str == NULL || nodelist_parse(str, isolnodes) != 0)
return -EINVAL;
nodelist_scnprintf(buf, sizeof(buf), isolnodes);
pr_info("Set isolnodes value to '%s'\n", buf);
return 0;
}
early_param("isolnodes", setup_isolnodes);
#ifdef CONFIG_PCI
static int __init setup_pci_reserve(char* str)
{
unsigned long mb;
if (str == NULL || strict_strtoul(str, 0, &mb) != 0 ||
mb > 3 * 1024)
return -EINVAL;
pci_reserve_mb = mb;
pr_info("Reserving %dMB for PCIE root complex mappings\n",
pci_reserve_mb);
return 0;
}
early_param("pci_reserve", setup_pci_reserve);
#endif
#ifndef __tilegx__
/*
* vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
* This can be used to increase (or decrease) the vmalloc area.
*/
static int __init parse_vmalloc(char *arg)
{
if (!arg)
return -EINVAL;
VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
/* See validate_va() for more on this test. */
if ((long)_VMALLOC_START >= 0)
early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
return 0;
}
early_param("vmalloc", parse_vmalloc);
#endif
#ifdef CONFIG_HIGHMEM
/*
* Determine for each controller where its lowmem is mapped and how
* much of it is mapped there. On controller zero, the first few
* megabytes are mapped at 0xfd000000 as code, so in principle we
* could start our data mappings higher up, but for now we don't
* bother, to avoid additional confusion.
*
* One question is whether, on systems with more than 768 Mb and
* controllers of different sizes, to map in a proportionate amount of
* each one, or to try to map the same amount from each controller.
* (E.g. if we have three controllers with 256MB, 1GB, and 256MB
* respectively, do we map 256MB from each, or do we map 128 MB, 512
* MB, and 128 MB respectively?) For now we use a proportionate
* solution like the latter.
*
* The VA/PA mapping demands that we align our decisions at 16 MB
* boundaries so that we can rapidly convert VA to PA.
*/
static void *__init setup_pa_va_mapping(void)
{
unsigned long curr_pages = 0;
unsigned long vaddr = PAGE_OFFSET;
nodemask_t highonlynodes = isolnodes;
int i, j;
memset(pbase_map, -1, sizeof(pbase_map));
memset(vbase_map, -1, sizeof(vbase_map));
/* Node zero cannot be isolated for LOWMEM purposes. */
node_clear(0, highonlynodes);
/* Count up the number of pages on non-highonlynodes controllers. */
mappable_physpages = 0;
for_each_online_node(i) {
if (!node_isset(i, highonlynodes))
mappable_physpages +=
node_end_pfn[i] - node_start_pfn[i];
}
for_each_online_node(i) {
unsigned long start = node_start_pfn[i];
unsigned long end = node_end_pfn[i];
unsigned long size = end - start;
unsigned long vaddr_end;
if (node_isset(i, highonlynodes)) {
/* Mark this controller as having no lowmem. */
node_lowmem_end_pfn[i] = start;
continue;
}
curr_pages += size;
if (mappable_physpages > MAXMEM_PFN) {
vaddr_end = PAGE_OFFSET +
(((u64)curr_pages * MAXMEM_PFN /
mappable_physpages)
<< PAGE_SHIFT);
} else {
vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
}
for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
unsigned long this_pfn =
start + (j << HUGETLB_PAGE_ORDER);
pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
if (vbase_map[__pfn_to_highbits(this_pfn)] ==
(void *)-1)
vbase_map[__pfn_to_highbits(this_pfn)] =
(void *)(vaddr & HPAGE_MASK);
}
node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
BUG_ON(node_lowmem_end_pfn[i] > end);
}
/* Return highest address of any mapped memory. */
return (void *)vaddr;
}
#endif /* CONFIG_HIGHMEM */
/*
* Register our most important memory mappings with the debug stub.
*
* This is up to 4 mappings for lowmem, one mapping per memory
* controller, plus one for our text segment.
*/
static void __cpuinit store_permanent_mappings(void)
{
int i;
for_each_online_node(i) {
HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
#ifdef CONFIG_HIGHMEM
HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
#else
HV_PhysAddr high_mapped_pa = node_end_pfn[i];
#endif
unsigned long pages = high_mapped_pa - node_start_pfn[i];
HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
}
hv_store_mapping((HV_VirtAddr)_stext,
(uint32_t)(_einittext - _stext), 0);
}
/*
* Use hv_inquire_physical() to populate node_{start,end}_pfn[]
* and node_online_map, doing suitable sanity-checking.
* Also set min_low_pfn, max_low_pfn, and max_pfn.
*/
static void __init setup_memory(void)
{
int i, j;
int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
#ifdef CONFIG_HIGHMEM
long highmem_pages;
#endif
#ifndef __tilegx__
int cap;
#endif
#if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
long lowmem_pages;
#endif
/* We are using a char to hold the cpu_2_node[] mapping */
BUG_ON(MAX_NUMNODES > 127);
/* Discover the ranges of memory available to us */
for (i = 0; ; ++i) {
unsigned long start, size, end, highbits;
HV_PhysAddrRange range = hv_inquire_physical(i);
if (range.size == 0)
break;
#ifdef CONFIG_FLATMEM
if (i > 0) {
pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
range.size, range.start + range.size);
continue;
}
#endif
#ifndef __tilegx__
if ((unsigned long)range.start) {
pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
range.start, range.start + range.size);
continue;
}
#endif
if ((range.start & (HPAGE_SIZE-1)) != 0 ||
(range.size & (HPAGE_SIZE-1)) != 0) {
unsigned long long start_pa = range.start;
unsigned long long orig_size = range.size;
range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
range.size -= (range.start - start_pa);
range.size &= HPAGE_MASK;
pr_err("Range not hugepage-aligned: %#llx..%#llx:"
" now %#llx-%#llx\n",
start_pa, start_pa + orig_size,
range.start, range.start + range.size);
}
highbits = __pa_to_highbits(range.start);
if (highbits >= NR_PA_HIGHBIT_VALUES) {
pr_err("PA high bits too high: %#llx..%#llx\n",
range.start, range.start + range.size);
continue;
}
if (highbits_seen[highbits]) {
pr_err("Range overlaps in high bits: %#llx..%#llx\n",
range.start, range.start + range.size);
continue;
}
highbits_seen[highbits] = 1;
if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
int max_size = maxnodemem_pfn[i];
if (max_size > 0) {
pr_err("Maxnodemem reduced node %d to"
" %d pages\n", i, max_size);
range.size = PFN_PHYS(max_size);
} else {
pr_err("Maxnodemem disabled node %d\n", i);
continue;
}
}
if (num_physpages + PFN_DOWN(range.size) > maxmem_pfn) {
int max_size = maxmem_pfn - num_physpages;
if (max_size > 0) {
pr_err("Maxmem reduced node %d to %d pages\n",
i, max_size);
range.size = PFN_PHYS(max_size);
} else {
pr_err("Maxmem disabled node %d\n", i);
continue;
}
}
if (i >= MAX_NUMNODES) {
pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
i, range.size, range.size + range.start);
continue;
}
start = range.start >> PAGE_SHIFT;
size = range.size >> PAGE_SHIFT;
end = start + size;
#ifndef __tilegx__
if (((HV_PhysAddr)end << PAGE_SHIFT) !=
(range.start + range.size)) {
pr_err("PAs too high to represent: %#llx..%#llx\n",
range.start, range.start + range.size);
continue;
}
#endif
#ifdef CONFIG_PCI
/*
* Blocks that overlap the pci reserved region must
* have enough space to hold the maximum percpu data
* region at the top of the range. If there isn't
* enough space above the reserved region, just
* truncate the node.
*/
if (start <= pci_reserve_start_pfn &&
end > pci_reserve_start_pfn) {
unsigned int per_cpu_size =
__per_cpu_end - __per_cpu_start;
unsigned int percpu_pages =
NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
if (end < pci_reserve_end_pfn + percpu_pages) {
end = pci_reserve_start_pfn;
pr_err("PCI mapping region reduced node %d to"
" %ld pages\n", i, end - start);
}
}
#endif
for (j = __pfn_to_highbits(start);
j <= __pfn_to_highbits(end - 1); j++)
highbits_to_node[j] = i;
node_start_pfn[i] = start;
node_end_pfn[i] = end;
node_controller[i] = range.controller;
num_physpages += size;
max_pfn = end;
/* Mark node as online */
node_set(i, node_online_map);
node_set(i, node_possible_map);
}
#ifndef __tilegx__
/*
* For 4KB pages, mem_map "struct page" data is 1% of the size
* of the physical memory, so can be quite big (640 MB for
* four 16G zones). These structures must be mapped in
* lowmem, and since we currently cap out at about 768 MB,
* it's impractical to try to use this much address space.
* For now, arbitrarily cap the amount of physical memory
* we're willing to use at 8 million pages (32GB of 4KB pages).
*/
cap = 8 * 1024 * 1024; /* 8 million pages */
if (num_physpages > cap) {
int num_nodes = num_online_nodes();
int cap_each = cap / num_nodes;
unsigned long dropped_pages = 0;
for (i = 0; i < num_nodes; ++i) {
int size = node_end_pfn[i] - node_start_pfn[i];
if (size > cap_each) {
dropped_pages += (size - cap_each);
node_end_pfn[i] = node_start_pfn[i] + cap_each;
}
}
num_physpages -= dropped_pages;
pr_warning("Only using %ldMB memory;"
" ignoring %ldMB.\n",
num_physpages >> (20 - PAGE_SHIFT),
dropped_pages >> (20 - PAGE_SHIFT));
pr_warning("Consider using a larger page size.\n");
}
#endif
/* Heap starts just above the last loaded address. */
min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
#ifdef CONFIG_HIGHMEM
/* Find where we map lowmem from each controller. */
high_memory = setup_pa_va_mapping();
/* Set max_low_pfn based on what node 0 can directly address. */
max_low_pfn = node_lowmem_end_pfn[0];
lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
MAXMEM_PFN : mappable_physpages;
highmem_pages = (long) (num_physpages - lowmem_pages);
pr_notice("%ldMB HIGHMEM available.\n",
pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
pr_notice("%ldMB LOWMEM available.\n",
pages_to_mb(lowmem_pages));
#else
/* Set max_low_pfn based on what node 0 can directly address. */
max_low_pfn = node_end_pfn[0];
#ifndef __tilegx__
if (node_end_pfn[0] > MAXMEM_PFN) {
pr_warning("Only using %ldMB LOWMEM.\n",
MAXMEM>>20);
pr_warning("Use a HIGHMEM enabled kernel.\n");
max_low_pfn = MAXMEM_PFN;
max_pfn = MAXMEM_PFN;
num_physpages = MAXMEM_PFN;
node_end_pfn[0] = MAXMEM_PFN;
} else {
pr_notice("%ldMB memory available.\n",
pages_to_mb(node_end_pfn[0]));
}
for (i = 1; i < MAX_NUMNODES; ++i) {
node_start_pfn[i] = 0;
node_end_pfn[i] = 0;
}
high_memory = __va(node_end_pfn[0]);
#else
lowmem_pages = 0;
for (i = 0; i < MAX_NUMNODES; ++i) {
int pages = node_end_pfn[i] - node_start_pfn[i];
lowmem_pages += pages;
if (pages)
high_memory = pfn_to_kaddr(node_end_pfn[i]);
}
pr_notice("%ldMB memory available.\n",
pages_to_mb(lowmem_pages));
#endif
#endif
}
static void __init setup_bootmem_allocator(void)
{
unsigned long bootmap_size, first_alloc_pfn, last_alloc_pfn;
/* Provide a node 0 bdata. */
NODE_DATA(0)->bdata = &node0_bdata;
#ifdef CONFIG_PCI
/* Don't let boot memory alias the PCI region. */
last_alloc_pfn = min(max_low_pfn, pci_reserve_start_pfn);
#else
last_alloc_pfn = max_low_pfn;
#endif
/*
* Initialize the boot-time allocator (with low memory only):
* The first argument says where to put the bitmap, and the
* second says where the end of allocatable memory is.
*/
bootmap_size = init_bootmem(min_low_pfn, last_alloc_pfn);
/*
* Let the bootmem allocator use all the space we've given it
* except for its own bitmap.
*/
first_alloc_pfn = min_low_pfn + PFN_UP(bootmap_size);
if (first_alloc_pfn >= last_alloc_pfn)
early_panic("Not enough memory on controller 0 for bootmem\n");
free_bootmem(PFN_PHYS(first_alloc_pfn),
PFN_PHYS(last_alloc_pfn - first_alloc_pfn));
#ifdef CONFIG_KEXEC
if (crashk_res.start != crashk_res.end)
reserve_bootmem(crashk_res.start,
crashk_res.end - crashk_res.start + 1, 0);
#endif
}
void *__init alloc_remap(int nid, unsigned long size)
{
int pages = node_end_pfn[nid] - node_start_pfn[nid];
void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
BUG_ON(size != pages * sizeof(struct page));
memset(map, 0, size);
return map;
}
static int __init percpu_size(void)
{
int size = ALIGN(__per_cpu_end - __per_cpu_start, PAGE_SIZE);
#ifdef CONFIG_MODULES
if (size < PERCPU_ENOUGH_ROOM)
size = PERCPU_ENOUGH_ROOM;
#endif
/* In several places we assume the per-cpu data fits on a huge page. */
BUG_ON(kdata_huge && size > HPAGE_SIZE);
return size;
}
static inline unsigned long alloc_bootmem_pfn(int size, unsigned long goal)
{
void *kva = __alloc_bootmem(size, PAGE_SIZE, goal);
unsigned long pfn = kaddr_to_pfn(kva);
BUG_ON(goal && PFN_PHYS(pfn) != goal);
return pfn;
}
static void __init zone_sizes_init(void)
{
unsigned long zones_size[MAX_NR_ZONES] = { 0 };
unsigned long node_percpu[MAX_NUMNODES] = { 0 };
int size = percpu_size();
int num_cpus = smp_height * smp_width;
int i;
for (i = 0; i < num_cpus; ++i)
node_percpu[cpu_to_node(i)] += size;
for_each_online_node(i) {
unsigned long start = node_start_pfn[i];
unsigned long end = node_end_pfn[i];
#ifdef CONFIG_HIGHMEM
unsigned long lowmem_end = node_lowmem_end_pfn[i];
#else
unsigned long lowmem_end = end;
#endif
int memmap_size = (end - start) * sizeof(struct page);
node_free_pfn[i] = start;
/*
* Set aside pages for per-cpu data and the mem_map array.
*
* Since the per-cpu data requires special homecaching,
* if we are in kdata_huge mode, we put it at the end of
* the lowmem region. If we're not in kdata_huge mode,
* we take the per-cpu pages from the bottom of the
* controller, since that avoids fragmenting a huge page
* that users might want. We always take the memmap
* from the bottom of the controller, since with
* kdata_huge that lets it be under a huge TLB entry.
*
* If the user has requested isolnodes for a controller,
* though, there'll be no lowmem, so we just alloc_bootmem
* the memmap. There will be no percpu memory either.
*/
if (__pfn_to_highbits(start) == 0) {
/* In low PAs, allocate via bootmem. */
unsigned long goal = 0;
node_memmap_pfn[i] =
alloc_bootmem_pfn(memmap_size, goal);
if (kdata_huge)
goal = PFN_PHYS(lowmem_end) - node_percpu[i];
if (node_percpu[i])
node_percpu_pfn[i] =
alloc_bootmem_pfn(node_percpu[i], goal);
} else if (cpu_isset(i, isolnodes)) {
node_memmap_pfn[i] = alloc_bootmem_pfn(memmap_size, 0);
BUG_ON(node_percpu[i] != 0);
} else {
/* In high PAs, just reserve some pages. */
node_memmap_pfn[i] = node_free_pfn[i];
node_free_pfn[i] += PFN_UP(memmap_size);
if (!kdata_huge) {
node_percpu_pfn[i] = node_free_pfn[i];
node_free_pfn[i] += PFN_UP(node_percpu[i]);
} else {
node_percpu_pfn[i] =
lowmem_end - PFN_UP(node_percpu[i]);
}
}
#ifdef CONFIG_HIGHMEM
if (start > lowmem_end) {
zones_size[ZONE_NORMAL] = 0;
zones_size[ZONE_HIGHMEM] = end - start;
} else {
zones_size[ZONE_NORMAL] = lowmem_end - start;
zones_size[ZONE_HIGHMEM] = end - lowmem_end;
}
#else
zones_size[ZONE_NORMAL] = end - start;
#endif
/*
* Everyone shares node 0's bootmem allocator, but
* we use alloc_remap(), above, to put the actual
* struct page array on the individual controllers,
* which is most of the data that we actually care about.
* We can't place bootmem allocators on the other
* controllers since the bootmem allocator can only
* operate on 32-bit physical addresses.
*/
NODE_DATA(i)->bdata = NODE_DATA(0)->bdata;
free_area_init_node(i, zones_size, start, NULL);
printk(KERN_DEBUG " DMA zone: %ld per-cpu pages\n",
PFN_UP(node_percpu[i]));
/* Track the type of memory on each node */
if (zones_size[ZONE_NORMAL])
node_set_state(i, N_NORMAL_MEMORY);
#ifdef CONFIG_HIGHMEM
if (end != start)
node_set_state(i, N_HIGH_MEMORY);
#endif
node_set_online(i);
}
}
#ifdef CONFIG_NUMA
/* which logical CPUs are on which nodes */
struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
EXPORT_SYMBOL(node_2_cpu_mask);
/* which node each logical CPU is on */
char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
EXPORT_SYMBOL(cpu_2_node);
/* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
{
if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
return -1;
else
return cpu_to_node(cpu);
}
/* Return number of immediately-adjacent tiles sharing the same NUMA node. */
static int __init node_neighbors(int node, int cpu,
struct cpumask *unbound_cpus)
{
int neighbors = 0;
int w = smp_width;
int h = smp_height;
int x = cpu % w;
int y = cpu / w;
if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
++neighbors;
if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
++neighbors;
if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
++neighbors;
if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
++neighbors;
return neighbors;
}
static void __init setup_numa_mapping(void)
{
int distance[MAX_NUMNODES][NR_CPUS];
HV_Coord coord;
int cpu, node, cpus, i, x, y;
int num_nodes = num_online_nodes();
struct cpumask unbound_cpus;
nodemask_t default_nodes;
cpumask_clear(&unbound_cpus);
/* Get set of nodes we will use for defaults */
nodes_andnot(default_nodes, node_online_map, isolnodes);
if (nodes_empty(default_nodes)) {
BUG_ON(!node_isset(0, node_online_map));
pr_err("Forcing NUMA node zero available as a default node\n");
node_set(0, default_nodes);
}
/* Populate the distance[] array */
memset(distance, -1, sizeof(distance));
cpu = 0;
for (coord.y = 0; coord.y < smp_height; ++coord.y) {
for (coord.x = 0; coord.x < smp_width;
++coord.x, ++cpu) {
BUG_ON(cpu >= nr_cpu_ids);
if (!cpu_possible(cpu)) {
cpu_2_node[cpu] = -1;
continue;
}
for_each_node_mask(node, default_nodes) {
HV_MemoryControllerInfo info =
hv_inquire_memory_controller(
coord, node_controller[node]);
distance[node][cpu] =
ABS(info.coord.x) + ABS(info.coord.y);
}
cpumask_set_cpu(cpu, &unbound_cpus);
}
}
cpus = cpu;
/*
* Round-robin through the NUMA nodes until all the cpus are
* assigned. We could be more clever here (e.g. create four
* sorted linked lists on the same set of cpu nodes, and pull
* off them in round-robin sequence, removing from all four
* lists each time) but given the relatively small numbers
* involved, O(n^2) seem OK for a one-time cost.
*/
node = first_node(default_nodes);
while (!cpumask_empty(&unbound_cpus)) {
int best_cpu = -1;
int best_distance = INT_MAX;
for (cpu = 0; cpu < cpus; ++cpu) {
if (cpumask_test_cpu(cpu, &unbound_cpus)) {
/*
* Compute metric, which is how much
* closer the cpu is to this memory
* controller than the others, shifted
* up, and then the number of
* neighbors already in the node as an
* epsilon adjustment to try to keep
* the nodes compact.
*/
int d = distance[node][cpu] * num_nodes;
for_each_node_mask(i, default_nodes) {
if (i != node)
d -= distance[i][cpu];
}
d *= 8; /* allow space for epsilon */
d -= node_neighbors(node, cpu, &unbound_cpus);
if (d < best_distance) {
best_cpu = cpu;
best_distance = d;
}
}
}
BUG_ON(best_cpu < 0);
cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
cpu_2_node[best_cpu] = node;
cpumask_clear_cpu(best_cpu, &unbound_cpus);
node = next_node(node, default_nodes);
if (node == MAX_NUMNODES)
node = first_node(default_nodes);
}
/* Print out node assignments and set defaults for disabled cpus */
cpu = 0;
for (y = 0; y < smp_height; ++y) {
printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
for (x = 0; x < smp_width; ++x, ++cpu) {
if (cpu_to_node(cpu) < 0) {
pr_cont(" -");
cpu_2_node[cpu] = first_node(default_nodes);
} else {
pr_cont(" %d", cpu_to_node(cpu));
}
}
pr_cont("\n");
}
}
static struct cpu cpu_devices[NR_CPUS];
static int __init topology_init(void)
{
int i;
for_each_online_node(i)
register_one_node(i);
for_each_present_cpu(i)
register_cpu(&cpu_devices[i], i);
return 0;
}
subsys_initcall(topology_init);
#else /* !CONFIG_NUMA */
#define setup_numa_mapping() do { } while (0)
#endif /* CONFIG_NUMA */
/**
* setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
* @boot: Is this the boot cpu?
*
* Called from setup_arch() on the boot cpu, or online_secondary().
*/
void __cpuinit setup_cpu(int boot)
{
/* The boot cpu sets up its permanent mappings much earlier. */
if (!boot)
store_permanent_mappings();
/* Allow asynchronous TLB interrupts. */
#if CHIP_HAS_TILE_DMA()
raw_local_irq_unmask(INT_DMATLB_MISS);
raw_local_irq_unmask(INT_DMATLB_ACCESS);
#endif
#if CHIP_HAS_SN_PROC()
raw_local_irq_unmask(INT_SNITLB_MISS);
#endif
/*
* Allow user access to many generic SPRs, like the cycle
* counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
*/
__insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
#if CHIP_HAS_SN()
/* Static network is not restricted. */
__insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
#endif
#if CHIP_HAS_SN_PROC()
__insn_mtspr(SPR_MPL_SN_NOTIFY_SET_0, 1);
__insn_mtspr(SPR_MPL_SN_CPL_SET_0, 1);
#endif
/*
* Set the MPL for interrupt control 0 to user level.
* This includes access to the SYSTEM_SAVE and EX_CONTEXT SPRs,
* as well as the PL 0 interrupt mask.
*/
__insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
/* Initialize IRQ support for this cpu. */
setup_irq_regs();
#ifdef CONFIG_HARDWALL
/* Reset the network state on this cpu. */
reset_network_state();
#endif
}
static int __initdata set_initramfs_file;
static char __initdata initramfs_file[128] = "initramfs.cpio.gz";
static int __init setup_initramfs_file(char *str)
{
if (str == NULL)
return -EINVAL;
strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
set_initramfs_file = 1;
return 0;
}
early_param("initramfs_file", setup_initramfs_file);
/*
* We look for an additional "initramfs.cpio.gz" file in the hvfs.
* If there is one, we allocate some memory for it and it will be
* unpacked to the initramfs after any built-in initramfs_data.
*/
static void __init load_hv_initrd(void)
{
HV_FS_StatInfo stat;
int fd, rc;
void *initrd;
fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
if (fd == HV_ENOENT) {
if (set_initramfs_file)
pr_warning("No such hvfs initramfs file '%s'\n",
initramfs_file);
return;
}
BUG_ON(fd < 0);
stat = hv_fs_fstat(fd);
BUG_ON(stat.size < 0);
if (stat.flags & HV_FS_ISDIR) {
pr_warning("Ignoring hvfs file '%s': it's a directory.\n",
initramfs_file);
return;
}
initrd = alloc_bootmem_pages(stat.size);
rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
if (rc != stat.size) {
pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
stat.size, initramfs_file, rc);
free_bootmem((unsigned long) initrd, stat.size);
return;
}
initrd_start = (unsigned long) initrd;
initrd_end = initrd_start + stat.size;
}
void __init free_initrd_mem(unsigned long begin, unsigned long end)
{
free_bootmem(begin, end - begin);
}
static void __init validate_hv(void)
{
/*
* It may already be too late, but let's check our built-in
* configuration against what the hypervisor is providing.
*/
unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
HV_ASIDRange asid_range;
#ifndef CONFIG_SMP
HV_Topology topology = hv_inquire_topology();
BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
if (topology.width != 1 || topology.height != 1) {
pr_warning("Warning: booting UP kernel on %dx%d grid;"
" will ignore all but first tile.\n",
topology.width, topology.height);
}
#endif
if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
early_panic("Hypervisor glue size %ld is too big!\n",
glue_size);
if (hv_page_size != PAGE_SIZE)
early_panic("Hypervisor page size %#x != our %#lx\n",
hv_page_size, PAGE_SIZE);
if (hv_hpage_size != HPAGE_SIZE)
early_panic("Hypervisor huge page size %#x != our %#lx\n",
hv_hpage_size, HPAGE_SIZE);
#ifdef CONFIG_SMP
/*
* Some hypervisor APIs take a pointer to a bitmap array
* whose size is at least the number of cpus on the chip.
* We use a struct cpumask for this, so it must be big enough.
*/
if ((smp_height * smp_width) > nr_cpu_ids)
early_panic("Hypervisor %d x %d grid too big for Linux"
" NR_CPUS %d\n", smp_height, smp_width,
nr_cpu_ids);
#endif
/*
* Check that we're using allowed ASIDs, and initialize the
* various asid variables to their appropriate initial states.
*/
asid_range = hv_inquire_asid(0);
__get_cpu_var(current_asid) = min_asid = asid_range.start;
max_asid = asid_range.start + asid_range.size - 1;
if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
sizeof(chip_model)) < 0) {
pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
strlcpy(chip_model, "unknown", sizeof(chip_model));
}
}
static void __init validate_va(void)
{
#ifndef __tilegx__ /* FIXME: GX: probably some validation relevant here */
/*
* Similarly, make sure we're only using allowed VAs.
* We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_INTRPT,
* and 0 .. KERNEL_HIGH_VADDR.
* In addition, make sure we CAN'T use the end of memory, since
* we use the last chunk of each pgd for the pgd_list.
*/
int i, fc_fd_ok = 0;
unsigned long max_va = 0;
unsigned long list_va =
((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
for (i = 0; ; ++i) {
HV_VirtAddrRange range = hv_inquire_virtual(i);
if (range.size == 0)
break;
if (range.start <= MEM_USER_INTRPT &&
range.start + range.size >= MEM_HV_INTRPT)
fc_fd_ok = 1;
if (range.start == 0)
max_va = range.size;
BUG_ON(range.start + range.size > list_va);
}
if (!fc_fd_ok)
early_panic("Hypervisor not configured for VAs 0xfc/0xfd\n");
if (max_va == 0)
early_panic("Hypervisor not configured for low VAs\n");
if (max_va < KERNEL_HIGH_VADDR)
early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
max_va, KERNEL_HIGH_VADDR);
/* Kernel PCs must have their high bit set; see intvec.S. */
if ((long)VMALLOC_START >= 0)
early_panic(
"Linux VMALLOC region below the 2GB line (%#lx)!\n"
"Reconfigure the kernel with fewer NR_HUGE_VMAPS\n"
"or smaller VMALLOC_RESERVE.\n",
VMALLOC_START);
#endif
}
/*
* cpu_lotar_map lists all the cpus that are valid for the supervisor
* to cache data on at a page level, i.e. what cpus can be placed in
* the LOTAR field of a PTE. It is equivalent to the set of possible
* cpus plus any other cpus that are willing to share their cache.
* It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
*/
struct cpumask __write_once cpu_lotar_map;
EXPORT_SYMBOL(cpu_lotar_map);
#if CHIP_HAS_CBOX_HOME_MAP()
/*
* hash_for_home_map lists all the tiles that hash-for-home data
* will be cached on. Note that this may includes tiles that are not
* valid for this supervisor to use otherwise (e.g. if a hypervisor
* device is being shared between multiple supervisors).
* It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
*/
struct cpumask hash_for_home_map;
EXPORT_SYMBOL(hash_for_home_map);
#endif
/*
* cpu_cacheable_map lists all the cpus whose caches the hypervisor can
* flush on our behalf. It is set to cpu_possible_map OR'ed with
* hash_for_home_map, and it is what should be passed to
* hv_flush_remote() to flush all caches. Note that if there are
* dedicated hypervisor driver tiles that have authorized use of their
* cache, those tiles will only appear in cpu_lotar_map, NOT in
* cpu_cacheable_map, as they are a special case.
*/
struct cpumask __write_once cpu_cacheable_map;
EXPORT_SYMBOL(cpu_cacheable_map);
static __initdata struct cpumask disabled_map;
static int __init disabled_cpus(char *str)
{
int boot_cpu = smp_processor_id();
if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
return -EINVAL;
if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
cpumask_clear_cpu(boot_cpu, &disabled_map);
}
return 0;
}
early_param("disabled_cpus", disabled_cpus);
void __init print_disabled_cpus(void)
{
if (!cpumask_empty(&disabled_map)) {
char buf[100];
cpulist_scnprintf(buf, sizeof(buf), &disabled_map);
pr_info("CPUs not available for Linux: %s\n", buf);
}
}
static void __init setup_cpu_maps(void)
{
struct cpumask hv_disabled_map, cpu_possible_init;
int boot_cpu = smp_processor_id();
int cpus, i, rc;
/* Learn which cpus are allowed by the hypervisor. */
rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
(HV_VirtAddr) cpumask_bits(&cpu_possible_init),
sizeof(cpu_cacheable_map));
if (rc < 0)
early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
/* Compute the cpus disabled by the hvconfig file. */
cpumask_complement(&hv_disabled_map, &cpu_possible_init);
/* Include them with the cpus disabled by "disabled_cpus". */
cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
/*
* Disable every cpu after "setup_max_cpus". But don't mark
* as disabled the cpus that are outside of our initial rectangle,
* since that turns out to be confusing.
*/
cpus = 1; /* this cpu */
cpumask_set_cpu(boot_cpu, &disabled_map); /* ignore this cpu */
for (i = 0; cpus < setup_max_cpus; ++i)
if (!cpumask_test_cpu(i, &disabled_map))
++cpus;
for (; i < smp_height * smp_width; ++i)
cpumask_set_cpu(i, &disabled_map);
cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
for (i = smp_height * smp_width; i < NR_CPUS; ++i)
cpumask_clear_cpu(i, &disabled_map);
/*
* Setup cpu_possible map as every cpu allocated to us, minus
* the results of any "disabled_cpus" settings.
*/
cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
init_cpu_possible(&cpu_possible_init);
/* Learn which cpus are valid for LOTAR caching. */
rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
(HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
sizeof(cpu_lotar_map));
if (rc < 0) {
pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
cpu_lotar_map = cpu_possible_map;
}
#if CHIP_HAS_CBOX_HOME_MAP()
/* Retrieve set of CPUs used for hash-for-home caching */
rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
(HV_VirtAddr) hash_for_home_map.bits,
sizeof(hash_for_home_map));
if (rc < 0)
early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
cpumask_or(&cpu_cacheable_map, &cpu_possible_map, &hash_for_home_map);
#else
cpu_cacheable_map = cpu_possible_map;
#endif
}
static int __init dataplane(char *str)
{
pr_warning("WARNING: dataplane support disabled in this kernel\n");
return 0;
}
early_param("dataplane", dataplane);
#ifdef CONFIG_CMDLINE_BOOL
static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
#endif
void __init setup_arch(char **cmdline_p)
{
int len;
#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
len = hv_get_command_line((HV_VirtAddr) boot_command_line,
COMMAND_LINE_SIZE);
if (boot_command_line[0])
pr_warning("WARNING: ignoring dynamic command line \"%s\"\n",
boot_command_line);
strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
#else
char *hv_cmdline;
#if defined(CONFIG_CMDLINE_BOOL)
if (builtin_cmdline[0]) {
int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
COMMAND_LINE_SIZE);
if (builtin_len < COMMAND_LINE_SIZE-1)
boot_command_line[builtin_len++] = ' ';
hv_cmdline = &boot_command_line[builtin_len];
len = COMMAND_LINE_SIZE - builtin_len;
} else
#endif
{
hv_cmdline = boot_command_line;
len = COMMAND_LINE_SIZE;
}
len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
if (len < 0 || len > COMMAND_LINE_SIZE)
early_panic("hv_get_command_line failed: %d\n", len);
#endif
*cmdline_p = boot_command_line;
/* Set disabled_map and setup_max_cpus very early */
parse_early_param();
/* Make sure the kernel is compatible with the hypervisor. */
validate_hv();
validate_va();
setup_cpu_maps();
#ifdef CONFIG_PCI
/*
* Initialize the PCI structures. This is done before memory
* setup so that we know whether or not a pci_reserve region
* is necessary.
*/
if (tile_pci_init() == 0)
pci_reserve_mb = 0;
/* PCI systems reserve a region just below 4GB for mapping iomem. */
pci_reserve_end_pfn = (1 << (32 - PAGE_SHIFT));
pci_reserve_start_pfn = pci_reserve_end_pfn -
(pci_reserve_mb << (20 - PAGE_SHIFT));
#endif
init_mm.start_code = (unsigned long) _text;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = (unsigned long) _end;
setup_memory();
store_permanent_mappings();
setup_bootmem_allocator();
/*
* NOTE: before this point _nobody_ is allowed to allocate
* any memory using the bootmem allocator.
*/
paging_init();
setup_numa_mapping();
zone_sizes_init();
set_page_homes();
setup_cpu(1);
setup_clock();
load_hv_initrd();
}
/*
* Set up per-cpu memory.
*/
unsigned long __per_cpu_offset[NR_CPUS] __write_once;
EXPORT_SYMBOL(__per_cpu_offset);
static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
/*
* As the percpu code allocates pages, we return the pages from the
* end of the node for the specified cpu.
*/
static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
{
int nid = cpu_to_node(cpu);
unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
BUG_ON(size % PAGE_SIZE != 0);
pfn_offset[nid] += size / PAGE_SIZE;
if (percpu_pfn[cpu] == 0)
percpu_pfn[cpu] = pfn;
return pfn_to_kaddr(pfn);
}
/*
* Pages reserved for percpu memory are not freeable, and in any case we are
* on a short path to panic() in setup_per_cpu_area() at this point anyway.
*/
static void __init pcpu_fc_free(void *ptr, size_t size)
{
}
/*
* Set up vmalloc page tables using bootmem for the percpu code.
*/
static void __init pcpu_fc_populate_pte(unsigned long addr)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
BUG_ON(pgd_addr_invalid(addr));
pgd = swapper_pg_dir + pgd_index(addr);
pud = pud_offset(pgd, addr);
BUG_ON(!pud_present(*pud));
pmd = pmd_offset(pud, addr);
if (pmd_present(*pmd)) {
BUG_ON(pmd_huge_page(*pmd));
} else {
pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
HV_PAGE_TABLE_ALIGN, 0);
pmd_populate_kernel(&init_mm, pmd, pte);
}
}
void __init setup_per_cpu_areas(void)
{
struct page *pg;
unsigned long delta, pfn, lowmem_va;
unsigned long size = percpu_size();
char *ptr;
int rc, cpu, i;
rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
pcpu_fc_free, pcpu_fc_populate_pte);
if (rc < 0)
panic("Cannot initialize percpu area (err=%d)", rc);
delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
for_each_possible_cpu(cpu) {
__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
/* finv the copy out of cache so we can change homecache */
ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
__finv_buffer(ptr, size);
pfn = percpu_pfn[cpu];
/* Rewrite the page tables to cache on that cpu */
pg = pfn_to_page(pfn);
for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
/* Update the vmalloc mapping and page home. */
pte_t *ptep =
virt_to_pte(NULL, (unsigned long)ptr + i);
pte_t pte = *ptep;
BUG_ON(pfn != pte_pfn(pte));
pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
pte = set_remote_cache_cpu(pte, cpu);
set_pte(ptep, pte);
/* Update the lowmem mapping for consistency. */
lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
ptep = virt_to_pte(NULL, lowmem_va);
if (pte_huge(*ptep)) {
printk(KERN_DEBUG "early shatter of huge page"
" at %#lx\n", lowmem_va);
shatter_pmd((pmd_t *)ptep);
ptep = virt_to_pte(NULL, lowmem_va);
BUG_ON(pte_huge(*ptep));
}
BUG_ON(pfn != pte_pfn(*ptep));
set_pte(ptep, pte);
}
}
/* Set our thread pointer appropriately. */
set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
/* Make sure the finv's have completed. */
mb_incoherent();
/* Flush the TLB so we reference it properly from here on out. */
local_flush_tlb_all();
}
static struct resource data_resource = {
.name = "Kernel data",
.start = 0,
.end = 0,
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
static struct resource code_resource = {
.name = "Kernel code",
.start = 0,
.end = 0,
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
/*
* We reserve all resources above 4GB so that PCI won't try to put
* mappings above 4GB; the standard allows that for some devices but
* the probing code trunates values to 32 bits.
*/
#ifdef CONFIG_PCI
static struct resource* __init
insert_non_bus_resource(void)
{
struct resource *res =
kzalloc(sizeof(struct resource), GFP_ATOMIC);
res->name = "Non-Bus Physical Address Space";
res->start = (1ULL << 32);
res->end = -1LL;
res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
if (insert_resource(&iomem_resource, res)) {
kfree(res);
return NULL;
}
return res;
}
#endif
static struct resource* __init
insert_ram_resource(u64 start_pfn, u64 end_pfn)
{
struct resource *res =
kzalloc(sizeof(struct resource), GFP_ATOMIC);
res->name = "System RAM";
res->start = start_pfn << PAGE_SHIFT;
res->end = (end_pfn << PAGE_SHIFT) - 1;
res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
if (insert_resource(&iomem_resource, res)) {
kfree(res);
return NULL;
}
return res;
}
/*
* Request address space for all standard resources
*
* If the system includes PCI root complex drivers, we need to create
* a window just below 4GB where PCI BARs can be mapped.
*/
static int __init request_standard_resources(void)
{
int i;
enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
iomem_resource.end = -1LL;
#ifdef CONFIG_PCI
insert_non_bus_resource();
#endif
for_each_online_node(i) {
u64 start_pfn = node_start_pfn[i];
u64 end_pfn = node_end_pfn[i];
#ifdef CONFIG_PCI
if (start_pfn <= pci_reserve_start_pfn &&
end_pfn > pci_reserve_start_pfn) {
if (end_pfn > pci_reserve_end_pfn)
insert_ram_resource(pci_reserve_end_pfn,
end_pfn);
end_pfn = pci_reserve_start_pfn;
}
#endif
insert_ram_resource(start_pfn, end_pfn);
}
code_resource.start = __pa(_text - CODE_DELTA);
code_resource.end = __pa(_etext - CODE_DELTA)-1;
data_resource.start = __pa(_sdata);
data_resource.end = __pa(_end)-1;
insert_resource(&iomem_resource, &code_resource);
insert_resource(&iomem_resource, &data_resource);
#ifdef CONFIG_KEXEC
insert_resource(&iomem_resource, &crashk_res);
#endif
return 0;
}
subsys_initcall(request_standard_resources);
|