1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
/*
* Copyright (C) 2015 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pm_opp.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/suspend.h>
static struct clk *arm_clk;
static struct clk *pll_arm;
static struct clk *arm_src;
static struct clk *pll_sys_main;
static struct regulator *arm_reg;
static struct device *cpu_dev;
static struct cpufreq_frequency_table *freq_table;
static unsigned int transition_latency;
static struct mutex set_cpufreq_lock;
static int imx7d_set_target(struct cpufreq_policy *policy, unsigned int index)
{
struct dev_pm_opp *opp;
unsigned long freq_hz, volt, volt_old;
unsigned int old_freq, new_freq;
int ret;
mutex_lock(&set_cpufreq_lock);
new_freq = freq_table[index].frequency;
freq_hz = new_freq * 1000;
old_freq = clk_get_rate(arm_clk) / 1000;
rcu_read_lock();
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
if (IS_ERR(opp)) {
rcu_read_unlock();
dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
mutex_unlock(&set_cpufreq_lock);
return PTR_ERR(opp);
}
volt = dev_pm_opp_get_voltage(opp);
rcu_read_unlock();
volt_old = regulator_get_voltage(arm_reg);
dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
old_freq / 1000, volt_old / 1000,
new_freq / 1000, volt / 1000);
/* Scaling up? scale voltage before frequency */
if (new_freq > old_freq) {
ret = regulator_set_voltage_tol(arm_reg, volt, 0);
if (ret) {
dev_err(cpu_dev, "failed to scale vddarm up: %d\n", ret);
mutex_unlock(&set_cpufreq_lock);
return ret;
}
}
/* before changing pll_arm rate, change the arm_src's soure
* to pll_sys_main clk first.
*/
clk_set_parent(arm_src, pll_sys_main);
clk_set_rate(pll_arm, new_freq * 1000);
clk_set_parent(arm_src, pll_arm);
/* change the cpu frequency */
ret = clk_set_rate(arm_clk, new_freq * 1000);
if (ret) {
dev_err(cpu_dev, " failed to set clock rate: %d\n", ret);
regulator_set_voltage_tol(arm_reg, volt_old, 0);
mutex_unlock(&set_cpufreq_lock);
return ret;
}
/* scaling down? scaling voltage after frequency */
if (new_freq < old_freq) {
ret = regulator_set_voltage_tol(arm_reg, volt, 0);
if (ret) {
dev_warn(cpu_dev, "failed to scale vddarm down: %d\n", ret);
ret = 0;
}
}
mutex_unlock(&set_cpufreq_lock);
return 0;
}
static int imx7d_cpufreq_init(struct cpufreq_policy *policy)
{
int ret;
policy->clk = arm_clk;
policy->cur = clk_get_rate(arm_clk) / 1000;
ret = cpufreq_generic_init(policy, freq_table, transition_latency);
if (ret) {
dev_err(cpu_dev, "imx7d cpufreq init failed!\n");
return ret;
}
return 0;
}
static struct cpufreq_driver imx7d_cpufreq_driver = {
.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
.verify = cpufreq_generic_frequency_table_verify,
.target_index = imx7d_set_target,
.get = cpufreq_generic_get,
.init = imx7d_cpufreq_init,
.exit = cpufreq_generic_exit,
.name = "imx7d-cpufreq",
.attr = cpufreq_generic_attr,
};
static int imx7_cpufreq_pm_notify(struct notifier_block *nb,
unsigned long event, void *dummy)
{
struct cpufreq_policy *data = cpufreq_cpu_get(0);
static u32 cpufreq_policy_min_pre_suspend;
/*
* During suspend/resume, when cpufreq driver try to increase
* voltage/freq, it needs to control I2C/SPI to communicate
* with external PMIC to adjust voltage, but these I2C/SPI
* devices may be already suspended, to avoid such scenario,
* we just increase cpufreq to highest setpoint before suspend.
*/
switch (event) {
case PM_SUSPEND_PREPARE:
cpufreq_policy_min_pre_suspend = data->user_policy.min;
data->user_policy.min = data->user_policy.max;
break;
case PM_POST_SUSPEND:
data->user_policy.min = cpufreq_policy_min_pre_suspend;
break;
default:
break;
}
cpufreq_update_policy(0);
return NOTIFY_OK;
}
static struct notifier_block imx7_cpufreq_pm_notifier = {
.notifier_call = imx7_cpufreq_pm_notify,
};
static int imx7d_cpufreq_probe(struct platform_device *pdev)
{
struct device_node *np;
struct dev_pm_opp *opp;
unsigned long min_volt, max_volt;
int num, ret;
cpu_dev = get_cpu_device(0);
if (!cpu_dev) {
pr_err("failed to get cpu0 device\n");
return -ENODEV;
}
np = of_node_get(cpu_dev->of_node);
if (!np) {
dev_err(cpu_dev, "failed to find the cpu0 node\n");
return -ENOENT;
}
arm_clk = devm_clk_get(cpu_dev, "arm");
arm_src = devm_clk_get(cpu_dev, "arm_root_src");
pll_arm = devm_clk_get(cpu_dev, "pll_arm");
pll_sys_main = devm_clk_get(cpu_dev, "pll_sys_main");
if (IS_ERR(arm_clk) || IS_ERR(arm_src) || IS_ERR(pll_arm) ||
IS_ERR(pll_sys_main)) {
dev_err(cpu_dev, "failed to get clocks\n");
ret = -ENOENT;
goto put_node;
}
arm_reg = devm_regulator_get(cpu_dev, "arm");
if (IS_ERR(arm_reg)) {
dev_err(cpu_dev, "failed to get the regulator\n");
ret = -ENOENT;
goto put_node;
}
/* We expect an OPP table supplied by platform.
* Just incase the platform did not supply the OPP
* table, it will try to get it.
*/
num = dev_pm_opp_get_opp_count(cpu_dev);
if (num < 0) {
ret = of_init_opp_table(cpu_dev);
if (ret < 0) {
dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
goto put_node;
}
num = dev_pm_opp_get_opp_count(cpu_dev);
if (num < 0) {
ret = num;
dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
goto put_node;
}
}
ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
if (ret) {
dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
goto put_node;
}
if (of_property_read_u32(np, "clock-latency", &transition_latency))
transition_latency = CPUFREQ_ETERNAL;
/* OPP is maintained in order of increasing frequency, and
* freq_table initialized from OPP is therefore sorted in the
* same order
*/
rcu_read_lock();
opp = dev_pm_opp_find_freq_exact(cpu_dev,
freq_table[0].frequency * 1000, true);
min_volt = dev_pm_opp_get_voltage(opp);
opp = dev_pm_opp_find_freq_exact(cpu_dev,
freq_table[--num].frequency * 1000, true);
max_volt = dev_pm_opp_get_voltage(opp);
rcu_read_unlock();
ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
if (ret > 0)
transition_latency += ret * 1000;
ret = cpufreq_register_driver(&imx7d_cpufreq_driver);
if (ret) {
dev_err(cpu_dev, "failed register driver: %d\n", ret);
goto free_freq_table;
}
mutex_init(&set_cpufreq_lock);
register_pm_notifier(&imx7_cpufreq_pm_notifier);
of_node_put(np);
return 0;
free_freq_table:
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
put_node:
of_node_put(np);
return ret;
}
static int imx7d_cpufreq_remove(struct platform_device *pdev)
{
cpufreq_unregister_driver(&imx7d_cpufreq_driver);
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
return 0;
}
static struct platform_driver imx7d_cpufreq_platdrv = {
.driver = {
.name = "imx7d-cpufreq",
.owner = THIS_MODULE,
},
.probe = imx7d_cpufreq_probe,
.remove = imx7d_cpufreq_remove,
};
module_platform_driver(imx7d_cpufreq_platdrv);
MODULE_DESCRIPTION("Freescale i.MX7D cpufreq driver");
MODULE_LICENSE("GPL");
|