summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/nouveau/nva3_pm.c
blob: 863f010fafeb0681f6028b45ddeb06fd773937c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
/*
 * Copyright 2010 Red Hat Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Ben Skeggs
 */

#include <drm/drmP.h>
#include "nouveau_drm.h"
#include "nouveau_bios.h"
#include "nouveau_pm.h"

#include <subdev/bios/pll.h>
#include <subdev/bios.h>
#include <subdev/clock.h>
#include <subdev/timer.h>
#include <subdev/fb.h>

static u32 read_clk(struct drm_device *, int, bool);
static u32 read_pll(struct drm_device *, int, u32);

static u32
read_vco(struct drm_device *dev, int clk)
{
	struct nouveau_device *device = nouveau_dev(dev);
	u32 sctl = nv_rd32(device, 0x4120 + (clk * 4));
	if ((sctl & 0x00000030) != 0x00000030)
		return read_pll(dev, 0x41, 0x00e820);
	return read_pll(dev, 0x42, 0x00e8a0);
}

static u32
read_clk(struct drm_device *dev, int clk, bool ignore_en)
{
	struct nouveau_device *device = nouveau_dev(dev);
	struct nouveau_drm *drm = nouveau_drm(dev);
	u32 sctl, sdiv, sclk;

	/* refclk for the 0xe8xx plls is a fixed frequency */
	if (clk >= 0x40) {
		if (nv_device(drm->device)->chipset == 0xaf) {
			/* no joke.. seriously.. sigh.. */
			return nv_rd32(device, 0x00471c) * 1000;
		}

		return device->crystal;
	}

	sctl = nv_rd32(device, 0x4120 + (clk * 4));
	if (!ignore_en && !(sctl & 0x00000100))
		return 0;

	switch (sctl & 0x00003000) {
	case 0x00000000:
		return device->crystal;
	case 0x00002000:
		if (sctl & 0x00000040)
			return 108000;
		return 100000;
	case 0x00003000:
		sclk = read_vco(dev, clk);
		sdiv = ((sctl & 0x003f0000) >> 16) + 2;
		return (sclk * 2) / sdiv;
	default:
		return 0;
	}
}

static u32
read_pll(struct drm_device *dev, int clk, u32 pll)
{
	struct nouveau_device *device = nouveau_dev(dev);
	u32 ctrl = nv_rd32(device, pll + 0);
	u32 sclk = 0, P = 1, N = 1, M = 1;

	if (!(ctrl & 0x00000008)) {
		if (ctrl & 0x00000001) {
			u32 coef = nv_rd32(device, pll + 4);
			M = (coef & 0x000000ff) >> 0;
			N = (coef & 0x0000ff00) >> 8;
			P = (coef & 0x003f0000) >> 16;

			/* no post-divider on these.. */
			if ((pll & 0x00ff00) == 0x00e800)
				P = 1;

			sclk = read_clk(dev, 0x00 + clk, false);
		}
	} else {
		sclk = read_clk(dev, 0x10 + clk, false);
	}

	if (M * P)
		return sclk * N / (M * P);
	return 0;
}

struct creg {
	u32 clk;
	u32 pll;
};

static int
calc_clk(struct drm_device *dev, int clk, u32 pll, u32 khz, struct creg *reg)
{
	struct nouveau_drm *drm = nouveau_drm(dev);
	struct nouveau_device *device = nouveau_dev(dev);
	struct nouveau_bios *bios = nouveau_bios(device);
	struct nvbios_pll limits;
	u32 oclk, sclk, sdiv;
	int P, N, M, diff;
	int ret;

	reg->pll = 0;
	reg->clk = 0;
	if (!khz) {
		NV_DEBUG(drm, "no clock for 0x%04x/0x%02x\n", pll, clk);
		return 0;
	}

	switch (khz) {
	case 27000:
		reg->clk = 0x00000100;
		return khz;
	case 100000:
		reg->clk = 0x00002100;
		return khz;
	case 108000:
		reg->clk = 0x00002140;
		return khz;
	default:
		sclk = read_vco(dev, clk);
		sdiv = min((sclk * 2) / (khz - 2999), (u32)65);
		/* if the clock has a PLL attached, and we can get a within
		 * [-2, 3) MHz of a divider, we'll disable the PLL and use
		 * the divider instead.
		 *
		 * divider can go as low as 2, limited here because NVIDIA
		 * and the VBIOS on my NVA8 seem to prefer using the PLL
		 * for 810MHz - is there a good reason?
		 */
		if (sdiv > 4) {
			oclk = (sclk * 2) / sdiv;
			diff = khz - oclk;
			if (!pll || (diff >= -2000 && diff < 3000)) {
				reg->clk = (((sdiv - 2) << 16) | 0x00003100);
				return oclk;
			}
		}

		if (!pll) {
			NV_ERROR(drm, "bad freq %02x: %d %d\n", clk, khz, sclk);
			return -ERANGE;
		}

		break;
	}

	ret = nvbios_pll_parse(bios, pll, &limits);
	if (ret)
		return ret;

	limits.refclk = read_clk(dev, clk - 0x10, true);
	if (!limits.refclk)
		return -EINVAL;

	ret = nva3_calc_pll(dev, &limits, khz, &N, NULL, &M, &P);
	if (ret >= 0) {
		reg->clk = nv_rd32(device, 0x4120 + (clk * 4));
		reg->pll = (P << 16) | (N << 8) | M;
	}

	return ret;
}

static void
prog_pll(struct drm_device *dev, int clk, u32 pll, struct creg *reg)
{
	struct nouveau_device *device = nouveau_dev(dev);
	struct nouveau_drm *drm = nouveau_drm(dev);
	const u32 src0 = 0x004120 + (clk * 4);
	const u32 src1 = 0x004160 + (clk * 4);
	const u32 ctrl = pll + 0;
	const u32 coef = pll + 4;

	if (!reg->clk && !reg->pll) {
		NV_DEBUG(drm, "no clock for %02x\n", clk);
		return;
	}

	if (reg->pll) {
		nv_mask(device, src0, 0x00000101, 0x00000101);
		nv_wr32(device, coef, reg->pll);
		nv_mask(device, ctrl, 0x00000015, 0x00000015);
		nv_mask(device, ctrl, 0x00000010, 0x00000000);
		nv_wait(device, ctrl, 0x00020000, 0x00020000);
		nv_mask(device, ctrl, 0x00000010, 0x00000010);
		nv_mask(device, ctrl, 0x00000008, 0x00000000);
		nv_mask(device, src1, 0x00000100, 0x00000000);
		nv_mask(device, src1, 0x00000001, 0x00000000);
	} else {
		nv_mask(device, src1, 0x003f3141, 0x00000101 | reg->clk);
		nv_mask(device, ctrl, 0x00000018, 0x00000018);
		udelay(20);
		nv_mask(device, ctrl, 0x00000001, 0x00000000);
		nv_mask(device, src0, 0x00000100, 0x00000000);
		nv_mask(device, src0, 0x00000001, 0x00000000);
	}
}

static void
prog_clk(struct drm_device *dev, int clk, struct creg *reg)
{
	struct nouveau_device *device = nouveau_dev(dev);
	struct nouveau_drm *drm = nouveau_drm(dev);

	if (!reg->clk) {
		NV_DEBUG(drm, "no clock for %02x\n", clk);
		return;
	}

	nv_mask(device, 0x004120 + (clk * 4), 0x003f3141, 0x00000101 | reg->clk);
}

int
nva3_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
{
	perflvl->core   = read_pll(dev, 0x00, 0x4200);
	perflvl->shader = read_pll(dev, 0x01, 0x4220);
	perflvl->memory = read_pll(dev, 0x02, 0x4000);
	perflvl->unka0  = read_clk(dev, 0x20, false);
	perflvl->vdec   = read_clk(dev, 0x21, false);
	perflvl->daemon = read_clk(dev, 0x25, false);
	perflvl->copy   = perflvl->core;
	return 0;
}

struct nva3_pm_state {
	struct nouveau_pm_level *perflvl;

	struct creg nclk;
	struct creg sclk;
	struct creg vdec;
	struct creg unka0;

	struct creg mclk;
	u8 *rammap;
	u8  rammap_ver;
	u8  rammap_len;
	u8 *ramcfg;
	u8  ramcfg_len;
	u32 r004018;
	u32 r100760;
};

void *
nva3_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
{
	struct nva3_pm_state *info;
	u8 ramcfg_cnt;
	int ret;

	info = kzalloc(sizeof(*info), GFP_KERNEL);
	if (!info)
		return ERR_PTR(-ENOMEM);

	ret = calc_clk(dev, 0x10, 0x4200, perflvl->core, &info->nclk);
	if (ret < 0)
		goto out;

	ret = calc_clk(dev, 0x11, 0x4220, perflvl->shader, &info->sclk);
	if (ret < 0)
		goto out;

	ret = calc_clk(dev, 0x12, 0x4000, perflvl->memory, &info->mclk);
	if (ret < 0)
		goto out;

	ret = calc_clk(dev, 0x20, 0x0000, perflvl->unka0, &info->unka0);
	if (ret < 0)
		goto out;

	ret = calc_clk(dev, 0x21, 0x0000, perflvl->vdec, &info->vdec);
	if (ret < 0)
		goto out;

	info->rammap = nouveau_perf_rammap(dev, perflvl->memory,
					   &info->rammap_ver,
					   &info->rammap_len,
					   &ramcfg_cnt, &info->ramcfg_len);
	if (info->rammap_ver != 0x10 || info->rammap_len < 5)
		info->rammap = NULL;

	info->ramcfg = nouveau_perf_ramcfg(dev, perflvl->memory,
					   &info->rammap_ver,
					   &info->ramcfg_len);
	if (info->rammap_ver != 0x10)
		info->ramcfg = NULL;

	info->perflvl = perflvl;
out:
	if (ret < 0) {
		kfree(info);
		info = ERR_PTR(ret);
	}
	return info;
}

static bool
nva3_pm_grcp_idle(void *data)
{
	struct drm_device *dev = data;
	struct nouveau_device *device = nouveau_dev(dev);

	if (!(nv_rd32(device, 0x400304) & 0x00000001))
		return true;
	if (nv_rd32(device, 0x400308) == 0x0050001c)
		return true;
	return false;
}

static void
mclk_precharge(struct nouveau_mem_exec_func *exec)
{
	struct nouveau_device *device = nouveau_dev(exec->dev);
	nv_wr32(device, 0x1002d4, 0x00000001);
}

static void
mclk_refresh(struct nouveau_mem_exec_func *exec)
{
	struct nouveau_device *device = nouveau_dev(exec->dev);
	nv_wr32(device, 0x1002d0, 0x00000001);
}

static void
mclk_refresh_auto(struct nouveau_mem_exec_func *exec, bool enable)
{
	struct nouveau_device *device = nouveau_dev(exec->dev);
	nv_wr32(device, 0x100210, enable ? 0x80000000 : 0x00000000);
}

static void
mclk_refresh_self(struct nouveau_mem_exec_func *exec, bool enable)
{
	struct nouveau_device *device = nouveau_dev(exec->dev);
	nv_wr32(device, 0x1002dc, enable ? 0x00000001 : 0x00000000);
}

static void
mclk_wait(struct nouveau_mem_exec_func *exec, u32 nsec)
{
	struct nouveau_device *device = nouveau_dev(exec->dev);
	volatile u32 post = nv_rd32(device, 0); (void)post;
	udelay((nsec + 500) / 1000);
}

static u32
mclk_mrg(struct nouveau_mem_exec_func *exec, int mr)
{
	struct nouveau_device *device = nouveau_dev(exec->dev);
	if (mr <= 1)
		return nv_rd32(device, 0x1002c0 + ((mr - 0) * 4));
	if (mr <= 3)
		return nv_rd32(device, 0x1002e0 + ((mr - 2) * 4));
	return 0;
}

static void
mclk_mrs(struct nouveau_mem_exec_func *exec, int mr, u32 data)
{
	struct nouveau_device *device = nouveau_dev(exec->dev);
	struct nouveau_fb *pfb = nouveau_fb(device);
	if (mr <= 1) {
		if (pfb->ram.ranks > 1)
			nv_wr32(device, 0x1002c8 + ((mr - 0) * 4), data);
		nv_wr32(device, 0x1002c0 + ((mr - 0) * 4), data);
	} else
	if (mr <= 3) {
		if (pfb->ram.ranks > 1)
			nv_wr32(device, 0x1002e8 + ((mr - 2) * 4), data);
		nv_wr32(device, 0x1002e0 + ((mr - 2) * 4), data);
	}
}

static void
mclk_clock_set(struct nouveau_mem_exec_func *exec)
{
	struct nouveau_device *device = nouveau_dev(exec->dev);
	struct nva3_pm_state *info = exec->priv;
	u32 ctrl;

	ctrl = nv_rd32(device, 0x004000);
	if (!(ctrl & 0x00000008) && info->mclk.pll) {
		nv_wr32(device, 0x004000, (ctrl |=  0x00000008));
		nv_mask(device, 0x1110e0, 0x00088000, 0x00088000);
		nv_wr32(device, 0x004018, 0x00001000);
		nv_wr32(device, 0x004000, (ctrl &= ~0x00000001));
		nv_wr32(device, 0x004004, info->mclk.pll);
		nv_wr32(device, 0x004000, (ctrl |=  0x00000001));
		udelay(64);
		nv_wr32(device, 0x004018, 0x00005000 | info->r004018);
		udelay(20);
	} else
	if (!info->mclk.pll) {
		nv_mask(device, 0x004168, 0x003f3040, info->mclk.clk);
		nv_wr32(device, 0x004000, (ctrl |= 0x00000008));
		nv_mask(device, 0x1110e0, 0x00088000, 0x00088000);
		nv_wr32(device, 0x004018, 0x0000d000 | info->r004018);
	}

	if (info->rammap) {
		if (info->ramcfg && (info->rammap[4] & 0x08)) {
			u32 unk5a0 = (ROM16(info->ramcfg[5]) << 8) |
				      info->ramcfg[5];
			u32 unk5a4 = ROM16(info->ramcfg[7]);
			u32 unk804 = (info->ramcfg[9] & 0xf0) << 16 |
				     (info->ramcfg[3] & 0x0f) << 16 |
				     (info->ramcfg[9] & 0x0f) |
				     0x80000000;
			nv_wr32(device, 0x1005a0, unk5a0);
			nv_wr32(device, 0x1005a4, unk5a4);
			nv_wr32(device, 0x10f804, unk804);
			nv_mask(device, 0x10053c, 0x00001000, 0x00000000);
		} else {
			nv_mask(device, 0x10053c, 0x00001000, 0x00001000);
			nv_mask(device, 0x10f804, 0x80000000, 0x00000000);
			nv_mask(device, 0x100760, 0x22222222, info->r100760);
			nv_mask(device, 0x1007a0, 0x22222222, info->r100760);
			nv_mask(device, 0x1007e0, 0x22222222, info->r100760);
		}
	}

	if (info->mclk.pll) {
		nv_mask(device, 0x1110e0, 0x00088000, 0x00011000);
		nv_wr32(device, 0x004000, (ctrl &= ~0x00000008));
	}
}

static void
mclk_timing_set(struct nouveau_mem_exec_func *exec)
{
	struct nouveau_device *device = nouveau_dev(exec->dev);
	struct nva3_pm_state *info = exec->priv;
	struct nouveau_pm_level *perflvl = info->perflvl;
	int i;

	for (i = 0; i < 9; i++)
		nv_wr32(device, 0x100220 + (i * 4), perflvl->timing.reg[i]);

	if (info->ramcfg) {
		u32 data = (info->ramcfg[2] & 0x08) ? 0x00000000 : 0x00001000;
		nv_mask(device, 0x100200, 0x00001000, data);
	}

	if (info->ramcfg) {
		u32 unk714 = nv_rd32(device, 0x100714) & ~0xf0000010;
		u32 unk718 = nv_rd32(device, 0x100718) & ~0x00000100;
		u32 unk71c = nv_rd32(device, 0x10071c) & ~0x00000100;
		if ( (info->ramcfg[2] & 0x20))
			unk714 |= 0xf0000000;
		if (!(info->ramcfg[2] & 0x04))
			unk714 |= 0x00000010;
		nv_wr32(device, 0x100714, unk714);

		if (info->ramcfg[2] & 0x01)
			unk71c |= 0x00000100;
		nv_wr32(device, 0x10071c, unk71c);

		if (info->ramcfg[2] & 0x02)
			unk718 |= 0x00000100;
		nv_wr32(device, 0x100718, unk718);

		if (info->ramcfg[2] & 0x10)
			nv_wr32(device, 0x111100, 0x48000000); /*XXX*/
	}
}

static void
prog_mem(struct drm_device *dev, struct nva3_pm_state *info)
{
	struct nouveau_device *device = nouveau_dev(dev);
	struct nouveau_mem_exec_func exec = {
		.dev = dev,
		.precharge = mclk_precharge,
		.refresh = mclk_refresh,
		.refresh_auto = mclk_refresh_auto,
		.refresh_self = mclk_refresh_self,
		.wait = mclk_wait,
		.mrg = mclk_mrg,
		.mrs = mclk_mrs,
		.clock_set = mclk_clock_set,
		.timing_set = mclk_timing_set,
		.priv = info
	};
	u32 ctrl;

	/* XXX: where the fuck does 750MHz come from? */
	if (info->perflvl->memory <= 750000) {
		info->r004018 = 0x10000000;
		info->r100760 = 0x22222222;
	}

	ctrl = nv_rd32(device, 0x004000);
	if (ctrl & 0x00000008) {
		if (info->mclk.pll) {
			nv_mask(device, 0x004128, 0x00000101, 0x00000101);
			nv_wr32(device, 0x004004, info->mclk.pll);
			nv_wr32(device, 0x004000, (ctrl |= 0x00000001));
			nv_wr32(device, 0x004000, (ctrl &= 0xffffffef));
			nv_wait(device, 0x004000, 0x00020000, 0x00020000);
			nv_wr32(device, 0x004000, (ctrl |= 0x00000010));
			nv_wr32(device, 0x004018, 0x00005000 | info->r004018);
			nv_wr32(device, 0x004000, (ctrl |= 0x00000004));
		}
	} else {
		u32 ssel = 0x00000101;
		if (info->mclk.clk)
			ssel |= info->mclk.clk;
		else
			ssel |= 0x00080000; /* 324MHz, shouldn't matter... */
		nv_mask(device, 0x004168, 0x003f3141, ctrl);
	}

	if (info->ramcfg) {
		if (info->ramcfg[2] & 0x10) {
			nv_mask(device, 0x111104, 0x00000600, 0x00000000);
		} else {
			nv_mask(device, 0x111100, 0x40000000, 0x40000000);
			nv_mask(device, 0x111104, 0x00000180, 0x00000000);
		}
	}
	if (info->rammap && !(info->rammap[4] & 0x02))
		nv_mask(device, 0x100200, 0x00000800, 0x00000000);
	nv_wr32(device, 0x611200, 0x00003300);
	if (!(info->ramcfg[2] & 0x10))
		nv_wr32(device, 0x111100, 0x4c020000); /*XXX*/

	nouveau_mem_exec(&exec, info->perflvl);

	nv_wr32(device, 0x611200, 0x00003330);
	if (info->rammap && (info->rammap[4] & 0x02))
		nv_mask(device, 0x100200, 0x00000800, 0x00000800);
	if (info->ramcfg) {
		if (info->ramcfg[2] & 0x10) {
			nv_mask(device, 0x111104, 0x00000180, 0x00000180);
			nv_mask(device, 0x111100, 0x40000000, 0x00000000);
		} else {
			nv_mask(device, 0x111104, 0x00000600, 0x00000600);
		}
	}

	if (info->mclk.pll) {
		nv_mask(device, 0x004168, 0x00000001, 0x00000000);
		nv_mask(device, 0x004168, 0x00000100, 0x00000000);
	} else {
		nv_mask(device, 0x004000, 0x00000001, 0x00000000);
		nv_mask(device, 0x004128, 0x00000001, 0x00000000);
		nv_mask(device, 0x004128, 0x00000100, 0x00000000);
	}
}

int
nva3_pm_clocks_set(struct drm_device *dev, void *pre_state)
{
	struct nouveau_device *device = nouveau_dev(dev);
	struct nouveau_drm *drm = nouveau_drm(dev);
	struct nva3_pm_state *info = pre_state;
	int ret = -EAGAIN;

	/* prevent any new grctx switches from starting */
	nv_wr32(device, 0x400324, 0x00000000);
	nv_wr32(device, 0x400328, 0x0050001c); /* wait flag 0x1c */
	/* wait for any pending grctx switches to complete */
	if (!nv_wait_cb(device, nva3_pm_grcp_idle, dev)) {
		NV_ERROR(drm, "pm: ctxprog didn't go idle\n");
		goto cleanup;
	}
	/* freeze PFIFO */
	nv_mask(device, 0x002504, 0x00000001, 0x00000001);
	if (!nv_wait(device, 0x002504, 0x00000010, 0x00000010)) {
		NV_ERROR(drm, "pm: fifo didn't go idle\n");
		goto cleanup;
	}

	prog_pll(dev, 0x00, 0x004200, &info->nclk);
	prog_pll(dev, 0x01, 0x004220, &info->sclk);
	prog_clk(dev, 0x20, &info->unka0);
	prog_clk(dev, 0x21, &info->vdec);

	if (info->mclk.clk || info->mclk.pll)
		prog_mem(dev, info);

	ret = 0;

cleanup:
	/* unfreeze PFIFO */
	nv_mask(device, 0x002504, 0x00000001, 0x00000000);
	/* restore ctxprog to normal */
	nv_wr32(device, 0x400324, 0x00000000);
	nv_wr32(device, 0x400328, 0x0070009c); /* set flag 0x1c */
	/* unblock it if necessary */
	if (nv_rd32(device, 0x400308) == 0x0050001c)
		nv_mask(device, 0x400824, 0x10000000, 0x10000000);
	kfree(info);
	return ret;
}