summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/mtrr.c
blob: 1445c4a03a92c4636d37e05e1de59ea34a3d0af9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
/*
 * vMTRR implementation
 *
 * Copyright (C) 2006 Qumranet, Inc.
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 * Copyright(C) 2015 Intel Corporation.
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *   Marcelo Tosatti <mtosatti@redhat.com>
 *   Paolo Bonzini <pbonzini@redhat.com>
 *   Xiao Guangrong <guangrong.xiao@linux.intel.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 */

#include <linux/kvm_host.h>
#include <asm/mtrr.h>

#include "cpuid.h"
#include "mmu.h"

#define IA32_MTRR_DEF_TYPE_E		(1ULL << 11)
#define IA32_MTRR_DEF_TYPE_FE		(1ULL << 10)
#define IA32_MTRR_DEF_TYPE_TYPE_MASK	(0xff)

static bool msr_mtrr_valid(unsigned msr)
{
	switch (msr) {
	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
	case MSR_MTRRfix64K_00000:
	case MSR_MTRRfix16K_80000:
	case MSR_MTRRfix16K_A0000:
	case MSR_MTRRfix4K_C0000:
	case MSR_MTRRfix4K_C8000:
	case MSR_MTRRfix4K_D0000:
	case MSR_MTRRfix4K_D8000:
	case MSR_MTRRfix4K_E0000:
	case MSR_MTRRfix4K_E8000:
	case MSR_MTRRfix4K_F0000:
	case MSR_MTRRfix4K_F8000:
	case MSR_MTRRdefType:
	case MSR_IA32_CR_PAT:
		return true;
	case 0x2f8:
		return true;
	}
	return false;
}

static bool valid_pat_type(unsigned t)
{
	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
}

static bool valid_mtrr_type(unsigned t)
{
	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
}

bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
	int i;
	u64 mask;

	if (!msr_mtrr_valid(msr))
		return false;

	if (msr == MSR_IA32_CR_PAT) {
		for (i = 0; i < 8; i++)
			if (!valid_pat_type((data >> (i * 8)) & 0xff))
				return false;
		return true;
	} else if (msr == MSR_MTRRdefType) {
		if (data & ~0xcff)
			return false;
		return valid_mtrr_type(data & 0xff);
	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
		for (i = 0; i < 8 ; i++)
			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
				return false;
		return true;
	}

	/* variable MTRRs */
	WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));

	mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
	if ((msr & 1) == 0) {
		/* MTRR base */
		if (!valid_mtrr_type(data & 0xff))
			return false;
		mask |= 0xf00;
	} else
		/* MTRR mask */
		mask |= 0x7ff;
	if (data & mask) {
		kvm_inject_gp(vcpu, 0);
		return false;
	}

	return true;
}
EXPORT_SYMBOL_GPL(kvm_mtrr_valid);

static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
{
	return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
}

static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
{
	return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
}

static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
{
	return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
}

/*
* Three terms are used in the following code:
* - segment, it indicates the address segments covered by fixed MTRRs.
* - unit, it corresponds to the MSR entry in the segment.
* - range, a range is covered in one memory cache type.
*/
struct fixed_mtrr_segment {
	u64 start;
	u64 end;

	int range_shift;

	/* the start position in kvm_mtrr.fixed_ranges[]. */
	int range_start;
};

static struct fixed_mtrr_segment fixed_seg_table[] = {
	/* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
	{
		.start = 0x0,
		.end = 0x80000,
		.range_shift = 16, /* 64K */
		.range_start = 0,
	},

	/*
	 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
	 * 16K fixed mtrr.
	 */
	{
		.start = 0x80000,
		.end = 0xc0000,
		.range_shift = 14, /* 16K */
		.range_start = 8,
	},

	/*
	 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
	 * 4K fixed mtrr.
	 */
	{
		.start = 0xc0000,
		.end = 0x100000,
		.range_shift = 12, /* 12K */
		.range_start = 24,
	}
};

/*
 * The size of unit is covered in one MSR, one MSR entry contains
 * 8 ranges so that unit size is always 8 * 2^range_shift.
 */
static u64 fixed_mtrr_seg_unit_size(int seg)
{
	return 8 << fixed_seg_table[seg].range_shift;
}

static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
{
	switch (msr) {
	case MSR_MTRRfix64K_00000:
		*seg = 0;
		*unit = 0;
		break;
	case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
		*seg = 1;
		*unit = msr - MSR_MTRRfix16K_80000;
		break;
	case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
		*seg = 2;
		*unit = msr - MSR_MTRRfix4K_C0000;
		break;
	default:
		return false;
	}

	return true;
}

static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
{
	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
	u64 unit_size = fixed_mtrr_seg_unit_size(seg);

	*start = mtrr_seg->start + unit * unit_size;
	*end = *start + unit_size;
	WARN_ON(*end > mtrr_seg->end);
}

static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
{
	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];

	WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
		> mtrr_seg->end);

	/* each unit has 8 ranges. */
	return mtrr_seg->range_start + 8 * unit;
}

static int fixed_mtrr_seg_end_range_index(int seg)
{
	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
	int n;

	n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
	return mtrr_seg->range_start + n - 1;
}

static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
{
	int seg, unit;

	if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
		return false;

	fixed_mtrr_seg_unit_range(seg, unit, start, end);
	return true;
}

static int fixed_msr_to_range_index(u32 msr)
{
	int seg, unit;

	if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
		return -1;

	return fixed_mtrr_seg_unit_range_index(seg, unit);
}

static int fixed_mtrr_addr_to_seg(u64 addr)
{
	struct fixed_mtrr_segment *mtrr_seg;
	int seg, seg_num = ARRAY_SIZE(fixed_seg_table);

	for (seg = 0; seg < seg_num; seg++) {
		mtrr_seg = &fixed_seg_table[seg];
		if (mtrr_seg->start >= addr && addr < mtrr_seg->end)
			return seg;
	}

	return -1;
}

static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
{
	struct fixed_mtrr_segment *mtrr_seg;
	int index;

	mtrr_seg = &fixed_seg_table[seg];
	index = mtrr_seg->range_start;
	index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
	return index;
}

static u64 fixed_mtrr_range_end_addr(int seg, int index)
{
	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
	int pos = index - mtrr_seg->range_start;

	return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
}

static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
{
	u64 mask;

	*start = range->base & PAGE_MASK;

	mask = range->mask & PAGE_MASK;
	mask |= ~0ULL << boot_cpu_data.x86_phys_bits;

	/* This cannot overflow because writing to the reserved bits of
	 * variable MTRRs causes a #GP.
	 */
	*end = (*start | ~mask) + 1;
}

static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
{
	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
	gfn_t start, end;
	int index;

	if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
	      !kvm_arch_has_noncoherent_dma(vcpu->kvm))
		return;

	if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
		return;

	/* fixed MTRRs. */
	if (fixed_msr_to_range(msr, &start, &end)) {
		if (!fixed_mtrr_is_enabled(mtrr_state))
			return;
	} else if (msr == MSR_MTRRdefType) {
		start = 0x0;
		end = ~0ULL;
	} else {
		/* variable range MTRRs. */
		index = (msr - 0x200) / 2;
		var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
	}

	kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
}

static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
{
	return (range->mask & (1 << 11)) != 0;
}

static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
	struct kvm_mtrr_range *tmp, *cur;
	int index, is_mtrr_mask;

	index = (msr - 0x200) / 2;
	is_mtrr_mask = msr - 0x200 - 2 * index;
	cur = &mtrr_state->var_ranges[index];

	/* remove the entry if it's in the list. */
	if (var_mtrr_range_is_valid(cur))
		list_del(&mtrr_state->var_ranges[index].node);

	if (!is_mtrr_mask)
		cur->base = data;
	else
		cur->mask = data;

	/* add it to the list if it's enabled. */
	if (var_mtrr_range_is_valid(cur)) {
		list_for_each_entry(tmp, &mtrr_state->head, node)
			if (cur->base >= tmp->base)
				break;
		list_add_tail(&cur->node, &tmp->node);
	}
}

int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
	int index;

	if (!kvm_mtrr_valid(vcpu, msr, data))
		return 1;

	index = fixed_msr_to_range_index(msr);
	if (index >= 0)
		*(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
	else if (msr == MSR_MTRRdefType)
		vcpu->arch.mtrr_state.deftype = data;
	else if (msr == MSR_IA32_CR_PAT)
		vcpu->arch.pat = data;
	else
		set_var_mtrr_msr(vcpu, msr, data);

	update_mtrr(vcpu, msr);
	return 0;
}

int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
	int index;

	/* MSR_MTRRcap is a readonly MSR. */
	if (msr == MSR_MTRRcap) {
		/*
		 * SMRR = 0
		 * WC = 1
		 * FIX = 1
		 * VCNT = KVM_NR_VAR_MTRR
		 */
		*pdata = 0x500 | KVM_NR_VAR_MTRR;
		return 0;
	}

	if (!msr_mtrr_valid(msr))
		return 1;

	index = fixed_msr_to_range_index(msr);
	if (index >= 0)
		*pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
	else if (msr == MSR_MTRRdefType)
		*pdata = vcpu->arch.mtrr_state.deftype;
	else if (msr == MSR_IA32_CR_PAT)
		*pdata = vcpu->arch.pat;
	else {	/* Variable MTRRs */
		int is_mtrr_mask;

		index = (msr - 0x200) / 2;
		is_mtrr_mask = msr - 0x200 - 2 * index;
		if (!is_mtrr_mask)
			*pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
		else
			*pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
	}

	return 0;
}

void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
{
	INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
}

struct mtrr_iter {
	/* input fields. */
	struct kvm_mtrr *mtrr_state;
	u64 start;
	u64 end;

	/* output fields. */
	int mem_type;
	/* [start, end) is not fully covered in MTRRs? */
	bool partial_map;

	/* private fields. */
	union {
		/* used for fixed MTRRs. */
		struct {
			int index;
			int seg;
		};

		/* used for var MTRRs. */
		struct {
			struct kvm_mtrr_range *range;
			/* max address has been covered in var MTRRs. */
			u64 start_max;
		};
	};

	bool fixed;
};

static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
{
	int seg, index;

	if (!fixed_mtrr_is_enabled(iter->mtrr_state))
		return false;

	seg = fixed_mtrr_addr_to_seg(iter->start);
	if (seg < 0)
		return false;

	iter->fixed = true;
	index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
	iter->index = index;
	iter->seg = seg;
	return true;
}

static bool match_var_range(struct mtrr_iter *iter,
			    struct kvm_mtrr_range *range)
{
	u64 start, end;

	var_mtrr_range(range, &start, &end);
	if (!(start >= iter->end || end <= iter->start)) {
		iter->range = range;

		/*
		 * the function is called when we do kvm_mtrr.head walking.
		 * Range has the minimum base address which interleaves
		 * [looker->start_max, looker->end).
		 */
		iter->partial_map |= iter->start_max < start;

		/* update the max address has been covered. */
		iter->start_max = max(iter->start_max, end);
		return true;
	}

	return false;
}

static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
{
	struct kvm_mtrr *mtrr_state = iter->mtrr_state;

	list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
		if (match_var_range(iter, iter->range))
			return;

	iter->range = NULL;
	iter->partial_map |= iter->start_max < iter->end;
}

static void mtrr_lookup_var_start(struct mtrr_iter *iter)
{
	struct kvm_mtrr *mtrr_state = iter->mtrr_state;

	iter->fixed = false;
	iter->start_max = iter->start;
	iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);

	__mtrr_lookup_var_next(iter);
}

static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
{
	/* terminate the lookup. */
	if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
		iter->fixed = false;
		iter->range = NULL;
		return;
	}

	iter->index++;

	/* have looked up for all fixed MTRRs. */
	if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
		return mtrr_lookup_var_start(iter);

	/* switch to next segment. */
	if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
		iter->seg++;
}

static void mtrr_lookup_var_next(struct mtrr_iter *iter)
{
	__mtrr_lookup_var_next(iter);
}

static void mtrr_lookup_start(struct mtrr_iter *iter)
{
	if (!mtrr_is_enabled(iter->mtrr_state)) {
		iter->partial_map = true;
		return;
	}

	if (!mtrr_lookup_fixed_start(iter))
		mtrr_lookup_var_start(iter);
}

static void mtrr_lookup_init(struct mtrr_iter *iter,
			     struct kvm_mtrr *mtrr_state, u64 start, u64 end)
{
	iter->mtrr_state = mtrr_state;
	iter->start = start;
	iter->end = end;
	iter->partial_map = false;
	iter->fixed = false;
	iter->range = NULL;

	mtrr_lookup_start(iter);
}

static bool mtrr_lookup_okay(struct mtrr_iter *iter)
{
	if (iter->fixed) {
		iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
		return true;
	}

	if (iter->range) {
		iter->mem_type = iter->range->base & 0xff;
		return true;
	}

	return false;
}

static void mtrr_lookup_next(struct mtrr_iter *iter)
{
	if (iter->fixed)
		mtrr_lookup_fixed_next(iter);
	else
		mtrr_lookup_var_next(iter);
}

#define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
	for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
	     mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))

u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
{
	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
	struct mtrr_iter iter;
	u64 start, end;
	int type = -1;
	const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
			       | (1 << MTRR_TYPE_WRTHROUGH);

	start = gfn_to_gpa(gfn);
	end = start + PAGE_SIZE;

	mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
		int curr_type = iter.mem_type;

		/*
		 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
		 * Precedences.
		 */

		if (type == -1) {
			type = curr_type;
			continue;
		}

		/*
		 * If two or more variable memory ranges match and the
		 * memory types are identical, then that memory type is
		 * used.
		 */
		if (type == curr_type)
			continue;

		/*
		 * If two or more variable memory ranges match and one of
		 * the memory types is UC, the UC memory type used.
		 */
		if (curr_type == MTRR_TYPE_UNCACHABLE)
			return MTRR_TYPE_UNCACHABLE;

		/*
		 * If two or more variable memory ranges match and the
		 * memory types are WT and WB, the WT memory type is used.
		 */
		if (((1 << type) & wt_wb_mask) &&
		      ((1 << curr_type) & wt_wb_mask)) {
			type = MTRR_TYPE_WRTHROUGH;
			continue;
		}

		/*
		 * For overlaps not defined by the above rules, processor
		 * behavior is undefined.
		 */

		/* We use WB for this undefined behavior. :( */
		return MTRR_TYPE_WRBACK;
	}

	/* It is not covered by MTRRs. */
	if (iter.partial_map) {
		/*
		 * We just check one page, partially covered by MTRRs is
		 * impossible.
		 */
		WARN_ON(type != -1);
		type = mtrr_default_type(mtrr_state);
	}
	return type;
}
EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);