1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
|
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <linux/kthread.h>
#include <uapi/linux/sched/types.h>
#include "i915_drv.h"
#ifdef CONFIG_SMP
#define task_asleep(tsk) ((tsk)->state & TASK_NORMAL && !(tsk)->on_cpu)
#else
#define task_asleep(tsk) ((tsk)->state & TASK_NORMAL)
#endif
static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
{
struct intel_wait *wait;
unsigned int result = 0;
lockdep_assert_held(&b->irq_lock);
wait = b->irq_wait;
if (wait) {
/*
* N.B. Since task_asleep() and ttwu are not atomic, the
* waiter may actually go to sleep after the check, causing
* us to suppress a valid wakeup. We prefer to reduce the
* number of false positive missed_breadcrumb() warnings
* at the expense of a few false negatives, as it it easy
* to trigger a false positive under heavy load. Enough
* signal should remain from genuine missed_breadcrumb()
* for us to detect in CI.
*/
bool was_asleep = task_asleep(wait->tsk);
result = ENGINE_WAKEUP_WAITER;
if (wake_up_process(wait->tsk) && was_asleep)
result |= ENGINE_WAKEUP_ASLEEP;
}
return result;
}
unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
{
struct intel_breadcrumbs *b = &engine->breadcrumbs;
unsigned long flags;
unsigned int result;
spin_lock_irqsave(&b->irq_lock, flags);
result = __intel_breadcrumbs_wakeup(b);
spin_unlock_irqrestore(&b->irq_lock, flags);
return result;
}
static unsigned long wait_timeout(void)
{
return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
}
static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
{
if (drm_debug & DRM_UT_DRIVER) {
struct drm_printer p = drm_debug_printer(__func__);
intel_engine_dump(engine, &p,
"%s missed breadcrumb at %pS\n",
engine->name, __builtin_return_address(0));
}
set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}
static void intel_breadcrumbs_hangcheck(struct timer_list *t)
{
struct intel_engine_cs *engine =
from_timer(engine, t, breadcrumbs.hangcheck);
struct intel_breadcrumbs *b = &engine->breadcrumbs;
if (!b->irq_armed)
return;
if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
b->hangcheck_interrupts = atomic_read(&engine->irq_count);
mod_timer(&b->hangcheck, wait_timeout());
return;
}
/* We keep the hangcheck timer alive until we disarm the irq, even
* if there are no waiters at present.
*
* If the waiter was currently running, assume it hasn't had a chance
* to process the pending interrupt (e.g, low priority task on a loaded
* system) and wait until it sleeps before declaring a missed interrupt.
*
* If the waiter was asleep (and not even pending a wakeup), then we
* must have missed an interrupt as the GPU has stopped advancing
* but we still have a waiter. Assuming all batches complete within
* DRM_I915_HANGCHECK_JIFFIES [1.5s]!
*/
if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
missed_breadcrumb(engine);
mod_timer(&b->fake_irq, jiffies + 1);
} else {
mod_timer(&b->hangcheck, wait_timeout());
}
}
static void intel_breadcrumbs_fake_irq(struct timer_list *t)
{
struct intel_engine_cs *engine = from_timer(engine, t,
breadcrumbs.fake_irq);
struct intel_breadcrumbs *b = &engine->breadcrumbs;
/* The timer persists in case we cannot enable interrupts,
* or if we have previously seen seqno/interrupt incoherency
* ("missed interrupt" syndrome, better known as a "missed breadcrumb").
* Here the worker will wake up every jiffie in order to kick the
* oldest waiter to do the coherent seqno check.
*/
spin_lock_irq(&b->irq_lock);
if (b->irq_armed && !__intel_breadcrumbs_wakeup(b))
__intel_engine_disarm_breadcrumbs(engine);
spin_unlock_irq(&b->irq_lock);
if (!b->irq_armed)
return;
mod_timer(&b->fake_irq, jiffies + 1);
}
static void irq_enable(struct intel_engine_cs *engine)
{
/*
* FIXME: Ideally we want this on the API boundary, but for the
* sake of testing with mock breadcrumbs (no HW so unable to
* enable irqs) we place it deep within the bowels, at the point
* of no return.
*/
GEM_BUG_ON(!intel_irqs_enabled(engine->i915));
/* Enabling the IRQ may miss the generation of the interrupt, but
* we still need to force the barrier before reading the seqno,
* just in case.
*/
set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
/* Caller disables interrupts */
if (engine->irq_enable) {
spin_lock(&engine->i915->irq_lock);
engine->irq_enable(engine);
spin_unlock(&engine->i915->irq_lock);
}
}
static void irq_disable(struct intel_engine_cs *engine)
{
/* Caller disables interrupts */
if (engine->irq_disable) {
spin_lock(&engine->i915->irq_lock);
engine->irq_disable(engine);
spin_unlock(&engine->i915->irq_lock);
}
}
void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
{
struct intel_breadcrumbs *b = &engine->breadcrumbs;
lockdep_assert_held(&b->irq_lock);
GEM_BUG_ON(b->irq_wait);
GEM_BUG_ON(!b->irq_armed);
GEM_BUG_ON(!b->irq_enabled);
if (!--b->irq_enabled)
irq_disable(engine);
b->irq_armed = false;
}
void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine)
{
struct intel_breadcrumbs *b = &engine->breadcrumbs;
spin_lock_irq(&b->irq_lock);
if (!b->irq_enabled++)
irq_enable(engine);
GEM_BUG_ON(!b->irq_enabled); /* no overflow! */
spin_unlock_irq(&b->irq_lock);
}
void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine)
{
struct intel_breadcrumbs *b = &engine->breadcrumbs;
spin_lock_irq(&b->irq_lock);
GEM_BUG_ON(!b->irq_enabled); /* no underflow! */
if (!--b->irq_enabled)
irq_disable(engine);
spin_unlock_irq(&b->irq_lock);
}
void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
{
struct intel_breadcrumbs *b = &engine->breadcrumbs;
struct intel_wait *wait, *n;
if (!b->irq_armed)
return;
/*
* We only disarm the irq when we are idle (all requests completed),
* so if the bottom-half remains asleep, it missed the request
* completion.
*/
if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP)
missed_breadcrumb(engine);
spin_lock_irq(&b->rb_lock);
spin_lock(&b->irq_lock);
b->irq_wait = NULL;
if (b->irq_armed)
__intel_engine_disarm_breadcrumbs(engine);
spin_unlock(&b->irq_lock);
rbtree_postorder_for_each_entry_safe(wait, n, &b->waiters, node) {
GEM_BUG_ON(!i915_seqno_passed(intel_engine_get_seqno(engine),
wait->seqno));
RB_CLEAR_NODE(&wait->node);
wake_up_process(wait->tsk);
}
b->waiters = RB_ROOT;
spin_unlock_irq(&b->rb_lock);
}
static bool use_fake_irq(const struct intel_breadcrumbs *b)
{
const struct intel_engine_cs *engine =
container_of(b, struct intel_engine_cs, breadcrumbs);
if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
return false;
/* Only start with the heavy weight fake irq timer if we have not
* seen any interrupts since enabling it the first time. If the
* interrupts are still arriving, it means we made a mistake in our
* engine->seqno_barrier(), a timing error that should be transient
* and unlikely to reoccur.
*/
return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
}
static void enable_fake_irq(struct intel_breadcrumbs *b)
{
/* Ensure we never sleep indefinitely */
if (!b->irq_enabled || use_fake_irq(b))
mod_timer(&b->fake_irq, jiffies + 1);
else
mod_timer(&b->hangcheck, wait_timeout());
}
static bool __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
{
struct intel_engine_cs *engine =
container_of(b, struct intel_engine_cs, breadcrumbs);
struct drm_i915_private *i915 = engine->i915;
bool enabled;
lockdep_assert_held(&b->irq_lock);
if (b->irq_armed)
return false;
/* The breadcrumb irq will be disarmed on the interrupt after the
* waiters are signaled. This gives us a single interrupt window in
* which we can add a new waiter and avoid the cost of re-enabling
* the irq.
*/
b->irq_armed = true;
if (I915_SELFTEST_ONLY(b->mock)) {
/* For our mock objects we want to avoid interaction
* with the real hardware (which is not set up). So
* we simply pretend we have enabled the powerwell
* and the irq, and leave it up to the mock
* implementation to call intel_engine_wakeup()
* itself when it wants to simulate a user interrupt,
*/
return true;
}
/* Since we are waiting on a request, the GPU should be busy
* and should have its own rpm reference. This is tracked
* by i915->gt.awake, we can forgo holding our own wakref
* for the interrupt as before i915->gt.awake is released (when
* the driver is idle) we disarm the breadcrumbs.
*/
/* No interrupts? Kick the waiter every jiffie! */
enabled = false;
if (!b->irq_enabled++ &&
!test_bit(engine->id, &i915->gpu_error.test_irq_rings)) {
irq_enable(engine);
enabled = true;
}
enable_fake_irq(b);
return enabled;
}
static inline struct intel_wait *to_wait(struct rb_node *node)
{
return rb_entry(node, struct intel_wait, node);
}
static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
struct intel_wait *wait)
{
lockdep_assert_held(&b->rb_lock);
GEM_BUG_ON(b->irq_wait == wait);
/*
* This request is completed, so remove it from the tree, mark it as
* complete, and *then* wake up the associated task. N.B. when the
* task wakes up, it will find the empty rb_node, discern that it
* has already been removed from the tree and skip the serialisation
* of the b->rb_lock and b->irq_lock. This means that the destruction
* of the intel_wait is not serialised with the interrupt handler
* by the waiter - it must instead be serialised by the caller.
*/
rb_erase(&wait->node, &b->waiters);
RB_CLEAR_NODE(&wait->node);
if (wait->tsk->state != TASK_RUNNING)
wake_up_process(wait->tsk); /* implicit smp_wmb() */
}
static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
struct rb_node *next)
{
struct intel_breadcrumbs *b = &engine->breadcrumbs;
spin_lock(&b->irq_lock);
GEM_BUG_ON(!b->irq_armed);
GEM_BUG_ON(!b->irq_wait);
b->irq_wait = to_wait(next);
spin_unlock(&b->irq_lock);
/* We always wake up the next waiter that takes over as the bottom-half
* as we may delegate not only the irq-seqno barrier to the next waiter
* but also the task of waking up concurrent waiters.
*/
if (next)
wake_up_process(to_wait(next)->tsk);
}
static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
struct intel_wait *wait)
{
struct intel_breadcrumbs *b = &engine->breadcrumbs;
struct rb_node **p, *parent, *completed;
bool first, armed;
u32 seqno;
GEM_BUG_ON(!wait->seqno);
/* Insert the request into the retirement ordered list
* of waiters by walking the rbtree. If we are the oldest
* seqno in the tree (the first to be retired), then
* set ourselves as the bottom-half.
*
* As we descend the tree, prune completed branches since we hold the
* spinlock we know that the first_waiter must be delayed and can
* reduce some of the sequential wake up latency if we take action
* ourselves and wake up the completed tasks in parallel. Also, by
* removing stale elements in the tree, we may be able to reduce the
* ping-pong between the old bottom-half and ourselves as first-waiter.
*/
armed = false;
first = true;
parent = NULL;
completed = NULL;
seqno = intel_engine_get_seqno(engine);
/* If the request completed before we managed to grab the spinlock,
* return now before adding ourselves to the rbtree. We let the
* current bottom-half handle any pending wakeups and instead
* try and get out of the way quickly.
*/
if (i915_seqno_passed(seqno, wait->seqno)) {
RB_CLEAR_NODE(&wait->node);
return first;
}
p = &b->waiters.rb_node;
while (*p) {
parent = *p;
if (wait->seqno == to_wait(parent)->seqno) {
/* We have multiple waiters on the same seqno, select
* the highest priority task (that with the smallest
* task->prio) to serve as the bottom-half for this
* group.
*/
if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
p = &parent->rb_right;
first = false;
} else {
p = &parent->rb_left;
}
} else if (i915_seqno_passed(wait->seqno,
to_wait(parent)->seqno)) {
p = &parent->rb_right;
if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
completed = parent;
else
first = false;
} else {
p = &parent->rb_left;
}
}
rb_link_node(&wait->node, parent, p);
rb_insert_color(&wait->node, &b->waiters);
if (first) {
spin_lock(&b->irq_lock);
b->irq_wait = wait;
/* After assigning ourselves as the new bottom-half, we must
* perform a cursory check to prevent a missed interrupt.
* Either we miss the interrupt whilst programming the hardware,
* or if there was a previous waiter (for a later seqno) they
* may be woken instead of us (due to the inherent race
* in the unlocked read of b->irq_seqno_bh in the irq handler)
* and so we miss the wake up.
*/
armed = __intel_breadcrumbs_enable_irq(b);
spin_unlock(&b->irq_lock);
}
if (completed) {
/* Advance the bottom-half (b->irq_wait) before we wake up
* the waiters who may scribble over their intel_wait
* just as the interrupt handler is dereferencing it via
* b->irq_wait.
*/
if (!first) {
struct rb_node *next = rb_next(completed);
GEM_BUG_ON(next == &wait->node);
__intel_breadcrumbs_next(engine, next);
}
do {
struct intel_wait *crumb = to_wait(completed);
completed = rb_prev(completed);
__intel_breadcrumbs_finish(b, crumb);
} while (completed);
}
GEM_BUG_ON(!b->irq_wait);
GEM_BUG_ON(!b->irq_armed);
GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
return armed;
}
bool intel_engine_add_wait(struct intel_engine_cs *engine,
struct intel_wait *wait)
{
struct intel_breadcrumbs *b = &engine->breadcrumbs;
bool armed;
spin_lock_irq(&b->rb_lock);
armed = __intel_engine_add_wait(engine, wait);
spin_unlock_irq(&b->rb_lock);
if (armed)
return armed;
/* Make the caller recheck if its request has already started. */
return i915_seqno_passed(intel_engine_get_seqno(engine),
wait->seqno - 1);
}
static inline bool chain_wakeup(struct rb_node *rb, int priority)
{
return rb && to_wait(rb)->tsk->prio <= priority;
}
static inline int wakeup_priority(struct intel_breadcrumbs *b,
struct task_struct *tsk)
{
if (tsk == b->signaler)
return INT_MIN;
else
return tsk->prio;
}
static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
struct intel_wait *wait)
{
struct intel_breadcrumbs *b = &engine->breadcrumbs;
lockdep_assert_held(&b->rb_lock);
if (RB_EMPTY_NODE(&wait->node))
goto out;
if (b->irq_wait == wait) {
const int priority = wakeup_priority(b, wait->tsk);
struct rb_node *next;
/* We are the current bottom-half. Find the next candidate,
* the first waiter in the queue on the remaining oldest
* request. As multiple seqnos may complete in the time it
* takes us to wake up and find the next waiter, we have to
* wake up that waiter for it to perform its own coherent
* completion check.
*/
next = rb_next(&wait->node);
if (chain_wakeup(next, priority)) {
/* If the next waiter is already complete,
* wake it up and continue onto the next waiter. So
* if have a small herd, they will wake up in parallel
* rather than sequentially, which should reduce
* the overall latency in waking all the completed
* clients.
*
* However, waking up a chain adds extra latency to
* the first_waiter. This is undesirable if that
* waiter is a high priority task.
*/
u32 seqno = intel_engine_get_seqno(engine);
while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
struct rb_node *n = rb_next(next);
__intel_breadcrumbs_finish(b, to_wait(next));
next = n;
if (!chain_wakeup(next, priority))
break;
}
}
__intel_breadcrumbs_next(engine, next);
} else {
GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
}
GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
rb_erase(&wait->node, &b->waiters);
RB_CLEAR_NODE(&wait->node);
out:
GEM_BUG_ON(b->irq_wait == wait);
GEM_BUG_ON(rb_first(&b->waiters) !=
(b->irq_wait ? &b->irq_wait->node : NULL));
}
void intel_engine_remove_wait(struct intel_engine_cs *engine,
struct intel_wait *wait)
{
struct intel_breadcrumbs *b = &engine->breadcrumbs;
/* Quick check to see if this waiter was already decoupled from
* the tree by the bottom-half to avoid contention on the spinlock
* by the herd.
*/
if (RB_EMPTY_NODE(&wait->node)) {
GEM_BUG_ON(READ_ONCE(b->irq_wait) == wait);
return;
}
spin_lock_irq(&b->rb_lock);
__intel_engine_remove_wait(engine, wait);
spin_unlock_irq(&b->rb_lock);
}
static void signaler_set_rtpriority(void)
{
struct sched_param param = { .sched_priority = 1 };
sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m);
}
static int intel_breadcrumbs_signaler(void *arg)
{
struct intel_engine_cs *engine = arg;
struct intel_breadcrumbs *b = &engine->breadcrumbs;
struct i915_request *rq, *n;
/* Install ourselves with high priority to reduce signalling latency */
signaler_set_rtpriority();
do {
bool do_schedule = true;
LIST_HEAD(list);
u32 seqno;
set_current_state(TASK_INTERRUPTIBLE);
if (list_empty(&b->signals))
goto sleep;
/*
* We are either woken up by the interrupt bottom-half,
* or by a client adding a new signaller. In both cases,
* the GPU seqno may have advanced beyond our oldest signal.
* If it has, propagate the signal, remove the waiter and
* check again with the next oldest signal. Otherwise we
* need to wait for a new interrupt from the GPU or for
* a new client.
*/
seqno = intel_engine_get_seqno(engine);
spin_lock_irq(&b->rb_lock);
list_for_each_entry_safe(rq, n, &b->signals, signaling.link) {
u32 this = rq->signaling.wait.seqno;
GEM_BUG_ON(!rq->signaling.wait.seqno);
if (!i915_seqno_passed(seqno, this))
break;
if (likely(this == i915_request_global_seqno(rq))) {
__intel_engine_remove_wait(engine,
&rq->signaling.wait);
rq->signaling.wait.seqno = 0;
__list_del_entry(&rq->signaling.link);
if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
&rq->fence.flags)) {
list_add_tail(&rq->signaling.link,
&list);
i915_request_get(rq);
}
}
}
spin_unlock_irq(&b->rb_lock);
if (!list_empty(&list)) {
local_bh_disable();
list_for_each_entry_safe(rq, n, &list, signaling.link) {
dma_fence_signal(&rq->fence);
GEM_BUG_ON(!i915_request_completed(rq));
i915_request_put(rq);
}
local_bh_enable(); /* kick start the tasklets */
/*
* If the engine is saturated we may be continually
* processing completed requests. This angers the
* NMI watchdog if we never let anything else
* have access to the CPU. Let's pretend to be nice
* and relinquish the CPU if we burn through the
* entire RT timeslice!
*/
do_schedule = need_resched();
}
if (unlikely(do_schedule)) {
/* Before we sleep, check for a missed seqno */
if (current->state & TASK_NORMAL &&
!list_empty(&b->signals) &&
engine->irq_seqno_barrier &&
test_and_clear_bit(ENGINE_IRQ_BREADCRUMB,
&engine->irq_posted)) {
engine->irq_seqno_barrier(engine);
intel_engine_wakeup(engine);
}
sleep:
if (kthread_should_park())
kthread_parkme();
if (unlikely(kthread_should_stop()))
break;
schedule();
}
} while (1);
__set_current_state(TASK_RUNNING);
return 0;
}
static void insert_signal(struct intel_breadcrumbs *b,
struct i915_request *request,
const u32 seqno)
{
struct i915_request *iter;
lockdep_assert_held(&b->rb_lock);
/*
* A reasonable assumption is that we are called to add signals
* in sequence, as the requests are submitted for execution and
* assigned a global_seqno. This will be the case for the majority
* of internally generated signals (inter-engine signaling).
*
* Out of order waiters triggering random signaling enabling will
* be more problematic, but hopefully rare enough and the list
* small enough that the O(N) insertion sort is not an issue.
*/
list_for_each_entry_reverse(iter, &b->signals, signaling.link)
if (i915_seqno_passed(seqno, iter->signaling.wait.seqno))
break;
list_add(&request->signaling.link, &iter->signaling.link);
}
bool intel_engine_enable_signaling(struct i915_request *request, bool wakeup)
{
struct intel_engine_cs *engine = request->engine;
struct intel_breadcrumbs *b = &engine->breadcrumbs;
struct intel_wait *wait = &request->signaling.wait;
u32 seqno;
/*
* Note that we may be called from an interrupt handler on another
* device (e.g. nouveau signaling a fence completion causing us
* to submit a request, and so enable signaling). As such,
* we need to make sure that all other users of b->rb_lock protect
* against interrupts, i.e. use spin_lock_irqsave.
*/
/* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
GEM_BUG_ON(!irqs_disabled());
lockdep_assert_held(&request->lock);
seqno = i915_request_global_seqno(request);
if (!seqno) /* will be enabled later upon execution */
return true;
GEM_BUG_ON(wait->seqno);
wait->tsk = b->signaler;
wait->request = request;
wait->seqno = seqno;
/*
* Add ourselves into the list of waiters, but registering our
* bottom-half as the signaller thread. As per usual, only the oldest
* waiter (not just signaller) is tasked as the bottom-half waking
* up all completed waiters after the user interrupt.
*
* If we are the oldest waiter, enable the irq (after which we
* must double check that the seqno did not complete).
*/
spin_lock(&b->rb_lock);
insert_signal(b, request, seqno);
wakeup &= __intel_engine_add_wait(engine, wait);
spin_unlock(&b->rb_lock);
if (wakeup) {
wake_up_process(b->signaler);
return !intel_wait_complete(wait);
}
return true;
}
void intel_engine_cancel_signaling(struct i915_request *request)
{
struct intel_engine_cs *engine = request->engine;
struct intel_breadcrumbs *b = &engine->breadcrumbs;
GEM_BUG_ON(!irqs_disabled());
lockdep_assert_held(&request->lock);
if (!READ_ONCE(request->signaling.wait.seqno))
return;
spin_lock(&b->rb_lock);
__intel_engine_remove_wait(engine, &request->signaling.wait);
if (fetch_and_zero(&request->signaling.wait.seqno))
__list_del_entry(&request->signaling.link);
spin_unlock(&b->rb_lock);
}
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
{
struct intel_breadcrumbs *b = &engine->breadcrumbs;
struct task_struct *tsk;
spin_lock_init(&b->rb_lock);
spin_lock_init(&b->irq_lock);
timer_setup(&b->fake_irq, intel_breadcrumbs_fake_irq, 0);
timer_setup(&b->hangcheck, intel_breadcrumbs_hangcheck, 0);
INIT_LIST_HEAD(&b->signals);
/* Spawn a thread to provide a common bottom-half for all signals.
* As this is an asynchronous interface we cannot steal the current
* task for handling the bottom-half to the user interrupt, therefore
* we create a thread to do the coherent seqno dance after the
* interrupt and then signal the waitqueue (via the dma-buf/fence).
*/
tsk = kthread_run(intel_breadcrumbs_signaler, engine,
"i915/signal:%d", engine->id);
if (IS_ERR(tsk))
return PTR_ERR(tsk);
b->signaler = tsk;
return 0;
}
static void cancel_fake_irq(struct intel_engine_cs *engine)
{
struct intel_breadcrumbs *b = &engine->breadcrumbs;
del_timer_sync(&b->hangcheck);
del_timer_sync(&b->fake_irq);
clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}
void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
{
struct intel_breadcrumbs *b = &engine->breadcrumbs;
cancel_fake_irq(engine);
spin_lock_irq(&b->irq_lock);
if (b->irq_enabled)
irq_enable(engine);
else
irq_disable(engine);
/* We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
* GPU is active and may have already executed the MI_USER_INTERRUPT
* before the CPU is ready to receive. However, the engine is currently
* idle (we haven't started it yet), there is no possibility for a
* missed interrupt as we enabled the irq and so we can clear the
* immediate wakeup (until a real interrupt arrives for the waiter).
*/
clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
if (b->irq_armed)
enable_fake_irq(b);
spin_unlock_irq(&b->irq_lock);
}
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
{
struct intel_breadcrumbs *b = &engine->breadcrumbs;
/* The engines should be idle and all requests accounted for! */
WARN_ON(READ_ONCE(b->irq_wait));
WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
WARN_ON(!list_empty(&b->signals));
if (!IS_ERR_OR_NULL(b->signaler))
kthread_stop(b->signaler);
cancel_fake_irq(engine);
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_breadcrumbs.c"
#endif
|