summaryrefslogtreecommitdiff
path: root/drivers/char/agp/i460-agp.c
blob: 76f581c85a7d5697120668c3bfcea4a5b1b445ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
/*
 * For documentation on the i460 AGP interface, see Chapter 7 (AGP Subsystem) of
 * the "Intel 460GTX Chipset Software Developer's Manual":
 * http://developer.intel.com/design/itanium/downloads/24870401s.htm
 */
/*
 * 460GX support by Chris Ahna <christopher.j.ahna@intel.com>
 * Clean up & simplification by David Mosberger-Tang <davidm@hpl.hp.com>
 */
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/agp_backend.h>
#include <linux/log2.h>

#include "agp.h"

#define INTEL_I460_BAPBASE		0x98
#define INTEL_I460_GXBCTL		0xa0
#define INTEL_I460_AGPSIZ		0xa2
#define INTEL_I460_ATTBASE		0xfe200000
#define INTEL_I460_GATT_VALID		(1UL << 24)
#define INTEL_I460_GATT_COHERENT	(1UL << 25)

/*
 * The i460 can operate with large (4MB) pages, but there is no sane way to support this
 * within the current kernel/DRM environment, so we disable the relevant code for now.
 * See also comments in ia64_alloc_page()...
 */
#define I460_LARGE_IO_PAGES		0

#if I460_LARGE_IO_PAGES
# define I460_IO_PAGE_SHIFT		i460.io_page_shift
#else
# define I460_IO_PAGE_SHIFT		12
#endif

#define I460_IOPAGES_PER_KPAGE		(PAGE_SIZE >> I460_IO_PAGE_SHIFT)
#define I460_KPAGES_PER_IOPAGE		(1 << (I460_IO_PAGE_SHIFT - PAGE_SHIFT))
#define I460_SRAM_IO_DISABLE		(1 << 4)
#define I460_BAPBASE_ENABLE		(1 << 3)
#define I460_AGPSIZ_MASK		0x7
#define I460_4M_PS			(1 << 1)

/* Control bits for Out-Of-GART coherency and Burst Write Combining */
#define I460_GXBCTL_OOG		(1UL << 0)
#define I460_GXBCTL_BWC		(1UL << 2)

/*
 * gatt_table entries are 32-bits wide on the i460; the generic code ought to declare the
 * gatt_table and gatt_table_real pointers a "void *"...
 */
#define RD_GATT(index)		readl((u32 *) i460.gatt + (index))
#define WR_GATT(index, val)	writel((val), (u32 *) i460.gatt + (index))
/*
 * The 460 spec says we have to read the last location written to make sure that all
 * writes have taken effect
 */
#define WR_FLUSH_GATT(index)	RD_GATT(index)

static struct {
	void *gatt;				/* ioremap'd GATT area */

	/* i460 supports multiple GART page sizes, so GART pageshift is dynamic: */
	u8 io_page_shift;

	/* BIOS configures chipset to one of 2 possible apbase values: */
	u8 dynamic_apbase;

	/* structure for tracking partial use of 4MB GART pages: */
	struct lp_desc {
		unsigned long *alloced_map;	/* bitmap of kernel-pages in use */
		int refcount;			/* number of kernel pages using the large page */
		u64 paddr;			/* physical address of large page */
	} *lp_desc;
} i460;

static const struct aper_size_info_8 i460_sizes[3] =
{
	/*
	 * The 32GB aperture is only available with a 4M GART page size.  Due to the
	 * dynamic GART page size, we can't figure out page_order or num_entries until
	 * runtime.
	 */
	{32768, 0, 0, 4},
	{1024, 0, 0, 2},
	{256, 0, 0, 1}
};

static struct gatt_mask i460_masks[] =
{
	{
	  .mask = INTEL_I460_GATT_VALID | INTEL_I460_GATT_COHERENT,
	  .type = 0
	}
};

static int i460_fetch_size (void)
{
	int i;
	u8 temp;
	struct aper_size_info_8 *values;

	/* Determine the GART page size */
	pci_read_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, &temp);
	i460.io_page_shift = (temp & I460_4M_PS) ? 22 : 12;
	pr_debug("i460_fetch_size: io_page_shift=%d\n", i460.io_page_shift);

	if (i460.io_page_shift != I460_IO_PAGE_SHIFT) {
		printk(KERN_ERR PFX
			"I/O (GART) page-size %luKB doesn't match expected "
				"size %luKB\n",
			1UL << (i460.io_page_shift - 10),
			1UL << (I460_IO_PAGE_SHIFT));
		return 0;
	}

	values = A_SIZE_8(agp_bridge->driver->aperture_sizes);

	pci_read_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, &temp);

	/* Exit now if the IO drivers for the GART SRAMS are turned off */
	if (temp & I460_SRAM_IO_DISABLE) {
		printk(KERN_ERR PFX "GART SRAMS disabled on 460GX chipset\n");
		printk(KERN_ERR PFX "AGPGART operation not possible\n");
		return 0;
	}

	/* Make sure we don't try to create an 2 ^ 23 entry GATT */
	if ((i460.io_page_shift == 0) && ((temp & I460_AGPSIZ_MASK) == 4)) {
		printk(KERN_ERR PFX "We can't have a 32GB aperture with 4KB GART pages\n");
		return 0;
	}

	/* Determine the proper APBASE register */
	if (temp & I460_BAPBASE_ENABLE)
		i460.dynamic_apbase = INTEL_I460_BAPBASE;
	else
		i460.dynamic_apbase = AGP_APBASE;

	for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) {
		/*
		 * Dynamically calculate the proper num_entries and page_order values for
		 * the define aperture sizes. Take care not to shift off the end of
		 * values[i].size.
		 */
		values[i].num_entries = (values[i].size << 8) >> (I460_IO_PAGE_SHIFT - 12);
		values[i].page_order = ilog2((sizeof(u32)*values[i].num_entries) >> PAGE_SHIFT);
	}

	for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) {
		/* Neglect control bits when matching up size_value */
		if ((temp & I460_AGPSIZ_MASK) == values[i].size_value) {
			agp_bridge->previous_size = agp_bridge->current_size = (void *) (values + i);
			agp_bridge->aperture_size_idx = i;
			return values[i].size;
		}
	}

	return 0;
}

/* There isn't anything to do here since 460 has no GART TLB. */
static void i460_tlb_flush (struct agp_memory *mem)
{
	return;
}

/*
 * This utility function is needed to prevent corruption of the control bits
 * which are stored along with the aperture size in 460's AGPSIZ register
 */
static void i460_write_agpsiz (u8 size_value)
{
	u8 temp;

	pci_read_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, &temp);
	pci_write_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ,
			      ((temp & ~I460_AGPSIZ_MASK) | size_value));
}

static void i460_cleanup (void)
{
	struct aper_size_info_8 *previous_size;

	previous_size = A_SIZE_8(agp_bridge->previous_size);
	i460_write_agpsiz(previous_size->size_value);

	if (I460_IO_PAGE_SHIFT > PAGE_SHIFT)
		kfree(i460.lp_desc);
}

static int i460_configure (void)
{
	union {
		u32 small[2];
		u64 large;
	} temp;
	size_t size;
	u8 scratch;
	struct aper_size_info_8 *current_size;

	temp.large = 0;

	current_size = A_SIZE_8(agp_bridge->current_size);
	i460_write_agpsiz(current_size->size_value);

	/*
	 * Do the necessary rigmarole to read all eight bytes of APBASE.
	 * This has to be done since the AGP aperture can be above 4GB on
	 * 460 based systems.
	 */
	pci_read_config_dword(agp_bridge->dev, i460.dynamic_apbase, &(temp.small[0]));
	pci_read_config_dword(agp_bridge->dev, i460.dynamic_apbase + 4, &(temp.small[1]));

	/* Clear BAR control bits */
	agp_bridge->gart_bus_addr = temp.large & ~((1UL << 3) - 1);

	pci_read_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, &scratch);
	pci_write_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL,
			      (scratch & 0x02) | I460_GXBCTL_OOG | I460_GXBCTL_BWC);

	/*
	 * Initialize partial allocation trackers if a GART page is bigger than a kernel
	 * page.
	 */
	if (I460_IO_PAGE_SHIFT > PAGE_SHIFT) {
		size = current_size->num_entries * sizeof(i460.lp_desc[0]);
		i460.lp_desc = kzalloc(size, GFP_KERNEL);
		if (!i460.lp_desc)
			return -ENOMEM;
	}
	return 0;
}

static int i460_create_gatt_table (struct agp_bridge_data *bridge)
{
	int page_order, num_entries, i;
	void *temp;

	/*
	 * Load up the fixed address of the GART SRAMS which hold our GATT table.
	 */
	temp = agp_bridge->current_size;
	page_order = A_SIZE_8(temp)->page_order;
	num_entries = A_SIZE_8(temp)->num_entries;

	i460.gatt = ioremap(INTEL_I460_ATTBASE, PAGE_SIZE << page_order);
	if (!i460.gatt) {
		printk(KERN_ERR PFX "ioremap failed\n");
		return -ENOMEM;
	}

	/* These are no good, the should be removed from the agp_bridge strucure... */
	agp_bridge->gatt_table_real = NULL;
	agp_bridge->gatt_table = NULL;
	agp_bridge->gatt_bus_addr = 0;

	for (i = 0; i < num_entries; ++i)
		WR_GATT(i, 0);
	WR_FLUSH_GATT(i - 1);
	return 0;
}

static int i460_free_gatt_table (struct agp_bridge_data *bridge)
{
	int num_entries, i;
	void *temp;

	temp = agp_bridge->current_size;

	num_entries = A_SIZE_8(temp)->num_entries;

	for (i = 0; i < num_entries; ++i)
		WR_GATT(i, 0);
	WR_FLUSH_GATT(num_entries - 1);

	iounmap(i460.gatt);
	return 0;
}

/*
 * The following functions are called when the I/O (GART) page size is smaller than
 * PAGE_SIZE.
 */

static int i460_insert_memory_small_io_page (struct agp_memory *mem,
				off_t pg_start, int type)
{
	unsigned long paddr, io_pg_start, io_page_size;
	int i, j, k, num_entries;
	void *temp;

	pr_debug("i460_insert_memory_small_io_page(mem=%p, pg_start=%ld, type=%d, paddr0=0x%lx)\n",
		 mem, pg_start, type, mem->memory[0]);

	if (type >= AGP_USER_TYPES || mem->type >= AGP_USER_TYPES)
		return -EINVAL;

	io_pg_start = I460_IOPAGES_PER_KPAGE * pg_start;

	temp = agp_bridge->current_size;
	num_entries = A_SIZE_8(temp)->num_entries;

	if ((io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count) > num_entries) {
		printk(KERN_ERR PFX "Looks like we're out of AGP memory\n");
		return -EINVAL;
	}

	j = io_pg_start;
	while (j < (io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count)) {
		if (!PGE_EMPTY(agp_bridge, RD_GATT(j))) {
			pr_debug("i460_insert_memory_small_io_page: GATT[%d]=0x%x is busy\n",
				 j, RD_GATT(j));
			return -EBUSY;
		}
		j++;
	}

	io_page_size = 1UL << I460_IO_PAGE_SHIFT;
	for (i = 0, j = io_pg_start; i < mem->page_count; i++) {
		paddr = mem->memory[i];
		for (k = 0; k < I460_IOPAGES_PER_KPAGE; k++, j++, paddr += io_page_size)
			WR_GATT(j, agp_bridge->driver->mask_memory(agp_bridge,
				paddr, mem->type));
	}
	WR_FLUSH_GATT(j - 1);
	return 0;
}

static int i460_remove_memory_small_io_page(struct agp_memory *mem,
				off_t pg_start, int type)
{
	int i;

	pr_debug("i460_remove_memory_small_io_page(mem=%p, pg_start=%ld, type=%d)\n",
		 mem, pg_start, type);

	pg_start = I460_IOPAGES_PER_KPAGE * pg_start;

	for (i = pg_start; i < (pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count); i++)
		WR_GATT(i, 0);
	WR_FLUSH_GATT(i - 1);
	return 0;
}

#if I460_LARGE_IO_PAGES

/*
 * These functions are called when the I/O (GART) page size exceeds PAGE_SIZE.
 *
 * This situation is interesting since AGP memory allocations that are smaller than a
 * single GART page are possible.  The i460.lp_desc array tracks partial allocation of the
 * large GART pages to work around this issue.
 *
 * i460.lp_desc[pg_num].refcount tracks the number of kernel pages in use within GART page
 * pg_num.  i460.lp_desc[pg_num].paddr is the physical address of the large page and
 * i460.lp_desc[pg_num].alloced_map is a bitmap of kernel pages that are in use (allocated).
 */

static int i460_alloc_large_page (struct lp_desc *lp)
{
	unsigned long order = I460_IO_PAGE_SHIFT - PAGE_SHIFT;
	size_t map_size;
	void *lpage;

	lpage = (void *) __get_free_pages(GFP_KERNEL, order);
	if (!lpage) {
		printk(KERN_ERR PFX "Couldn't alloc 4M GART page...\n");
		return -ENOMEM;
	}

	map_size = ((I460_KPAGES_PER_IOPAGE + BITS_PER_LONG - 1) & -BITS_PER_LONG)/8;
	lp->alloced_map = kzalloc(map_size, GFP_KERNEL);
	if (!lp->alloced_map) {
		free_pages((unsigned long) lpage, order);
		printk(KERN_ERR PFX "Out of memory, we're in trouble...\n");
		return -ENOMEM;
	}

	lp->paddr = virt_to_gart(lpage);
	lp->refcount = 0;
	atomic_add(I460_KPAGES_PER_IOPAGE, &agp_bridge->current_memory_agp);
	return 0;
}

static void i460_free_large_page (struct lp_desc *lp)
{
	kfree(lp->alloced_map);
	lp->alloced_map = NULL;

	free_pages((unsigned long) gart_to_virt(lp->paddr), I460_IO_PAGE_SHIFT - PAGE_SHIFT);
	atomic_sub(I460_KPAGES_PER_IOPAGE, &agp_bridge->current_memory_agp);
}

static int i460_insert_memory_large_io_page (struct agp_memory *mem,
				off_t pg_start, int type)
{
	int i, start_offset, end_offset, idx, pg, num_entries;
	struct lp_desc *start, *end, *lp;
	void *temp;

	if (type >= AGP_USER_TYPES || mem->type >= AGP_USER_TYPES)
		return -EINVAL;

	temp = agp_bridge->current_size;
	num_entries = A_SIZE_8(temp)->num_entries;

	/* Figure out what pg_start means in terms of our large GART pages */
	start = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE];
	end = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE];
	start_offset = pg_start % I460_KPAGES_PER_IOPAGE;
	end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE;

	if (end > i460.lp_desc + num_entries) {
		printk(KERN_ERR PFX "Looks like we're out of AGP memory\n");
		return -EINVAL;
	}

	/* Check if the requested region of the aperture is free */
	for (lp = start; lp <= end; ++lp) {
		if (!lp->alloced_map)
			continue;	/* OK, the entire large page is available... */

		for (idx = ((lp == start) ? start_offset : 0);
		     idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE);
		     idx++)
		{
			if (test_bit(idx, lp->alloced_map))
				return -EBUSY;
		}
	}

	for (lp = start, i = 0; lp <= end; ++lp) {
		if (!lp->alloced_map) {
			/* Allocate new GART pages... */
			if (i460_alloc_large_page(lp) < 0)
				return -ENOMEM;
			pg = lp - i460.lp_desc;
			WR_GATT(pg, agp_bridge->driver->mask_memory(agp_bridge,
				lp->paddr, 0));
			WR_FLUSH_GATT(pg);
		}

		for (idx = ((lp == start) ? start_offset : 0);
		     idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE);
		     idx++, i++)
		{
			mem->memory[i] = lp->paddr + idx*PAGE_SIZE;
			__set_bit(idx, lp->alloced_map);
			++lp->refcount;
		}
	}
	return 0;
}

static int i460_remove_memory_large_io_page (struct agp_memory *mem,
				off_t pg_start, int type)
{
	int i, pg, start_offset, end_offset, idx, num_entries;
	struct lp_desc *start, *end, *lp;
	void *temp;

	temp = agp_bridge->driver->current_size;
	num_entries = A_SIZE_8(temp)->num_entries;

	/* Figure out what pg_start means in terms of our large GART pages */
	start = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE];
	end = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE];
	start_offset = pg_start % I460_KPAGES_PER_IOPAGE;
	end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE;

	for (i = 0, lp = start; lp <= end; ++lp) {
		for (idx = ((lp == start) ? start_offset : 0);
		     idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE);
		     idx++, i++)
		{
			mem->memory[i] = 0;
			__clear_bit(idx, lp->alloced_map);
			--lp->refcount;
		}

		/* Free GART pages if they are unused */
		if (lp->refcount == 0) {
			pg = lp - i460.lp_desc;
			WR_GATT(pg, 0);
			WR_FLUSH_GATT(pg);
			i460_free_large_page(lp);
		}
	}
	return 0;
}

/* Wrapper routines to call the approriate {small_io_page,large_io_page} function */

static int i460_insert_memory (struct agp_memory *mem,
				off_t pg_start, int type)
{
	if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT)
		return i460_insert_memory_small_io_page(mem, pg_start, type);
	else
		return i460_insert_memory_large_io_page(mem, pg_start, type);
}

static int i460_remove_memory (struct agp_memory *mem,
				off_t pg_start, int type)
{
	if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT)
		return i460_remove_memory_small_io_page(mem, pg_start, type);
	else
		return i460_remove_memory_large_io_page(mem, pg_start, type);
}

/*
 * If the I/O (GART) page size is bigger than the kernel page size, we don't want to
 * allocate memory until we know where it is to be bound in the aperture (a
 * multi-kernel-page alloc might fit inside of an already allocated GART page).
 *
 * Let's just hope nobody counts on the allocated AGP memory being there before bind time
 * (I don't think current drivers do)...
 */
static void *i460_alloc_page (struct agp_bridge_data *bridge)
{
	void *page;

	if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) {
		page = agp_generic_alloc_page(agp_bridge);
	} else
		/* Returning NULL would cause problems */
		/* AK: really dubious code. */
		page = (void *)~0UL;
	return page;
}

static void i460_destroy_page (void *page, int flags)
{
	if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) {
		agp_generic_destroy_page(page, flags);
	}
}

#endif /* I460_LARGE_IO_PAGES */

static unsigned long i460_mask_memory (struct agp_bridge_data *bridge,
	unsigned long addr, int type)
{
	/* Make sure the returned address is a valid GATT entry */
	return bridge->driver->masks[0].mask
		| (((addr & ~((1 << I460_IO_PAGE_SHIFT) - 1)) & 0xfffff000) >> 12);
}

const struct agp_bridge_driver intel_i460_driver = {
	.owner			= THIS_MODULE,
	.aperture_sizes		= i460_sizes,
	.size_type		= U8_APER_SIZE,
	.num_aperture_sizes	= 3,
	.configure		= i460_configure,
	.fetch_size		= i460_fetch_size,
	.cleanup		= i460_cleanup,
	.tlb_flush		= i460_tlb_flush,
	.mask_memory		= i460_mask_memory,
	.masks			= i460_masks,
	.agp_enable		= agp_generic_enable,
	.cache_flush		= global_cache_flush,
	.create_gatt_table	= i460_create_gatt_table,
	.free_gatt_table	= i460_free_gatt_table,
#if I460_LARGE_IO_PAGES
	.insert_memory		= i460_insert_memory,
	.remove_memory		= i460_remove_memory,
	.agp_alloc_page		= i460_alloc_page,
	.agp_destroy_page	= i460_destroy_page,
#else
	.insert_memory		= i460_insert_memory_small_io_page,
	.remove_memory		= i460_remove_memory_small_io_page,
	.agp_alloc_page		= agp_generic_alloc_page,
	.agp_destroy_page	= agp_generic_destroy_page,
#endif
	.alloc_by_type		= agp_generic_alloc_by_type,
	.free_by_type		= agp_generic_free_by_type,
	.agp_type_to_mask_type  = agp_generic_type_to_mask_type,
	.cant_use_aperture	= 1,
};

static int __devinit agp_intel_i460_probe(struct pci_dev *pdev,
					  const struct pci_device_id *ent)
{
	struct agp_bridge_data *bridge;
	u8 cap_ptr;

	cap_ptr = pci_find_capability(pdev, PCI_CAP_ID_AGP);
	if (!cap_ptr)
		return -ENODEV;

	bridge = agp_alloc_bridge();
	if (!bridge)
		return -ENOMEM;

	bridge->driver = &intel_i460_driver;
	bridge->dev = pdev;
	bridge->capndx = cap_ptr;

	printk(KERN_INFO PFX "Detected Intel 460GX chipset\n");

	pci_set_drvdata(pdev, bridge);
	return agp_add_bridge(bridge);
}

static void __devexit agp_intel_i460_remove(struct pci_dev *pdev)
{
	struct agp_bridge_data *bridge = pci_get_drvdata(pdev);

	agp_remove_bridge(bridge);
	agp_put_bridge(bridge);
}

static struct pci_device_id agp_intel_i460_pci_table[] = {
	{
	.class		= (PCI_CLASS_BRIDGE_HOST << 8),
	.class_mask	= ~0,
	.vendor		= PCI_VENDOR_ID_INTEL,
	.device		= PCI_DEVICE_ID_INTEL_84460GX,
	.subvendor	= PCI_ANY_ID,
	.subdevice	= PCI_ANY_ID,
	},
	{ }
};

MODULE_DEVICE_TABLE(pci, agp_intel_i460_pci_table);

static struct pci_driver agp_intel_i460_pci_driver = {
	.name		= "agpgart-intel-i460",
	.id_table	= agp_intel_i460_pci_table,
	.probe		= agp_intel_i460_probe,
	.remove		= __devexit_p(agp_intel_i460_remove),
};

static int __init agp_intel_i460_init(void)
{
	if (agp_off)
		return -EINVAL;
	return pci_register_driver(&agp_intel_i460_pci_driver);
}

static void __exit agp_intel_i460_cleanup(void)
{
	pci_unregister_driver(&agp_intel_i460_pci_driver);
}

module_init(agp_intel_i460_init);
module_exit(agp_intel_i460_cleanup);

MODULE_AUTHOR("Chris Ahna <Christopher.J.Ahna@intel.com>");
MODULE_LICENSE("GPL and additional rights");