summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/cpu/intel_cacheinfo.c
blob: b4ca91cf55b0d2f0180a8e1678828617753a09a0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
/*
 *	Routines to identify caches on Intel CPU.
 *
 *	Changes:
 *	Venkatesh Pallipadi	: Adding cache identification through cpuid(4)
 *	Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
 *	Andi Kleen / Andreas Herrmann	: CPUID4 emulation on AMD.
 */

#include <linux/slab.h>
#include <linux/cacheinfo.h>
#include <linux/cpu.h>
#include <linux/sched.h>
#include <linux/sysfs.h>
#include <linux/pci.h>

#include <asm/processor.h>
#include <asm/amd_nb.h>
#include <asm/smp.h>

#define LVL_1_INST	1
#define LVL_1_DATA	2
#define LVL_2		3
#define LVL_3		4
#define LVL_TRACE	5

struct _cache_table {
	unsigned char descriptor;
	char cache_type;
	short size;
};

#define MB(x)	((x) * 1024)

/* All the cache descriptor types we care about (no TLB or
   trace cache entries) */

static const struct _cache_table cache_table[] =
{
	{ 0x06, LVL_1_INST, 8 },	/* 4-way set assoc, 32 byte line size */
	{ 0x08, LVL_1_INST, 16 },	/* 4-way set assoc, 32 byte line size */
	{ 0x09, LVL_1_INST, 32 },	/* 4-way set assoc, 64 byte line size */
	{ 0x0a, LVL_1_DATA, 8 },	/* 2 way set assoc, 32 byte line size */
	{ 0x0c, LVL_1_DATA, 16 },	/* 4-way set assoc, 32 byte line size */
	{ 0x0d, LVL_1_DATA, 16 },	/* 4-way set assoc, 64 byte line size */
	{ 0x0e, LVL_1_DATA, 24 },	/* 6-way set assoc, 64 byte line size */
	{ 0x21, LVL_2,      256 },	/* 8-way set assoc, 64 byte line size */
	{ 0x22, LVL_3,      512 },	/* 4-way set assoc, sectored cache, 64 byte line size */
	{ 0x23, LVL_3,      MB(1) },	/* 8-way set assoc, sectored cache, 64 byte line size */
	{ 0x25, LVL_3,      MB(2) },	/* 8-way set assoc, sectored cache, 64 byte line size */
	{ 0x29, LVL_3,      MB(4) },	/* 8-way set assoc, sectored cache, 64 byte line size */
	{ 0x2c, LVL_1_DATA, 32 },	/* 8-way set assoc, 64 byte line size */
	{ 0x30, LVL_1_INST, 32 },	/* 8-way set assoc, 64 byte line size */
	{ 0x39, LVL_2,      128 },	/* 4-way set assoc, sectored cache, 64 byte line size */
	{ 0x3a, LVL_2,      192 },	/* 6-way set assoc, sectored cache, 64 byte line size */
	{ 0x3b, LVL_2,      128 },	/* 2-way set assoc, sectored cache, 64 byte line size */
	{ 0x3c, LVL_2,      256 },	/* 4-way set assoc, sectored cache, 64 byte line size */
	{ 0x3d, LVL_2,      384 },	/* 6-way set assoc, sectored cache, 64 byte line size */
	{ 0x3e, LVL_2,      512 },	/* 4-way set assoc, sectored cache, 64 byte line size */
	{ 0x3f, LVL_2,      256 },	/* 2-way set assoc, 64 byte line size */
	{ 0x41, LVL_2,      128 },	/* 4-way set assoc, 32 byte line size */
	{ 0x42, LVL_2,      256 },	/* 4-way set assoc, 32 byte line size */
	{ 0x43, LVL_2,      512 },	/* 4-way set assoc, 32 byte line size */
	{ 0x44, LVL_2,      MB(1) },	/* 4-way set assoc, 32 byte line size */
	{ 0x45, LVL_2,      MB(2) },	/* 4-way set assoc, 32 byte line size */
	{ 0x46, LVL_3,      MB(4) },	/* 4-way set assoc, 64 byte line size */
	{ 0x47, LVL_3,      MB(8) },	/* 8-way set assoc, 64 byte line size */
	{ 0x48, LVL_2,      MB(3) },	/* 12-way set assoc, 64 byte line size */
	{ 0x49, LVL_3,      MB(4) },	/* 16-way set assoc, 64 byte line size */
	{ 0x4a, LVL_3,      MB(6) },	/* 12-way set assoc, 64 byte line size */
	{ 0x4b, LVL_3,      MB(8) },	/* 16-way set assoc, 64 byte line size */
	{ 0x4c, LVL_3,      MB(12) },	/* 12-way set assoc, 64 byte line size */
	{ 0x4d, LVL_3,      MB(16) },	/* 16-way set assoc, 64 byte line size */
	{ 0x4e, LVL_2,      MB(6) },	/* 24-way set assoc, 64 byte line size */
	{ 0x60, LVL_1_DATA, 16 },	/* 8-way set assoc, sectored cache, 64 byte line size */
	{ 0x66, LVL_1_DATA, 8 },	/* 4-way set assoc, sectored cache, 64 byte line size */
	{ 0x67, LVL_1_DATA, 16 },	/* 4-way set assoc, sectored cache, 64 byte line size */
	{ 0x68, LVL_1_DATA, 32 },	/* 4-way set assoc, sectored cache, 64 byte line size */
	{ 0x70, LVL_TRACE,  12 },	/* 8-way set assoc */
	{ 0x71, LVL_TRACE,  16 },	/* 8-way set assoc */
	{ 0x72, LVL_TRACE,  32 },	/* 8-way set assoc */
	{ 0x73, LVL_TRACE,  64 },	/* 8-way set assoc */
	{ 0x78, LVL_2,      MB(1) },	/* 4-way set assoc, 64 byte line size */
	{ 0x79, LVL_2,      128 },	/* 8-way set assoc, sectored cache, 64 byte line size */
	{ 0x7a, LVL_2,      256 },	/* 8-way set assoc, sectored cache, 64 byte line size */
	{ 0x7b, LVL_2,      512 },	/* 8-way set assoc, sectored cache, 64 byte line size */
	{ 0x7c, LVL_2,      MB(1) },	/* 8-way set assoc, sectored cache, 64 byte line size */
	{ 0x7d, LVL_2,      MB(2) },	/* 8-way set assoc, 64 byte line size */
	{ 0x7f, LVL_2,      512 },	/* 2-way set assoc, 64 byte line size */
	{ 0x80, LVL_2,      512 },	/* 8-way set assoc, 64 byte line size */
	{ 0x82, LVL_2,      256 },	/* 8-way set assoc, 32 byte line size */
	{ 0x83, LVL_2,      512 },	/* 8-way set assoc, 32 byte line size */
	{ 0x84, LVL_2,      MB(1) },	/* 8-way set assoc, 32 byte line size */
	{ 0x85, LVL_2,      MB(2) },	/* 8-way set assoc, 32 byte line size */
	{ 0x86, LVL_2,      512 },	/* 4-way set assoc, 64 byte line size */
	{ 0x87, LVL_2,      MB(1) },	/* 8-way set assoc, 64 byte line size */
	{ 0xd0, LVL_3,      512 },	/* 4-way set assoc, 64 byte line size */
	{ 0xd1, LVL_3,      MB(1) },	/* 4-way set assoc, 64 byte line size */
	{ 0xd2, LVL_3,      MB(2) },	/* 4-way set assoc, 64 byte line size */
	{ 0xd6, LVL_3,      MB(1) },	/* 8-way set assoc, 64 byte line size */
	{ 0xd7, LVL_3,      MB(2) },	/* 8-way set assoc, 64 byte line size */
	{ 0xd8, LVL_3,      MB(4) },	/* 12-way set assoc, 64 byte line size */
	{ 0xdc, LVL_3,      MB(2) },	/* 12-way set assoc, 64 byte line size */
	{ 0xdd, LVL_3,      MB(4) },	/* 12-way set assoc, 64 byte line size */
	{ 0xde, LVL_3,      MB(8) },	/* 12-way set assoc, 64 byte line size */
	{ 0xe2, LVL_3,      MB(2) },	/* 16-way set assoc, 64 byte line size */
	{ 0xe3, LVL_3,      MB(4) },	/* 16-way set assoc, 64 byte line size */
	{ 0xe4, LVL_3,      MB(8) },	/* 16-way set assoc, 64 byte line size */
	{ 0xea, LVL_3,      MB(12) },	/* 24-way set assoc, 64 byte line size */
	{ 0xeb, LVL_3,      MB(18) },	/* 24-way set assoc, 64 byte line size */
	{ 0xec, LVL_3,      MB(24) },	/* 24-way set assoc, 64 byte line size */
	{ 0x00, 0, 0}
};


enum _cache_type {
	CTYPE_NULL = 0,
	CTYPE_DATA = 1,
	CTYPE_INST = 2,
	CTYPE_UNIFIED = 3
};

union _cpuid4_leaf_eax {
	struct {
		enum _cache_type	type:5;
		unsigned int		level:3;
		unsigned int		is_self_initializing:1;
		unsigned int		is_fully_associative:1;
		unsigned int		reserved:4;
		unsigned int		num_threads_sharing:12;
		unsigned int		num_cores_on_die:6;
	} split;
	u32 full;
};

union _cpuid4_leaf_ebx {
	struct {
		unsigned int		coherency_line_size:12;
		unsigned int		physical_line_partition:10;
		unsigned int		ways_of_associativity:10;
	} split;
	u32 full;
};

union _cpuid4_leaf_ecx {
	struct {
		unsigned int		number_of_sets:32;
	} split;
	u32 full;
};

struct _cpuid4_info_regs {
	union _cpuid4_leaf_eax eax;
	union _cpuid4_leaf_ebx ebx;
	union _cpuid4_leaf_ecx ecx;
	unsigned long size;
	struct amd_northbridge *nb;
};

static unsigned short num_cache_leaves;

/* AMD doesn't have CPUID4. Emulate it here to report the same
   information to the user.  This makes some assumptions about the machine:
   L2 not shared, no SMT etc. that is currently true on AMD CPUs.

   In theory the TLBs could be reported as fake type (they are in "dummy").
   Maybe later */
union l1_cache {
	struct {
		unsigned line_size:8;
		unsigned lines_per_tag:8;
		unsigned assoc:8;
		unsigned size_in_kb:8;
	};
	unsigned val;
};

union l2_cache {
	struct {
		unsigned line_size:8;
		unsigned lines_per_tag:4;
		unsigned assoc:4;
		unsigned size_in_kb:16;
	};
	unsigned val;
};

union l3_cache {
	struct {
		unsigned line_size:8;
		unsigned lines_per_tag:4;
		unsigned assoc:4;
		unsigned res:2;
		unsigned size_encoded:14;
	};
	unsigned val;
};

static const unsigned short assocs[] = {
	[1] = 1,
	[2] = 2,
	[4] = 4,
	[6] = 8,
	[8] = 16,
	[0xa] = 32,
	[0xb] = 48,
	[0xc] = 64,
	[0xd] = 96,
	[0xe] = 128,
	[0xf] = 0xffff /* fully associative - no way to show this currently */
};

static const unsigned char levels[] = { 1, 1, 2, 3 };
static const unsigned char types[] = { 1, 2, 3, 3 };

static const enum cache_type cache_type_map[] = {
	[CTYPE_NULL] = CACHE_TYPE_NOCACHE,
	[CTYPE_DATA] = CACHE_TYPE_DATA,
	[CTYPE_INST] = CACHE_TYPE_INST,
	[CTYPE_UNIFIED] = CACHE_TYPE_UNIFIED,
};

static void
amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
		     union _cpuid4_leaf_ebx *ebx,
		     union _cpuid4_leaf_ecx *ecx)
{
	unsigned dummy;
	unsigned line_size, lines_per_tag, assoc, size_in_kb;
	union l1_cache l1i, l1d;
	union l2_cache l2;
	union l3_cache l3;
	union l1_cache *l1 = &l1d;

	eax->full = 0;
	ebx->full = 0;
	ecx->full = 0;

	cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
	cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val);

	switch (leaf) {
	case 1:
		l1 = &l1i;
	case 0:
		if (!l1->val)
			return;
		assoc = assocs[l1->assoc];
		line_size = l1->line_size;
		lines_per_tag = l1->lines_per_tag;
		size_in_kb = l1->size_in_kb;
		break;
	case 2:
		if (!l2.val)
			return;
		assoc = assocs[l2.assoc];
		line_size = l2.line_size;
		lines_per_tag = l2.lines_per_tag;
		/* cpu_data has errata corrections for K7 applied */
		size_in_kb = __this_cpu_read(cpu_info.x86_cache_size);
		break;
	case 3:
		if (!l3.val)
			return;
		assoc = assocs[l3.assoc];
		line_size = l3.line_size;
		lines_per_tag = l3.lines_per_tag;
		size_in_kb = l3.size_encoded * 512;
		if (boot_cpu_has(X86_FEATURE_AMD_DCM)) {
			size_in_kb = size_in_kb >> 1;
			assoc = assoc >> 1;
		}
		break;
	default:
		return;
	}

	eax->split.is_self_initializing = 1;
	eax->split.type = types[leaf];
	eax->split.level = levels[leaf];
	eax->split.num_threads_sharing = 0;
	eax->split.num_cores_on_die = __this_cpu_read(cpu_info.x86_max_cores) - 1;


	if (assoc == 0xffff)
		eax->split.is_fully_associative = 1;
	ebx->split.coherency_line_size = line_size - 1;
	ebx->split.ways_of_associativity = assoc - 1;
	ebx->split.physical_line_partition = lines_per_tag - 1;
	ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
		(ebx->split.ways_of_associativity + 1) - 1;
}

#if defined(CONFIG_AMD_NB) && defined(CONFIG_SYSFS)

/*
 * L3 cache descriptors
 */
static void amd_calc_l3_indices(struct amd_northbridge *nb)
{
	struct amd_l3_cache *l3 = &nb->l3_cache;
	unsigned int sc0, sc1, sc2, sc3;
	u32 val = 0;

	pci_read_config_dword(nb->misc, 0x1C4, &val);

	/* calculate subcache sizes */
	l3->subcaches[0] = sc0 = !(val & BIT(0));
	l3->subcaches[1] = sc1 = !(val & BIT(4));

	if (boot_cpu_data.x86 == 0x15) {
		l3->subcaches[0] = sc0 += !(val & BIT(1));
		l3->subcaches[1] = sc1 += !(val & BIT(5));
	}

	l3->subcaches[2] = sc2 = !(val & BIT(8))  + !(val & BIT(9));
	l3->subcaches[3] = sc3 = !(val & BIT(12)) + !(val & BIT(13));

	l3->indices = (max(max3(sc0, sc1, sc2), sc3) << 10) - 1;
}

/*
 * check whether a slot used for disabling an L3 index is occupied.
 * @l3: L3 cache descriptor
 * @slot: slot number (0..1)
 *
 * @returns: the disabled index if used or negative value if slot free.
 */
static int amd_get_l3_disable_slot(struct amd_northbridge *nb, unsigned slot)
{
	unsigned int reg = 0;

	pci_read_config_dword(nb->misc, 0x1BC + slot * 4, &reg);

	/* check whether this slot is activated already */
	if (reg & (3UL << 30))
		return reg & 0xfff;

	return -1;
}

static ssize_t show_cache_disable(struct cacheinfo *this_leaf, char *buf,
				  unsigned int slot)
{
	int index;
	struct amd_northbridge *nb = this_leaf->priv;

	index = amd_get_l3_disable_slot(nb, slot);
	if (index >= 0)
		return sprintf(buf, "%d\n", index);

	return sprintf(buf, "FREE\n");
}

#define SHOW_CACHE_DISABLE(slot)					\
static ssize_t								\
cache_disable_##slot##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)	\
{									\
	struct cacheinfo *this_leaf = dev_get_drvdata(dev);		\
	return show_cache_disable(this_leaf, buf, slot);		\
}
SHOW_CACHE_DISABLE(0)
SHOW_CACHE_DISABLE(1)

static void amd_l3_disable_index(struct amd_northbridge *nb, int cpu,
				 unsigned slot, unsigned long idx)
{
	int i;

	idx |= BIT(30);

	/*
	 *  disable index in all 4 subcaches
	 */
	for (i = 0; i < 4; i++) {
		u32 reg = idx | (i << 20);

		if (!nb->l3_cache.subcaches[i])
			continue;

		pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg);

		/*
		 * We need to WBINVD on a core on the node containing the L3
		 * cache which indices we disable therefore a simple wbinvd()
		 * is not sufficient.
		 */
		wbinvd_on_cpu(cpu);

		reg |= BIT(31);
		pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg);
	}
}

/*
 * disable a L3 cache index by using a disable-slot
 *
 * @l3:    L3 cache descriptor
 * @cpu:   A CPU on the node containing the L3 cache
 * @slot:  slot number (0..1)
 * @index: index to disable
 *
 * @return: 0 on success, error status on failure
 */
static int amd_set_l3_disable_slot(struct amd_northbridge *nb, int cpu,
			    unsigned slot, unsigned long index)
{
	int ret = 0;

	/*  check if @slot is already used or the index is already disabled */
	ret = amd_get_l3_disable_slot(nb, slot);
	if (ret >= 0)
		return -EEXIST;

	if (index > nb->l3_cache.indices)
		return -EINVAL;

	/* check whether the other slot has disabled the same index already */
	if (index == amd_get_l3_disable_slot(nb, !slot))
		return -EEXIST;

	amd_l3_disable_index(nb, cpu, slot, index);

	return 0;
}

static ssize_t store_cache_disable(struct cacheinfo *this_leaf,
				   const char *buf, size_t count,
				   unsigned int slot)
{
	unsigned long val = 0;
	int cpu, err = 0;
	struct amd_northbridge *nb = this_leaf->priv;

	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;

	cpu = cpumask_first(&this_leaf->shared_cpu_map);

	if (kstrtoul(buf, 10, &val) < 0)
		return -EINVAL;

	err = amd_set_l3_disable_slot(nb, cpu, slot, val);
	if (err) {
		if (err == -EEXIST)
			pr_warning("L3 slot %d in use/index already disabled!\n",
				   slot);
		return err;
	}
	return count;
}

#define STORE_CACHE_DISABLE(slot)					\
static ssize_t								\
cache_disable_##slot##_store(struct device *dev,			\
			     struct device_attribute *attr,		\
			     const char *buf, size_t count)		\
{									\
	struct cacheinfo *this_leaf = dev_get_drvdata(dev);		\
	return store_cache_disable(this_leaf, buf, count, slot);	\
}
STORE_CACHE_DISABLE(0)
STORE_CACHE_DISABLE(1)

static ssize_t subcaches_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
	int cpu = cpumask_first(&this_leaf->shared_cpu_map);

	return sprintf(buf, "%x\n", amd_get_subcaches(cpu));
}

static ssize_t subcaches_store(struct device *dev,
			       struct device_attribute *attr,
			       const char *buf, size_t count)
{
	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
	int cpu = cpumask_first(&this_leaf->shared_cpu_map);
	unsigned long val;

	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;

	if (kstrtoul(buf, 16, &val) < 0)
		return -EINVAL;

	if (amd_set_subcaches(cpu, val))
		return -EINVAL;

	return count;
}

static DEVICE_ATTR_RW(cache_disable_0);
static DEVICE_ATTR_RW(cache_disable_1);
static DEVICE_ATTR_RW(subcaches);

static umode_t
cache_private_attrs_is_visible(struct kobject *kobj,
			       struct attribute *attr, int unused)
{
	struct device *dev = kobj_to_dev(kobj);
	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
	umode_t mode = attr->mode;

	if (!this_leaf->priv)
		return 0;

	if ((attr == &dev_attr_subcaches.attr) &&
	    amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
		return mode;

	if ((attr == &dev_attr_cache_disable_0.attr ||
	     attr == &dev_attr_cache_disable_1.attr) &&
	    amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
		return mode;

	return 0;
}

static struct attribute_group cache_private_group = {
	.is_visible = cache_private_attrs_is_visible,
};

static void init_amd_l3_attrs(void)
{
	int n = 1;
	static struct attribute **amd_l3_attrs;

	if (amd_l3_attrs) /* already initialized */
		return;

	if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
		n += 2;
	if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
		n += 1;

	amd_l3_attrs = kcalloc(n, sizeof(*amd_l3_attrs), GFP_KERNEL);
	if (!amd_l3_attrs)
		return;

	n = 0;
	if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) {
		amd_l3_attrs[n++] = &dev_attr_cache_disable_0.attr;
		amd_l3_attrs[n++] = &dev_attr_cache_disable_1.attr;
	}
	if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
		amd_l3_attrs[n++] = &dev_attr_subcaches.attr;

	cache_private_group.attrs = amd_l3_attrs;
}

const struct attribute_group *
cache_get_priv_group(struct cacheinfo *this_leaf)
{
	struct amd_northbridge *nb = this_leaf->priv;

	if (this_leaf->level < 3 || !nb)
		return NULL;

	if (nb && nb->l3_cache.indices)
		init_amd_l3_attrs();

	return &cache_private_group;
}

static void amd_init_l3_cache(struct _cpuid4_info_regs *this_leaf, int index)
{
	int node;

	/* only for L3, and not in virtualized environments */
	if (index < 3)
		return;

	node = amd_get_nb_id(smp_processor_id());
	this_leaf->nb = node_to_amd_nb(node);
	if (this_leaf->nb && !this_leaf->nb->l3_cache.indices)
		amd_calc_l3_indices(this_leaf->nb);
}
#else
#define amd_init_l3_cache(x, y)
#endif  /* CONFIG_AMD_NB && CONFIG_SYSFS */

static int
cpuid4_cache_lookup_regs(int index, struct _cpuid4_info_regs *this_leaf)
{
	union _cpuid4_leaf_eax	eax;
	union _cpuid4_leaf_ebx	ebx;
	union _cpuid4_leaf_ecx	ecx;
	unsigned		edx;

	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
		if (cpu_has_topoext)
			cpuid_count(0x8000001d, index, &eax.full,
				    &ebx.full, &ecx.full, &edx);
		else
			amd_cpuid4(index, &eax, &ebx, &ecx);
		amd_init_l3_cache(this_leaf, index);
	} else {
		cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx);
	}

	if (eax.split.type == CTYPE_NULL)
		return -EIO; /* better error ? */

	this_leaf->eax = eax;
	this_leaf->ebx = ebx;
	this_leaf->ecx = ecx;
	this_leaf->size = (ecx.split.number_of_sets          + 1) *
			  (ebx.split.coherency_line_size     + 1) *
			  (ebx.split.physical_line_partition + 1) *
			  (ebx.split.ways_of_associativity   + 1);
	return 0;
}

static int find_num_cache_leaves(struct cpuinfo_x86 *c)
{
	unsigned int		eax, ebx, ecx, edx, op;
	union _cpuid4_leaf_eax	cache_eax;
	int 			i = -1;

	if (c->x86_vendor == X86_VENDOR_AMD)
		op = 0x8000001d;
	else
		op = 4;

	do {
		++i;
		/* Do cpuid(op) loop to find out num_cache_leaves */
		cpuid_count(op, i, &eax, &ebx, &ecx, &edx);
		cache_eax.full = eax;
	} while (cache_eax.split.type != CTYPE_NULL);
	return i;
}

void init_amd_cacheinfo(struct cpuinfo_x86 *c)
{

	if (cpu_has_topoext) {
		num_cache_leaves = find_num_cache_leaves(c);
	} else if (c->extended_cpuid_level >= 0x80000006) {
		if (cpuid_edx(0x80000006) & 0xf000)
			num_cache_leaves = 4;
		else
			num_cache_leaves = 3;
	}
}

unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c)
{
	/* Cache sizes */
	unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0;
	unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
	unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
	unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb;
#ifdef CONFIG_SMP
	unsigned int cpu = c->cpu_index;
#endif

	if (c->cpuid_level > 3) {
		static int is_initialized;

		if (is_initialized == 0) {
			/* Init num_cache_leaves from boot CPU */
			num_cache_leaves = find_num_cache_leaves(c);
			is_initialized++;
		}

		/*
		 * Whenever possible use cpuid(4), deterministic cache
		 * parameters cpuid leaf to find the cache details
		 */
		for (i = 0; i < num_cache_leaves; i++) {
			struct _cpuid4_info_regs this_leaf = {};
			int retval;

			retval = cpuid4_cache_lookup_regs(i, &this_leaf);
			if (retval < 0)
				continue;

			switch (this_leaf.eax.split.level) {
			case 1:
				if (this_leaf.eax.split.type == CTYPE_DATA)
					new_l1d = this_leaf.size/1024;
				else if (this_leaf.eax.split.type == CTYPE_INST)
					new_l1i = this_leaf.size/1024;
				break;
			case 2:
				new_l2 = this_leaf.size/1024;
				num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
				index_msb = get_count_order(num_threads_sharing);
				l2_id = c->apicid & ~((1 << index_msb) - 1);
				break;
			case 3:
				new_l3 = this_leaf.size/1024;
				num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
				index_msb = get_count_order(num_threads_sharing);
				l3_id = c->apicid & ~((1 << index_msb) - 1);
				break;
			default:
				break;
			}
		}
	}
	/*
	 * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for
	 * trace cache
	 */
	if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) {
		/* supports eax=2  call */
		int j, n;
		unsigned int regs[4];
		unsigned char *dp = (unsigned char *)regs;
		int only_trace = 0;

		if (num_cache_leaves != 0 && c->x86 == 15)
			only_trace = 1;

		/* Number of times to iterate */
		n = cpuid_eax(2) & 0xFF;

		for (i = 0 ; i < n ; i++) {
			cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);

			/* If bit 31 is set, this is an unknown format */
			for (j = 0 ; j < 3 ; j++)
				if (regs[j] & (1 << 31))
					regs[j] = 0;

			/* Byte 0 is level count, not a descriptor */
			for (j = 1 ; j < 16 ; j++) {
				unsigned char des = dp[j];
				unsigned char k = 0;

				/* look up this descriptor in the table */
				while (cache_table[k].descriptor != 0) {
					if (cache_table[k].descriptor == des) {
						if (only_trace && cache_table[k].cache_type != LVL_TRACE)
							break;
						switch (cache_table[k].cache_type) {
						case LVL_1_INST:
							l1i += cache_table[k].size;
							break;
						case LVL_1_DATA:
							l1d += cache_table[k].size;
							break;
						case LVL_2:
							l2 += cache_table[k].size;
							break;
						case LVL_3:
							l3 += cache_table[k].size;
							break;
						case LVL_TRACE:
							trace += cache_table[k].size;
							break;
						}

						break;
					}

					k++;
				}
			}
		}
	}

	if (new_l1d)
		l1d = new_l1d;

	if (new_l1i)
		l1i = new_l1i;

	if (new_l2) {
		l2 = new_l2;
#ifdef CONFIG_SMP
		per_cpu(cpu_llc_id, cpu) = l2_id;
#endif
	}

	if (new_l3) {
		l3 = new_l3;
#ifdef CONFIG_SMP
		per_cpu(cpu_llc_id, cpu) = l3_id;
#endif
	}

#ifdef CONFIG_SMP
	/*
	 * If cpu_llc_id is not yet set, this means cpuid_level < 4 which in
	 * turns means that the only possibility is SMT (as indicated in
	 * cpuid1). Since cpuid2 doesn't specify shared caches, and we know
	 * that SMT shares all caches, we can unconditionally set cpu_llc_id to
	 * c->phys_proc_id.
	 */
	if (per_cpu(cpu_llc_id, cpu) == BAD_APICID)
		per_cpu(cpu_llc_id, cpu) = c->phys_proc_id;
#endif

	c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));

	return l2;
}

static int __cache_amd_cpumap_setup(unsigned int cpu, int index,
				    struct _cpuid4_info_regs *base)
{
	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
	struct cacheinfo *this_leaf;
	int i, sibling;

	if (cpu_has_topoext) {
		unsigned int apicid, nshared, first, last;

		this_leaf = this_cpu_ci->info_list + index;
		nshared = base->eax.split.num_threads_sharing + 1;
		apicid = cpu_data(cpu).apicid;
		first = apicid - (apicid % nshared);
		last = first + nshared - 1;

		for_each_online_cpu(i) {
			this_cpu_ci = get_cpu_cacheinfo(i);
			if (!this_cpu_ci->info_list)
				continue;

			apicid = cpu_data(i).apicid;
			if ((apicid < first) || (apicid > last))
				continue;

			this_leaf = this_cpu_ci->info_list + index;

			for_each_online_cpu(sibling) {
				apicid = cpu_data(sibling).apicid;
				if ((apicid < first) || (apicid > last))
					continue;
				cpumask_set_cpu(sibling,
						&this_leaf->shared_cpu_map);
			}
		}
	} else if (index == 3) {
		for_each_cpu(i, cpu_llc_shared_mask(cpu)) {
			this_cpu_ci = get_cpu_cacheinfo(i);
			if (!this_cpu_ci->info_list)
				continue;
			this_leaf = this_cpu_ci->info_list + index;
			for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) {
				if (!cpu_online(sibling))
					continue;
				cpumask_set_cpu(sibling,
						&this_leaf->shared_cpu_map);
			}
		}
	} else
		return 0;

	return 1;
}

static void __cache_cpumap_setup(unsigned int cpu, int index,
				 struct _cpuid4_info_regs *base)
{
	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
	struct cacheinfo *this_leaf, *sibling_leaf;
	unsigned long num_threads_sharing;
	int index_msb, i;
	struct cpuinfo_x86 *c = &cpu_data(cpu);

	if (c->x86_vendor == X86_VENDOR_AMD) {
		if (__cache_amd_cpumap_setup(cpu, index, base))
			return;
	}

	this_leaf = this_cpu_ci->info_list + index;
	num_threads_sharing = 1 + base->eax.split.num_threads_sharing;

	cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
	if (num_threads_sharing == 1)
		return;

	index_msb = get_count_order(num_threads_sharing);

	for_each_online_cpu(i)
		if (cpu_data(i).apicid >> index_msb == c->apicid >> index_msb) {
			struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);

			if (i == cpu || !sib_cpu_ci->info_list)
				continue;/* skip if itself or no cacheinfo */
			sibling_leaf = sib_cpu_ci->info_list + index;
			cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
			cpumask_set_cpu(cpu, &sibling_leaf->shared_cpu_map);
		}
}

static void ci_leaf_init(struct cacheinfo *this_leaf,
			 struct _cpuid4_info_regs *base)
{
	this_leaf->level = base->eax.split.level;
	this_leaf->type = cache_type_map[base->eax.split.type];
	this_leaf->coherency_line_size =
				base->ebx.split.coherency_line_size + 1;
	this_leaf->ways_of_associativity =
				base->ebx.split.ways_of_associativity + 1;
	this_leaf->size = base->size;
	this_leaf->number_of_sets = base->ecx.split.number_of_sets + 1;
	this_leaf->physical_line_partition =
				base->ebx.split.physical_line_partition + 1;
	this_leaf->priv = base->nb;
}

static int __init_cache_level(unsigned int cpu)
{
	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);

	if (!num_cache_leaves)
		return -ENOENT;
	if (!this_cpu_ci)
		return -EINVAL;
	this_cpu_ci->num_levels = 3;
	this_cpu_ci->num_leaves = num_cache_leaves;
	return 0;
}

static int __populate_cache_leaves(unsigned int cpu)
{
	unsigned int idx, ret;
	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
	struct cacheinfo *this_leaf = this_cpu_ci->info_list;
	struct _cpuid4_info_regs id4_regs = {};

	for (idx = 0; idx < this_cpu_ci->num_leaves; idx++) {
		ret = cpuid4_cache_lookup_regs(idx, &id4_regs);
		if (ret)
			return ret;
		ci_leaf_init(this_leaf++, &id4_regs);
		__cache_cpumap_setup(cpu, idx, &id4_regs);
	}
	this_cpu_ci->cpu_map_populated = true;

	return 0;
}

DEFINE_SMP_CALL_CACHE_FUNCTION(init_cache_level)
DEFINE_SMP_CALL_CACHE_FUNCTION(populate_cache_leaves)