1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
|
/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/math64.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/clk/ti.h>
/* FAPLL Control Register PLL_CTRL */
#define FAPLL_MAIN_MULT_N_SHIFT 16
#define FAPLL_MAIN_DIV_P_SHIFT 8
#define FAPLL_MAIN_LOCK BIT(7)
#define FAPLL_MAIN_PLLEN BIT(3)
#define FAPLL_MAIN_BP BIT(2)
#define FAPLL_MAIN_LOC_CTL BIT(0)
#define FAPLL_MAIN_MAX_MULT_N 0xffff
#define FAPLL_MAIN_MAX_DIV_P 0xff
#define FAPLL_MAIN_CLEAR_MASK \
((FAPLL_MAIN_MAX_MULT_N << FAPLL_MAIN_MULT_N_SHIFT) | \
(FAPLL_MAIN_DIV_P_SHIFT << FAPLL_MAIN_DIV_P_SHIFT) | \
FAPLL_MAIN_LOC_CTL)
/* FAPLL powerdown register PWD */
#define FAPLL_PWD_OFFSET 4
#define MAX_FAPLL_OUTPUTS 7
#define FAPLL_MAX_RETRIES 1000
#define to_fapll(_hw) container_of(_hw, struct fapll_data, hw)
#define to_synth(_hw) container_of(_hw, struct fapll_synth, hw)
/* The bypass bit is inverted on the ddr_pll.. */
#define fapll_is_ddr_pll(va) (((u32)(va) & 0xffff) == 0x0440)
/*
* The audio_pll_clk1 input is hard wired to the 27MHz bypass clock,
* and the audio_pll_clk1 synthesizer is hardwared to 32KiHz output.
*/
#define is_ddr_pll_clk1(va) (((u32)(va) & 0xffff) == 0x044c)
#define is_audio_pll_clk1(va) (((u32)(va) & 0xffff) == 0x04a8)
/* Synthesizer divider register */
#define SYNTH_LDMDIV1 BIT(8)
/* Synthesizer frequency register */
#define SYNTH_LDFREQ BIT(31)
#define SYNTH_PHASE_K 8
#define SYNTH_MAX_INT_DIV 0xf
#define SYNTH_MAX_DIV_M 0xff
struct fapll_data {
struct clk_hw hw;
void __iomem *base;
const char *name;
struct clk *clk_ref;
struct clk *clk_bypass;
struct clk_onecell_data outputs;
bool bypass_bit_inverted;
};
struct fapll_synth {
struct clk_hw hw;
struct fapll_data *fd;
int index;
void __iomem *freq;
void __iomem *div;
const char *name;
struct clk *clk_pll;
};
static bool ti_fapll_clock_is_bypass(struct fapll_data *fd)
{
u32 v = readl_relaxed(fd->base);
if (fd->bypass_bit_inverted)
return !(v & FAPLL_MAIN_BP);
else
return !!(v & FAPLL_MAIN_BP);
}
static void ti_fapll_set_bypass(struct fapll_data *fd)
{
u32 v = readl_relaxed(fd->base);
if (fd->bypass_bit_inverted)
v &= ~FAPLL_MAIN_BP;
else
v |= FAPLL_MAIN_BP;
writel_relaxed(v, fd->base);
}
static void ti_fapll_clear_bypass(struct fapll_data *fd)
{
u32 v = readl_relaxed(fd->base);
if (fd->bypass_bit_inverted)
v |= FAPLL_MAIN_BP;
else
v &= ~FAPLL_MAIN_BP;
writel_relaxed(v, fd->base);
}
static int ti_fapll_wait_lock(struct fapll_data *fd)
{
int retries = FAPLL_MAX_RETRIES;
u32 v;
while ((v = readl_relaxed(fd->base))) {
if (v & FAPLL_MAIN_LOCK)
return 0;
if (retries-- <= 0)
break;
udelay(1);
}
pr_err("%s failed to lock\n", fd->name);
return -ETIMEDOUT;
}
static int ti_fapll_enable(struct clk_hw *hw)
{
struct fapll_data *fd = to_fapll(hw);
u32 v = readl_relaxed(fd->base);
v |= FAPLL_MAIN_PLLEN;
writel_relaxed(v, fd->base);
ti_fapll_wait_lock(fd);
return 0;
}
static void ti_fapll_disable(struct clk_hw *hw)
{
struct fapll_data *fd = to_fapll(hw);
u32 v = readl_relaxed(fd->base);
v &= ~FAPLL_MAIN_PLLEN;
writel_relaxed(v, fd->base);
}
static int ti_fapll_is_enabled(struct clk_hw *hw)
{
struct fapll_data *fd = to_fapll(hw);
u32 v = readl_relaxed(fd->base);
return v & FAPLL_MAIN_PLLEN;
}
static unsigned long ti_fapll_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct fapll_data *fd = to_fapll(hw);
u32 fapll_n, fapll_p, v;
long long rate;
if (ti_fapll_clock_is_bypass(fd))
return parent_rate;
rate = parent_rate;
/* PLL pre-divider is P and multiplier is N */
v = readl_relaxed(fd->base);
fapll_p = (v >> 8) & 0xff;
if (fapll_p)
do_div(rate, fapll_p);
fapll_n = v >> 16;
if (fapll_n)
rate *= fapll_n;
return rate;
}
static u8 ti_fapll_get_parent(struct clk_hw *hw)
{
struct fapll_data *fd = to_fapll(hw);
if (ti_fapll_clock_is_bypass(fd))
return 1;
return 0;
}
static int ti_fapll_set_div_mult(unsigned long rate,
unsigned long parent_rate,
u32 *pre_div_p, u32 *mult_n)
{
/*
* So far no luck getting decent clock with PLL divider,
* PLL does not seem to lock and the signal does not look
* right. It seems the divider can only be used together
* with the multiplier?
*/
if (rate < parent_rate) {
pr_warn("FAPLL main divider rates unsupported\n");
return -EINVAL;
}
*mult_n = rate / parent_rate;
if (*mult_n > FAPLL_MAIN_MAX_MULT_N)
return -EINVAL;
*pre_div_p = 1;
return 0;
}
static long ti_fapll_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
u32 pre_div_p, mult_n;
int error;
if (!rate)
return -EINVAL;
error = ti_fapll_set_div_mult(rate, *parent_rate,
&pre_div_p, &mult_n);
if (error)
return error;
rate = *parent_rate / pre_div_p;
rate *= mult_n;
return rate;
}
static int ti_fapll_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct fapll_data *fd = to_fapll(hw);
u32 pre_div_p, mult_n, v;
int error;
if (!rate)
return -EINVAL;
error = ti_fapll_set_div_mult(rate, parent_rate,
&pre_div_p, &mult_n);
if (error)
return error;
ti_fapll_set_bypass(fd);
v = readl_relaxed(fd->base);
v &= ~FAPLL_MAIN_CLEAR_MASK;
v |= pre_div_p << FAPLL_MAIN_DIV_P_SHIFT;
v |= mult_n << FAPLL_MAIN_MULT_N_SHIFT;
writel_relaxed(v, fd->base);
if (ti_fapll_is_enabled(hw))
ti_fapll_wait_lock(fd);
ti_fapll_clear_bypass(fd);
return 0;
}
static struct clk_ops ti_fapll_ops = {
.enable = ti_fapll_enable,
.disable = ti_fapll_disable,
.is_enabled = ti_fapll_is_enabled,
.recalc_rate = ti_fapll_recalc_rate,
.get_parent = ti_fapll_get_parent,
.round_rate = ti_fapll_round_rate,
.set_rate = ti_fapll_set_rate,
};
static int ti_fapll_synth_enable(struct clk_hw *hw)
{
struct fapll_synth *synth = to_synth(hw);
u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
v &= ~(1 << synth->index);
writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
return 0;
}
static void ti_fapll_synth_disable(struct clk_hw *hw)
{
struct fapll_synth *synth = to_synth(hw);
u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
v |= 1 << synth->index;
writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
}
static int ti_fapll_synth_is_enabled(struct clk_hw *hw)
{
struct fapll_synth *synth = to_synth(hw);
u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
return !(v & (1 << synth->index));
}
/*
* See dm816x TRM chapter 1.10.3 Flying Adder PLL fore more info
*/
static unsigned long ti_fapll_synth_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct fapll_synth *synth = to_synth(hw);
u32 synth_div_m;
long long rate;
/* The audio_pll_clk1 is hardwired to produce 32.768KiHz clock */
if (!synth->div)
return 32768;
/*
* PLL in bypass sets the synths in bypass mode too. The PLL rate
* can be also be set to 27MHz, so we can't use parent_rate to
* check for bypass mode.
*/
if (ti_fapll_clock_is_bypass(synth->fd))
return parent_rate;
rate = parent_rate;
/*
* Synth frequency integer and fractional divider.
* Note that the phase output K is 8, so the result needs
* to be multiplied by SYNTH_PHASE_K.
*/
if (synth->freq) {
u32 v, synth_int_div, synth_frac_div, synth_div_freq;
v = readl_relaxed(synth->freq);
synth_int_div = (v >> 24) & 0xf;
synth_frac_div = v & 0xffffff;
synth_div_freq = (synth_int_div * 10000000) + synth_frac_div;
rate *= 10000000;
do_div(rate, synth_div_freq);
rate *= SYNTH_PHASE_K;
}
/* Synth post-divider M */
synth_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
return DIV_ROUND_UP_ULL(rate, synth_div_m);
}
static unsigned long ti_fapll_synth_get_frac_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct fapll_synth *synth = to_synth(hw);
unsigned long current_rate, frac_rate;
u32 post_div_m;
current_rate = ti_fapll_synth_recalc_rate(hw, parent_rate);
post_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
frac_rate = current_rate * post_div_m;
return frac_rate;
}
static u32 ti_fapll_synth_set_frac_rate(struct fapll_synth *synth,
unsigned long rate,
unsigned long parent_rate)
{
u32 post_div_m, synth_int_div = 0, synth_frac_div = 0, v;
post_div_m = DIV_ROUND_UP_ULL((u64)parent_rate * SYNTH_PHASE_K, rate);
post_div_m = post_div_m / SYNTH_MAX_INT_DIV;
if (post_div_m > SYNTH_MAX_DIV_M)
return -EINVAL;
if (!post_div_m)
post_div_m = 1;
for (; post_div_m < SYNTH_MAX_DIV_M; post_div_m++) {
synth_int_div = DIV_ROUND_UP_ULL((u64)parent_rate *
SYNTH_PHASE_K *
10000000,
rate * post_div_m);
synth_frac_div = synth_int_div % 10000000;
synth_int_div /= 10000000;
if (synth_int_div <= SYNTH_MAX_INT_DIV)
break;
}
if (synth_int_div > SYNTH_MAX_INT_DIV)
return -EINVAL;
v = readl_relaxed(synth->freq);
v &= ~0x1fffffff;
v |= (synth_int_div & SYNTH_MAX_INT_DIV) << 24;
v |= (synth_frac_div & 0xffffff);
v |= SYNTH_LDFREQ;
writel_relaxed(v, synth->freq);
return post_div_m;
}
static long ti_fapll_synth_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
struct fapll_synth *synth = to_synth(hw);
struct fapll_data *fd = synth->fd;
unsigned long r;
if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
return -EINVAL;
/* Only post divider m available with no fractional divider? */
if (!synth->freq) {
unsigned long frac_rate;
u32 synth_post_div_m;
frac_rate = ti_fapll_synth_get_frac_rate(hw, *parent_rate);
synth_post_div_m = DIV_ROUND_UP(frac_rate, rate);
r = DIV_ROUND_UP(frac_rate, synth_post_div_m);
goto out;
}
r = *parent_rate * SYNTH_PHASE_K;
if (rate > r)
goto out;
r = DIV_ROUND_UP_ULL(r, SYNTH_MAX_INT_DIV * SYNTH_MAX_DIV_M);
if (rate < r)
goto out;
r = rate;
out:
return r;
}
static int ti_fapll_synth_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct fapll_synth *synth = to_synth(hw);
struct fapll_data *fd = synth->fd;
unsigned long frac_rate, post_rate = 0;
u32 post_div_m = 0, v;
if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
return -EINVAL;
/* Produce the rate with just post divider M? */
frac_rate = ti_fapll_synth_get_frac_rate(hw, parent_rate);
if (frac_rate < rate) {
if (!synth->freq)
return -EINVAL;
} else {
post_div_m = DIV_ROUND_UP(frac_rate, rate);
if (post_div_m && (post_div_m <= SYNTH_MAX_DIV_M))
post_rate = DIV_ROUND_UP(frac_rate, post_div_m);
if (!synth->freq && !post_rate)
return -EINVAL;
}
/* Need to recalculate the fractional divider? */
if ((post_rate != rate) && synth->freq)
post_div_m = ti_fapll_synth_set_frac_rate(synth,
rate,
parent_rate);
v = readl_relaxed(synth->div);
v &= ~SYNTH_MAX_DIV_M;
v |= post_div_m;
v |= SYNTH_LDMDIV1;
writel_relaxed(v, synth->div);
return 0;
}
static struct clk_ops ti_fapll_synt_ops = {
.enable = ti_fapll_synth_enable,
.disable = ti_fapll_synth_disable,
.is_enabled = ti_fapll_synth_is_enabled,
.recalc_rate = ti_fapll_synth_recalc_rate,
.round_rate = ti_fapll_synth_round_rate,
.set_rate = ti_fapll_synth_set_rate,
};
static struct clk * __init ti_fapll_synth_setup(struct fapll_data *fd,
void __iomem *freq,
void __iomem *div,
int index,
const char *name,
const char *parent,
struct clk *pll_clk)
{
struct clk_init_data *init;
struct fapll_synth *synth;
init = kzalloc(sizeof(*init), GFP_KERNEL);
if (!init)
return ERR_PTR(-ENOMEM);
init->ops = &ti_fapll_synt_ops;
init->name = name;
init->parent_names = &parent;
init->num_parents = 1;
synth = kzalloc(sizeof(*synth), GFP_KERNEL);
if (!synth)
goto free;
synth->fd = fd;
synth->index = index;
synth->freq = freq;
synth->div = div;
synth->name = name;
synth->hw.init = init;
synth->clk_pll = pll_clk;
return clk_register(NULL, &synth->hw);
free:
kfree(synth);
kfree(init);
return ERR_PTR(-ENOMEM);
}
static void __init ti_fapll_setup(struct device_node *node)
{
struct fapll_data *fd;
struct clk_init_data *init = NULL;
const char *parent_name[2];
struct clk *pll_clk;
int i;
fd = kzalloc(sizeof(*fd), GFP_KERNEL);
if (!fd)
return;
fd->outputs.clks = kzalloc(sizeof(struct clk *) *
MAX_FAPLL_OUTPUTS + 1,
GFP_KERNEL);
if (!fd->outputs.clks)
goto free;
init = kzalloc(sizeof(*init), GFP_KERNEL);
if (!init)
goto free;
init->ops = &ti_fapll_ops;
init->name = node->name;
init->num_parents = of_clk_get_parent_count(node);
if (init->num_parents != 2) {
pr_err("%s must have two parents\n", node->name);
goto free;
}
parent_name[0] = of_clk_get_parent_name(node, 0);
parent_name[1] = of_clk_get_parent_name(node, 1);
init->parent_names = parent_name;
fd->clk_ref = of_clk_get(node, 0);
if (IS_ERR(fd->clk_ref)) {
pr_err("%s could not get clk_ref\n", node->name);
goto free;
}
fd->clk_bypass = of_clk_get(node, 1);
if (IS_ERR(fd->clk_bypass)) {
pr_err("%s could not get clk_bypass\n", node->name);
goto free;
}
fd->base = of_iomap(node, 0);
if (!fd->base) {
pr_err("%s could not get IO base\n", node->name);
goto free;
}
if (fapll_is_ddr_pll(fd->base))
fd->bypass_bit_inverted = true;
fd->name = node->name;
fd->hw.init = init;
/* Register the parent PLL */
pll_clk = clk_register(NULL, &fd->hw);
if (IS_ERR(pll_clk))
goto unmap;
fd->outputs.clks[0] = pll_clk;
fd->outputs.clk_num++;
/*
* Set up the child synthesizers starting at index 1 as the
* PLL output is at index 0. We need to check the clock-indices
* for numbering in case there are holes in the synth mapping,
* and then probe the synth register to see if it has a FREQ
* register available.
*/
for (i = 0; i < MAX_FAPLL_OUTPUTS; i++) {
const char *output_name;
void __iomem *freq, *div;
struct clk *synth_clk;
int output_instance;
u32 v;
if (of_property_read_string_index(node, "clock-output-names",
i, &output_name))
continue;
if (of_property_read_u32_index(node, "clock-indices", i,
&output_instance))
output_instance = i;
freq = fd->base + (output_instance * 8);
div = freq + 4;
/* Check for hardwired audio_pll_clk1 */
if (is_audio_pll_clk1(freq)) {
freq = NULL;
div = NULL;
} else {
/* Does the synthesizer have a FREQ register? */
v = readl_relaxed(freq);
if (!v)
freq = NULL;
}
synth_clk = ti_fapll_synth_setup(fd, freq, div, output_instance,
output_name, node->name,
pll_clk);
if (IS_ERR(synth_clk))
continue;
fd->outputs.clks[output_instance] = synth_clk;
fd->outputs.clk_num++;
clk_register_clkdev(synth_clk, output_name, NULL);
}
/* Register the child synthesizers as the FAPLL outputs */
of_clk_add_provider(node, of_clk_src_onecell_get, &fd->outputs);
/* Add clock alias for the outputs */
kfree(init);
return;
unmap:
iounmap(fd->base);
free:
if (fd->clk_bypass)
clk_put(fd->clk_bypass);
if (fd->clk_ref)
clk_put(fd->clk_ref);
kfree(fd->outputs.clks);
kfree(fd);
kfree(init);
}
CLK_OF_DECLARE(ti_fapll_clock, "ti,dm816-fapll-clock", ti_fapll_setup);
|