1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
|
/*
* NVIDIA Tegra SOC - temperature sensor driver
*
* Copyright (C) 2011 NVIDIA Corporation
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/hwmon.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/irqreturn.h>
#include <linux/err.h>
#include <linux/spinlock.h>
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon.h>
#include <linux/regulator/consumer.h>
#include <linux/delay.h>
#include <mach/iomap.h>
#include <mach/clk.h>
#include <mach/delay.h>
#include <mach/tsensor.h>
#include <mach/tegra_fuse.h>
/* macro to enable tsensor hw reset */
/* FIXME: till tsensor temperature is reliable this should be 0 */
#define ENABLE_TSENSOR_HW_RESET 1
/* tsensor instance used for temperature calculation */
#define TSENSOR_FUSE_REV1 8
#define TSENSOR_FUSE_REV2 21
/* version where tsensor temperature reading is accurate */
#define STABLE_TSENSOR_FUSE_REV TSENSOR_FUSE_REV2
/* We have multiple tsensor instances with following registers */
#define SENSOR_CFG0 0x40
#define SENSOR_CFG1 0x48
#define SENSOR_CFG2 0x4c
#define SENSOR_STATUS0 0x58
#define SENSOR_TS_STATUS1 0x5c
#define SENSOR_TS_STATUS2 0x60
/* interrupt mask in tsensor status register */
#define TSENSOR_SENSOR_X_STATUS0_0_INTR_MASK (1 << 8)
#define SENSOR_CFG0_M_MASK 0xffff
#define SENSOR_CFG0_M_SHIFT 8
#define SENSOR_CFG0_N_MASK 0xff
#define SENSOR_CFG0_N_SHIFT 24
#define SENSOR_CFG0_RST_INTR_SHIFT 6
#define SENSOR_CFG0_HW_DIV2_INTR_SHIFT 5
#define SENSOR_CFG0_OVERFLOW_INTR 4
#define SENSOR_CFG0_DVFS_INTR_SHIFT 3
#define SENSOR_CFG0_RST_ENABLE_SHIFT 2
#define SENSOR_CFG0_HW_DIV2_ENABLE_SHIFT 1
#define SENSOR_CFG0_STOP_SHIFT 0
#define SENSOR_CFG_X_TH_X_MASK 0xffff
#define SENSOR_CFG1_TH2_SHIFT 16
#define SENSOR_CFG1_TH1_SHIFT 0
#define SENSOR_CFG2_TH3_SHIFT 0
#define SENSOR_CFG2_TH0_SHIFT 16
#define SENSOR_STATUS_AVG_VALID_SHIFT 10
#define SENSOR_STATUS_CURR_VALID_SHIFT 9
#define STATE_MASK 0x7
#define STATUS0_STATE_SHIFT 0
#define STATUS0_PREV_STATE_SHIFT 4
#define LOCAL_STR_SIZE1 60
#define MAX_STR_LINE 100
#define MAX_TSENSOR_LOOP1 (1000 * 2)
#define TSENSOR_COUNTER_TOLERANCE 100
#define SENSOR_CTRL_RST_SHIFT 1
#define RST_SRC_MASK 0x7
#define RST_SRC_SENSOR 2
#define TEGRA_REV_REG_OFFSET 0x804
#define CCLK_G_BURST_POLICY_REG_REL_OFFSET 0x368
#define TSENSOR_SLOWDOWN_BIT 23
/* macros used for temperature calculations */
#define get_temperature_int(X) ((X) / 100)
#define get_temperature_fraction(X) (((int)(abs(X))) % 100)
#define get_temperature_round(X) DIV_ROUND_CLOSEST(X, 100)
#define MILLICELSIUS_TO_CELSIUS(i) ((i) / 1000)
#define CELSIUS_TO_MILLICELSIUS(i) ((i) * 1000)
#define get_ts_state(data) tsensor_get_reg_field(data,\
((data->instance << 16) | SENSOR_STATUS0), \
STATUS0_STATE_SHIFT, STATE_MASK)
/* tsensor states */
enum ts_state {
TS_INVALID = 0,
TS_LEVEL0,
TS_LEVEL1,
TS_LEVEL2,
TS_LEVEL3,
TS_OVERFLOW,
TS_MAX_STATE = TS_OVERFLOW
};
enum {
/* temperature is sensed from 2 points on tegra */
TSENSOR_COUNT = 2,
TSENSOR_INSTANCE1 = 0,
TSENSOR_INSTANCE2 = 1,
/* divide by 2 temperature threshold */
DIV2_CELSIUS_TEMP_THRESHOLD_DEFAULT = 70,
/* reset chip temperature threshold */
RESET_CELSIUS_TEMP_THRESHOLD_DEFAULT = 75,
/* tsensor frequency in Hz for clk src CLK_M and divisor=24 */
DEFAULT_TSENSOR_CLK_HZ = 500000,
DEFAULT_TSENSOR_N = 255,
DEFAULT_TSENSOR_M = 12500,
/* tsensor instance offset */
TSENSOR_INSTANCE_OFFSET = 0x40,
MIN_THRESHOLD = 0x0,
MAX_THRESHOLD = 0xffff,
DEFAULT_THRESHOLD_TH0 = MAX_THRESHOLD,
DEFAULT_THRESHOLD_TH1 = MAX_THRESHOLD,
DEFAULT_THRESHOLD_TH2 = MAX_THRESHOLD,
DEFAULT_THRESHOLD_TH3 = MAX_THRESHOLD,
};
/* constants used to implement sysfs interface */
enum tsensor_params {
TSENSOR_PARAM_TH1 = 0,
TSENSOR_PARAM_TH2,
TSENSOR_PARAM_TH3,
TSENSOR_TEMPERATURE,
TSENSOR_STATE,
TSENSOR_LIMITS,
};
enum tsensor_thresholds {
TSENSOR_TH0 = 0,
TSENSOR_TH1,
TSENSOR_TH2,
TSENSOR_TH3
};
/*
* For each registered chip, we need to keep some data in memory.
* The structure is dynamically allocated.
*/
struct tegra_tsensor_data {
struct delayed_work work;
struct workqueue_struct *workqueue;
struct mutex mutex;
struct device *hwmon_dev;
spinlock_t tsensor_lock;
struct clk *dev_clk;
/* tsensor register space */
void __iomem *base;
unsigned long phys;
unsigned long phys_end;
/* pmc register space */
void __iomem *pmc_rst_base;
unsigned long pmc_phys;
unsigned long pmc_phys_end;
/* clk register space */
void __iomem *clk_rst_base;
int irq;
/* save configuration before suspend and restore after resume */
unsigned int config0[TSENSOR_COUNT];
unsigned int config1[TSENSOR_COUNT];
unsigned int config2[TSENSOR_COUNT];
/* temperature readings from instance tsensor - 0/1 */
unsigned int instance;
int A_e_minus6;
int B_e_minus2;
unsigned int fuse_T1;
unsigned int fuse_F1;
unsigned int fuse_T2;
unsigned int fuse_F2;
/* Quadratic fit coefficients: m=-0.003512 n=1.528943 p=-11.1 */
int m_e_minus6;
int n_e_minus6;
int p_e_minus2;
long current_hi_limit;
long current_lo_limit;
bool is_edp_supported;
void (*alert_func)(void *);
void *alert_data;
};
enum {
TSENSOR_COEFF_SET1 = 0,
TSENSOR_COEFF_SET2,
TSENSOR_COEFF_END
};
struct tegra_tsensor_coeff {
int e_minus6_m;
int e_minus6_n;
int e_minus2_p;
};
static struct tegra_tsensor_coeff coeff_table[] = {
/* Quadratic fit coefficients: m=-0.002775 n=1.338811 p=-7.30 */
[TSENSOR_COEFF_SET1] = {
-2775,
1338811,
-730
},
/* Quadratic fit coefficients: m=-0.003512 n=1.528943 p=-11.1 */
[TSENSOR_COEFF_SET2] = {
-3512,
1528943,
-1110
}
/* FIXME: add tsensor coefficients after chip characterization */
};
/* pTemperature returned in 100 * Celsius */
static int tsensor_count_2_temp(struct tegra_tsensor_data *data,
unsigned int count, int *p_temperature);
static unsigned int tsensor_get_threshold_counter(
struct tegra_tsensor_data *data, int temp);
/* tsensor register access functions */
static void tsensor_writel(struct tegra_tsensor_data *data, u32 val,
unsigned long reg)
{
unsigned int reg_offset = reg & 0xffff;
unsigned char inst = (reg >> 16) & 0xffff;
writel(val, data->base + (inst * TSENSOR_INSTANCE_OFFSET) +
reg_offset);
return;
}
static unsigned int tsensor_readl(struct tegra_tsensor_data *data,
unsigned long reg)
{
unsigned int reg_offset = reg & 0xffff;
unsigned char inst = (reg >> 16) & 0xffff;
return readl(data->base +
(inst * TSENSOR_INSTANCE_OFFSET) + reg_offset);
}
static unsigned int tsensor_get_reg_field(
struct tegra_tsensor_data *data, unsigned int reg,
unsigned int shift, unsigned int mask)
{
unsigned int reg_val;
reg_val = tsensor_readl(data, reg);
return (reg_val & (mask << shift)) >> shift;
}
static int tsensor_set_reg_field(
struct tegra_tsensor_data *data, unsigned int value,
unsigned int reg, unsigned int shift, unsigned int mask)
{
unsigned int reg_val;
unsigned int rd_val;
reg_val = tsensor_readl(data, reg);
reg_val &= ~(mask << shift);
reg_val |= ((value & mask) << shift);
tsensor_writel(data, reg_val, reg);
rd_val = tsensor_readl(data, reg);
if (rd_val == reg_val)
return 0;
else
return -EINVAL;
}
/* enable argument is true to enable reset, false disables pmc reset */
static void pmc_rst_enable(struct tegra_tsensor_data *data, bool enable)
{
unsigned int val;
/* mapped first pmc reg is SENSOR_CTRL */
val = readl(data->pmc_rst_base);
if (enable)
val |= (1 << SENSOR_CTRL_RST_SHIFT);
else
val &= ~(1 << SENSOR_CTRL_RST_SHIFT);
writel(val, data->pmc_rst_base);
}
/* true returned when pmc reset source is tsensor */
static bool pmc_check_rst_sensor(struct tegra_tsensor_data *data)
{
unsigned int val;
unsigned char src;
val = readl(data->pmc_rst_base + 4);
src = (unsigned char)(val & RST_SRC_MASK);
if (src == RST_SRC_SENSOR)
return true;
else
return false;
}
/* function to get chip revision */
static void get_chip_rev(unsigned short *p_id, unsigned short *p_major,
unsigned short *p_minor)
{
unsigned int reg;
reg = readl(IO_TO_VIRT(TEGRA_APB_MISC_BASE) +
TEGRA_REV_REG_OFFSET);
*p_id = (reg >> 8) & 0xff;
*p_major = (reg >> 4) & 0xf;
*p_minor = (reg >> 16) & 0xf;
pr_info("Tegra chip revision for tsensor detected as: "
"Chip Id=%x, Major=%d, Minor=%d\n", (int)*p_id,
(int)*p_major, (int)*p_minor);
}
/*
* function to get chip revision specific tsensor coefficients
* obtained after chip characterization
*/
static void get_chip_tsensor_coeff(struct tegra_tsensor_data *data)
{
unsigned short chip_id, major_rev, minor_rev;
unsigned short coeff_index;
get_chip_rev(&chip_id, &major_rev, &minor_rev);
switch (minor_rev) {
default:
pr_info("Warning: tsensor coefficient for chip pending\n");
case 1:
coeff_index = TSENSOR_COEFF_SET1;
break;
}
if (data->instance == TSENSOR_INSTANCE1)
coeff_index = TSENSOR_COEFF_SET2;
data->m_e_minus6 = coeff_table[coeff_index].e_minus6_m;
data->n_e_minus6 = coeff_table[coeff_index].e_minus6_n;
data->p_e_minus2 = coeff_table[coeff_index].e_minus2_p;
}
/* tsensor counter read function */
static int tsensor_read_counter(
struct tegra_tsensor_data *data,
unsigned int *p_counter)
{
unsigned int status_reg;
unsigned int config0;
int iter_count = 0;
const int max_loop = 50;
do {
config0 = tsensor_readl(data, ((data->instance << 16) |
SENSOR_CFG0));
if (config0 & (1 << SENSOR_CFG0_STOP_SHIFT)) {
dev_dbg(data->hwmon_dev, "Error: tsensor "
"counter read with STOP bit not supported\n");
*p_counter = 0;
return 0;
}
status_reg = tsensor_readl(data,
(data->instance << 16) | SENSOR_STATUS0);
if (status_reg & (1 <<
SENSOR_STATUS_CURR_VALID_SHIFT)) {
*p_counter = tsensor_readl(data, (data->instance
<< 16) | SENSOR_TS_STATUS1);
break;
}
if (!(iter_count % 10))
dev_dbg(data->hwmon_dev, "retry %d\n", iter_count);
msleep(21);
iter_count++;
} while (iter_count < max_loop);
if (iter_count == max_loop)
return -ENODEV;
return 0;
}
/* tsensor threshold print function */
static void dump_threshold(struct tegra_tsensor_data *data)
{
unsigned int TH_2_1, TH_0_3;
unsigned int curr_avg;
int err;
TH_2_1 = tsensor_readl(data, (data->instance << 16) | SENSOR_CFG1);
TH_0_3 = tsensor_readl(data, (data->instance << 16) | SENSOR_CFG2);
dev_dbg(data->hwmon_dev, "Tsensor: TH_2_1=0x%x, "
"TH_0_3=0x%x\n", TH_2_1, TH_0_3);
err = tsensor_read_counter(data, &curr_avg);
if (err < 0)
pr_err("Error: tsensor counter read, "
"err=%d\n", err);
else
dev_dbg(data->hwmon_dev, "Tsensor: "
"curr_avg=0x%x\n", curr_avg);
}
static int tsensor_get_temperature(
struct tegra_tsensor_data *data,
int *pTemp, unsigned int *pCounter)
{
int err = 0;
unsigned int curr_avg;
err = tsensor_read_counter(data, &curr_avg);
if (err < 0)
goto error;
*pCounter = ((curr_avg & 0xFFFF0000) >> 16);
err = tsensor_count_2_temp(data, *pCounter, pTemp);
error:
return err;
}
static ssize_t tsensor_show_state(struct device *dev,
struct device_attribute *da, char *buf)
{
int state;
struct tegra_tsensor_data *data = dev_get_drvdata(dev);
state = get_ts_state(data);
return snprintf(buf, 50, "%d\n", state);
}
static ssize_t tsensor_show_limits(struct device *dev,
struct device_attribute *da, char *buf)
{
struct tegra_tsensor_data *data = dev_get_drvdata(dev);
return snprintf(buf, 50, "%ld %ld\n",
data->current_lo_limit, data->current_hi_limit);
}
/* tsensor temperature show function */
static ssize_t tsensor_show_counters(struct device *dev,
struct device_attribute *da, char *buf)
{
unsigned int curr_avg;
char err_str[] = "error-sysfs-counter-read\n";
char fixed_str[MAX_STR_LINE];
struct tegra_tsensor_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int err;
int temp;
if (attr->index == TSENSOR_TEMPERATURE) {
/* use current counter value to calculate temperature */
err = tsensor_read_counter(data, &curr_avg);
if (err < 0)
goto error;
err = tsensor_count_2_temp(data,
((curr_avg & 0xFFFF0000) >> 16), &temp);
if (err < 0)
goto error;
dev_vdbg(data->hwmon_dev, "%s has curr_avg=0x%x, "
"temp0=%d\n", __func__, curr_avg, temp);
snprintf(buf, (((LOCAL_STR_SIZE1 << 1) + 3) +
strlen(fixed_str)),
"%d.%02dC\n",
get_temperature_int(temp),
get_temperature_fraction(temp));
}
return strlen(buf);
error:
return snprintf(buf, strlen(err_str), "%s", err_str);
}
/* utility function to check hw clock divide by 2 condition */
static bool cclkg_check_hwdiv2_sensor(struct tegra_tsensor_data *data)
{
unsigned int val;
val = readl(IO_ADDRESS(TEGRA_CLK_RESET_BASE +
CCLK_G_BURST_POLICY_REG_REL_OFFSET));
if ((1 << TSENSOR_SLOWDOWN_BIT) & val) {
dev_err(data->hwmon_dev, "Warning: ***** tsensor "
"slowdown bit detected\n");
return true;
} else {
return false;
}
}
/*
* function with table to return register, field shift and mask
* values for supported parameters
*/
static int get_param_values(
struct tegra_tsensor_data *data, unsigned int indx,
unsigned int *p_reg, unsigned int *p_sft, unsigned int *p_msk,
char *info, size_t info_len)
{
switch (indx) {
case TSENSOR_PARAM_TH1:
*p_reg = ((data->instance << 16) | SENSOR_CFG1);
*p_sft = SENSOR_CFG1_TH1_SHIFT;
*p_msk = SENSOR_CFG_X_TH_X_MASK;
snprintf(info, info_len, "TH1[%d]: ",
data->instance);
break;
case TSENSOR_PARAM_TH2:
*p_reg = ((data->instance << 16) | SENSOR_CFG1);
*p_sft = SENSOR_CFG1_TH2_SHIFT;
*p_msk = SENSOR_CFG_X_TH_X_MASK;
snprintf(info, info_len, "TH2[%d]: ",
data->instance);
break;
case TSENSOR_PARAM_TH3:
*p_reg = ((data->instance << 16) | SENSOR_CFG2);
*p_sft = SENSOR_CFG2_TH3_SHIFT;
*p_msk = SENSOR_CFG_X_TH_X_MASK;
snprintf(info, info_len, "TH3[%d]: ",
data->instance);
break;
default:
return -ENOENT;
}
return 0;
}
/* tsensor driver sysfs show function */
static ssize_t show_tsensor_param(struct device *dev,
struct device_attribute *da,
char *buf)
{
unsigned int val;
struct tegra_tsensor_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
unsigned int reg;
unsigned int sft;
unsigned int msk;
int err;
int temp;
char info[LOCAL_STR_SIZE1];
err = get_param_values(data, attr->index, ®, &sft, &msk,
info, sizeof(info));
if (err < 0)
goto labelErr;
val = tsensor_get_reg_field(data, reg, sft, msk);
if (val == MAX_THRESHOLD)
snprintf(buf, PAGE_SIZE, "%s un-initialized threshold\n", info);
else {
err = tsensor_count_2_temp(data, val, &temp);
if (err != 0)
goto labelErr;
snprintf(buf, PAGE_SIZE, "%s threshold: %d.%d Celsius\n", info,
get_temperature_int(temp),
get_temperature_fraction(temp));
}
return strlen(buf);
labelErr:
snprintf(buf, PAGE_SIZE, "ERROR:");
return strlen(buf);
}
/* tsensor driver sysfs store function */
static ssize_t set_tsensor_param(struct device *dev,
struct device_attribute *da,
const char *buf, size_t count)
{
int num;
struct tegra_tsensor_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
unsigned int reg;
unsigned int sft;
unsigned int msk;
int err;
unsigned int counter;
unsigned int val;
char info[LOCAL_STR_SIZE1];
if (kstrtoint(buf, 0, &num)) {
dev_err(dev, "file: %s, line=%d return %s()\n",
__FILE__, __LINE__, __func__);
return -EINVAL;
}
counter = tsensor_get_threshold_counter(data, num);
err = get_param_values(data, attr->index, ®, &sft, &msk,
info, sizeof(info));
if (err < 0)
goto labelErr;
err = tsensor_set_reg_field(data, counter, reg, sft, msk);
if (err < 0)
goto labelErr;
/* TH2 clk divide check */
if (attr->index == TSENSOR_PARAM_TH2) {
msleep(21);
(void)cclkg_check_hwdiv2_sensor(data);
}
val = tsensor_get_reg_field(data, reg, sft, msk);
dev_dbg(dev, "%s 0x%x\n", info, val);
return count;
labelErr:
dev_err(dev, "file: %s, line=%d, %s(), error=0x%x\n", __FILE__,
__LINE__, __func__, err);
return 0;
}
static struct sensor_device_attribute tsensor_nodes[] = {
SENSOR_ATTR(tsensor_TH1, S_IRUGO | S_IWUSR,
show_tsensor_param, set_tsensor_param, TSENSOR_PARAM_TH1),
SENSOR_ATTR(tsensor_TH2, S_IRUGO | S_IWUSR,
show_tsensor_param, set_tsensor_param, TSENSOR_PARAM_TH2),
SENSOR_ATTR(tsensor_TH3, S_IRUGO | S_IWUSR,
show_tsensor_param, set_tsensor_param, TSENSOR_PARAM_TH3),
SENSOR_ATTR(tsensor_temperature, S_IRUGO | S_IWUSR,
tsensor_show_counters, NULL, TSENSOR_TEMPERATURE),
SENSOR_ATTR(tsensor_state, S_IRUGO | S_IWUSR,
tsensor_show_state, NULL, TSENSOR_STATE),
SENSOR_ATTR(tsensor_limits, S_IRUGO | S_IWUSR,
tsensor_show_limits, NULL, TSENSOR_LIMITS),
};
int tsensor_thermal_get_temp_low(struct tegra_tsensor_data *data,
long *milli_temp)
{
/* temp to counter below 20C seems to be inaccurate */
*milli_temp = 20000;
return 0;
}
int tsensor_thermal_get_temp(struct tegra_tsensor_data *data,
long *milli_temp)
{
int counter, temp, err;
int temp_state, ts_state;
err = tsensor_get_temperature(data,
&temp,
&counter);
if (err)
return err;
temp *= 10;
mutex_lock(&data->mutex);
/* This section of logic is done in order to make sure that
* the temperature read corresponds to the current hw state.
* If it is not, return the nearest temperature
*/
if ((data->current_lo_limit != 0) ||
(data->current_hi_limit)) {
if (temp <= data->current_lo_limit)
temp_state = TS_LEVEL0;
else if (temp < data->current_hi_limit)
temp_state = TS_LEVEL1;
else
temp_state = TS_LEVEL2;
ts_state = get_ts_state(data);
if (ts_state != temp_state) {
switch (ts_state) {
case TS_LEVEL0:
temp = data->current_lo_limit - 1;
break;
case TS_LEVEL1:
if (temp_state == TS_LEVEL0)
temp = data->current_lo_limit + 1;
else
temp = data->current_hi_limit - 1;
break;
case TS_LEVEL2:
temp = data->current_hi_limit + 1;
break;
}
}
}
mutex_unlock(&data->mutex);
*milli_temp = temp;
return 0;
}
/* tsensor driver interrupt handler */
static irqreturn_t tegra_tsensor_isr(int irq, void *arg_data)
{
struct tegra_tsensor_data *data =
(struct tegra_tsensor_data *)arg_data;
unsigned long flags;
unsigned int val;
int new_state;
spin_lock_irqsave(&data->tsensor_lock, flags);
val = tsensor_readl(data, (data->instance << 16) | SENSOR_STATUS0);
if (val & TSENSOR_SENSOR_X_STATUS0_0_INTR_MASK) {
new_state = get_ts_state(data);
/* counter overflow check */
if (new_state == TS_OVERFLOW)
dev_err(data->hwmon_dev, "Warning: "
"***** OVERFLOW tsensor\n");
/* We only care if we go above hi or below low thresholds */
if (data->is_edp_supported && new_state != TS_LEVEL1)
queue_delayed_work(data->workqueue, &data->work, 0);
}
tsensor_writel(data, val, (data->instance << 16) | SENSOR_STATUS0);
spin_unlock_irqrestore(&data->tsensor_lock, flags);
return IRQ_HANDLED;
}
/*
* function to read fuse registers and give - T1, T2, F1 and F2
*/
static int read_tsensor_fuse_regs(struct tegra_tsensor_data *data)
{
unsigned int reg1;
unsigned int T1 = 0, T2 = 0;
unsigned int spare_bits;
int err;
/* read tsensor calibration register */
/*
* High (~90 DegC) Temperature Calibration value (upper 16 bits of
* FUSE_TSENSOR_CALIB_0) - F2
* Low (~25 deg C) Temperature Calibration value (lower 16 bits of
* FUSE_TSENSOR_CALIB_0) - F1
*/
err = tegra_fuse_get_tsensor_calibration_data(®1);
if (err)
goto errLabel;
data->fuse_F1 = reg1 & 0xFFFF;
data->fuse_F2 = (reg1 >> 16) & 0xFFFF;
err = tegra_fuse_get_tsensor_spare_bits(&spare_bits);
if (err) {
pr_err("tsensor spare bit fuse read error=%d\n", err);
goto errLabel;
}
/*
* FUSE_TJ_ADT_LOWT = T1, FUSE_TJ_ADJ = T2
*/
/*
* Low temp is:
* FUSE_TJ_ADT_LOWT = bits [20:14] or’ed with bits [27:21]
*/
T1 = ((spare_bits >> 14) & 0x7F) |
((spare_bits >> 21) & 0x7F);
dev_vdbg(data->hwmon_dev, "Tsensor low temp (T1) fuse :\n");
/*
* High temp is:
* FUSE_TJ_ADJ = bits [6:0] or’ed with bits [13:7]
*/
dev_vdbg(data->hwmon_dev, "Tsensor low temp (T2) fuse :\n");
T2 = (spare_bits & 0x7F) | ((spare_bits >> 7) & 0x7F);
pr_info("Tsensor fuse calibration F1=%d, F2=%d, T1=%d, T2=%d\n"
, data->fuse_F1, data->fuse_F2, T1, T2);
data->fuse_T1 = T1;
data->fuse_T2 = T2;
return 0;
errLabel:
return err;
}
/* function to calculate interim temperature */
static int calc_interim_temp(struct tegra_tsensor_data *data,
unsigned int counter, int *p_interim_temp)
{
int val1;
/*
* T-int = A * Counter + B
* (Counter is the sensor frequency output)
*/
if ((data->fuse_F2 - data->fuse_F1) <= (data->fuse_T2 -
data->fuse_T1)) {
dev_err(data->hwmon_dev, "Error: F2=%d, F1=%d "
"difference unexpectedly low. "
"Aborting temperature processing\n", data->fuse_F2,
data->fuse_F1);
return -EINVAL;
} else {
/* expression modified after assuming s_A is 10^6 times,
* s_B is 10^2 times and want end result to be 10^2 times
* actual value
*/
val1 = DIV_ROUND_CLOSEST((data->A_e_minus6 * counter) , 10000);
dev_vdbg(data->hwmon_dev, "A*counter / 100 = %d\n",
val1);
*p_interim_temp = (val1 + data->B_e_minus2);
}
dev_dbg(data->hwmon_dev, "tsensor: counter=0x%x, interim "
"temp*100=%d\n",
counter, *p_interim_temp);
return 0;
}
/*
* function to calculate final temperature, given
* interim temperature
*/
static void calc_final_temp(struct tegra_tsensor_data *data,
int interim_temp, int *p_final_temp)
{
int temp1, temp2, temp;
/*
* T-final = m * T-int ^2 + n * T-int + p
* m = -0.002775
* n = 1.338811
* p = -7.3
*/
dev_vdbg(data->hwmon_dev, "interim_temp=%d\n", interim_temp);
temp1 = (DIV_ROUND_CLOSEST((interim_temp * interim_temp) , 100));
dev_vdbg(data->hwmon_dev, "temp1=%d\n", temp1);
temp1 *= (DIV_ROUND_CLOSEST(data->m_e_minus6 , 10));
dev_vdbg(data->hwmon_dev, "m*T-int^2=%d\n", temp1);
temp1 = (DIV_ROUND_CLOSEST(temp1, 10000));
/* we want to keep 3 decimal point digits */
dev_vdbg(data->hwmon_dev, "m*T-int^2 / 10000=%d\n", temp1);
dev_dbg(data->hwmon_dev, "temp1*100=%d\n", temp1);
temp2 = (DIV_ROUND_CLOSEST(interim_temp * (
DIV_ROUND_CLOSEST(data->n_e_minus6, 100)
), 1000)); /* 1000 times actual */
dev_vdbg(data->hwmon_dev, "n*T-int =%d\n", temp2);
temp = temp1 + temp2;
dev_vdbg(data->hwmon_dev, "m*T-int^2 + n*T-int =%d\n", temp);
temp += (data->p_e_minus2 * 10);
temp = DIV_ROUND_CLOSEST(temp, 10);
/* final temperature(temp) is 100 times actual value
* to preserve 2 decimal digits and enable fixed point
* computation
*/
dev_vdbg(data->hwmon_dev, "m*T-int^2 + n*T-int + p =%d\n",
temp);
dev_dbg(data->hwmon_dev, "Final temp=%d.%d\n",
get_temperature_int(temp), get_temperature_fraction(temp));
*p_final_temp = (int)(temp);
}
/*
* Function to compute constants A and B needed for temperature
* calculation
* A = (T2-T1) / (F2-F1)
* B = T1 – A * F1
*/
static int tsensor_get_const_AB(struct tegra_tsensor_data *data)
{
int err;
/*
* 1. Find fusing registers for 25C (T1, F1) and 90C (T2, F2);
*/
err = read_tsensor_fuse_regs(data);
if (err) {
dev_err(data->hwmon_dev, "Fuse register read required "
"for internal tsensor returns err=%d\n", err);
return err;
}
if (data->fuse_F2 != data->fuse_F1) {
if ((data->fuse_F2 - data->fuse_F1) <= (data->fuse_T2 -
data->fuse_T1)) {
dev_err(data->hwmon_dev, "Error: F2=%d, "
"F1=%d, difference"
" unexpectedly low. Aborting temperature"
"computation\n", data->fuse_F2, data->fuse_F1);
return -EINVAL;
} else {
data->A_e_minus6 = ((data->fuse_T2 - data->fuse_T1) *
1000000);
data->A_e_minus6 /= (data->fuse_F2 - data->fuse_F1);
data->B_e_minus2 = (data->fuse_T1 * 100) - (
DIV_ROUND_CLOSEST((data->A_e_minus6 *
data->fuse_F1), 10000));
/* B is 100 times now */
}
}
dev_dbg(data->hwmon_dev, "A_e_minus6 = %d\n", data->A_e_minus6);
dev_dbg(data->hwmon_dev, "B_e_minus2 = %d\n", data->B_e_minus2);
return 0;
}
/*
* function calculates expected temperature corresponding to
* given tsensor counter value
* Value returned is 100 times calculated temperature since the
* calculations are using fixed point arithmetic instead of floating point
*/
static int tsensor_count_2_temp(struct tegra_tsensor_data *data,
unsigned int count, int *p_temperature)
{
int interim_temp;
int err;
/*
*
* 2. Calculate interim temperature:
*/
err = calc_interim_temp(data, count, &interim_temp);
if (err < 0) {
dev_err(data->hwmon_dev, "tsensor: cannot read temperature\n");
*p_temperature = -1;
return err;
}
/*
*
* 3. Calculate final temperature:
*/
calc_final_temp(data, interim_temp, p_temperature);
return 0;
}
/*
* utility function implements ceil to power of 10 -
* e.g. given 987 it returns 1000
*/
static int my_ceil_pow10(int num)
{
int tmp;
int val = 1;
tmp = (num < 0) ? -num : num;
if (tmp == 0)
return 0;
while (tmp > 1) {
val *= 10;
tmp /= 10;
}
return val;
}
/*
* function to solve quadratic roots of equation
* used to get counter corresponding to given temperature
*/
static void get_quadratic_roots(struct tegra_tsensor_data *data,
int temp, unsigned int *p_counter1,
unsigned int *p_counter2)
{
/* expr1 = 2 * m * B + n */
int expr1_e_minus6;
/* expr2 = expr1^2 */
int expr2_e_minus6;
/* expr3 = m * B^2 + n * B + p */
int expr3_e_minus4_1;
int expr3_e_minus4_2;
int expr3_e_minus4;
int expr4_e_minus6;
int expr4_e_minus2_1;
int expr4_e_minus6_2;
int expr4_e_minus6_3;
int expr5_e_minus6, expr5_e_minus6_1, expr6, expr7;
int expr8_e_minus6, expr9_e_minus6;
int multiplier;
const int multiplier2 = 1000000;
int expr10_e_minus6, expr11_e_minus6;
int expr12, expr13;
dev_vdbg(data->hwmon_dev, "A_e_minus6=%d, B_e_minus2=%d, "
"m_e_minus6=%d, n_e_minus6=%d, p_e_minus2=%d, "
"temp=%d\n", data->A_e_minus6, data->B_e_minus2,
data->m_e_minus6,
data->n_e_minus6, data->p_e_minus2, (int)temp);
expr1_e_minus6 = (DIV_ROUND_CLOSEST((2 * data->m_e_minus6 *
data->B_e_minus2), 100) + data->n_e_minus6);
dev_vdbg(data->hwmon_dev, "2_m_B_plun_e_minus6=%d\n",
expr1_e_minus6);
expr2_e_minus6 = (DIV_ROUND_CLOSEST(expr1_e_minus6, 1000)) *
(DIV_ROUND_CLOSEST(expr1_e_minus6, 1000));
dev_vdbg(data->hwmon_dev, "expr1^2=%d\n", expr2_e_minus6);
expr3_e_minus4_1 = (DIV_ROUND_CLOSEST((
(DIV_ROUND_CLOSEST((data->m_e_minus6 * data->B_e_minus2),
1000)) * (DIV_ROUND_CLOSEST(data->B_e_minus2, 10))), 100));
dev_vdbg(data->hwmon_dev, "expr3_e_minus4_1=%d\n",
expr3_e_minus4_1);
expr3_e_minus4_2 = DIV_ROUND_CLOSEST(
(DIV_ROUND_CLOSEST(data->n_e_minus6, 100) * data->B_e_minus2),
100);
dev_vdbg(data->hwmon_dev, "expr3_e_minus4_2=%d\n",
expr3_e_minus4_2);
expr3_e_minus4 = expr3_e_minus4_1 + expr3_e_minus4_2;
dev_vdbg(data->hwmon_dev, "expr3=%d\n", expr3_e_minus4);
expr4_e_minus2_1 = DIV_ROUND_CLOSEST((expr3_e_minus4 +
(data->p_e_minus2 * 100)), 100);
dev_vdbg(data->hwmon_dev, "expr4_e_minus2_1=%d\n",
expr4_e_minus2_1);
expr4_e_minus6_2 = (4 * data->m_e_minus6);
dev_vdbg(data->hwmon_dev, "expr4_e_minus6_2=%d\n",
expr4_e_minus6_2);
expr4_e_minus6 = DIV_ROUND_CLOSEST((expr4_e_minus2_1 *
expr4_e_minus6_2), 100);
dev_vdbg(data->hwmon_dev, "expr4_minus6=%d\n", expr4_e_minus6);
expr5_e_minus6_1 = expr2_e_minus6 - expr4_e_minus6;
dev_vdbg(data->hwmon_dev, "expr5_e_minus6_1=%d\n",
expr5_e_minus6_1);
expr4_e_minus6_3 = (expr4_e_minus6_2 * temp);
dev_vdbg(data->hwmon_dev, "expr4_e_minus6_3=%d\n",
expr4_e_minus6_3);
expr5_e_minus6 = (expr5_e_minus6_1 + expr4_e_minus6_3);
dev_vdbg(data->hwmon_dev, "expr5_e_minus6=%d\n",
expr5_e_minus6);
multiplier = my_ceil_pow10(expr5_e_minus6);
dev_vdbg(data->hwmon_dev, "multiplier=%d\n", multiplier);
expr6 = int_sqrt(expr5_e_minus6);
dev_vdbg(data->hwmon_dev, "sqrt top=%d\n", expr6);
expr7 = int_sqrt(multiplier);
dev_vdbg(data->hwmon_dev, "sqrt bot=%d\n", expr7);
if (expr7 == 0) {
pr_err("Error: %s line=%d, expr7=%d\n",
__func__, __LINE__, expr7);
return;
} else {
expr8_e_minus6 = (expr6 * multiplier2) / expr7;
}
dev_vdbg(data->hwmon_dev, "sqrt final=%d\n", expr8_e_minus6);
dev_vdbg(data->hwmon_dev, "2_m_B_plus_n_e_minus6=%d\n",
expr1_e_minus6);
expr9_e_minus6 = DIV_ROUND_CLOSEST((2 * data->m_e_minus6 *
data->A_e_minus6), 1000000);
dev_vdbg(data->hwmon_dev, "denominator=%d\n", expr9_e_minus6);
if (expr9_e_minus6 == 0) {
pr_err("Error: %s line=%d, expr9_e_minus6=%d\n",
__func__, __LINE__, expr9_e_minus6);
return;
}
expr10_e_minus6 = -expr1_e_minus6 - expr8_e_minus6;
dev_vdbg(data->hwmon_dev, "expr10_e_minus6=%d\n",
expr10_e_minus6);
expr11_e_minus6 = -expr1_e_minus6 + expr8_e_minus6;
dev_vdbg(data->hwmon_dev, "expr11_e_minus6=%d\n",
expr11_e_minus6);
expr12 = (expr10_e_minus6 / expr9_e_minus6);
dev_vdbg(data->hwmon_dev, "counter1=%d\n", expr12);
expr13 = (expr11_e_minus6 / expr9_e_minus6);
dev_vdbg(data->hwmon_dev, "counter2=%d\n", expr13);
*p_counter1 = expr12;
*p_counter2 = expr13;
}
/*
* function returns tsensor expected counter corresponding to input
* temperature in degree Celsius.
* e.g. for temperature of 35C, temp=35
*/
static void tsensor_temp_2_count(struct tegra_tsensor_data *data,
int temp,
unsigned int *p_counter1,
unsigned int *p_counter2)
{
if (temp > 0) {
dev_dbg(data->hwmon_dev, "Trying to calculate counter"
" for requested temperature"
" threshold=%d\n", temp);
/*
* calculate the constants needed to get roots of
* following quadratic eqn:
* m * A^2 * Counter^2 +
* A * (2 * m * B + n) * Counter +
* (m * B^2 + n * B + p - Temperature) = 0
*/
get_quadratic_roots(data, temp, p_counter1, p_counter2);
/*
* checked at current temperature=35 the counter=11418
* for 50 deg temperature: counter1=22731, counter2=11817
* at 35 deg temperature: counter1=23137, counter2=11411
* hence, for above values we are assuming counter2 has
* the correct value
*/
} else {
*p_counter1 = DEFAULT_THRESHOLD_TH3;
*p_counter2 = DEFAULT_THRESHOLD_TH3;
}
}
/*
* function to compare computed and expected values with
* certain tolerance setting hard coded here
*/
static bool cmp_counter(
struct tegra_tsensor_data *data,
unsigned int actual, unsigned int exp)
{
unsigned int smaller;
unsigned int larger;
smaller = (actual > exp) ? exp : actual;
larger = (smaller == actual) ? exp : actual;
if ((larger - smaller) > TSENSOR_COUNTER_TOLERANCE) {
dev_dbg(data->hwmon_dev, "actual=%d, exp=%d, larger=%d, "
"smaller=%d, tolerance=%d\n", actual, exp, larger, smaller,
TSENSOR_COUNTER_TOLERANCE);
return false;
}
return true;
}
/* function to print chart of temperature to counter values */
static void print_temperature_2_counter_table(
struct tegra_tsensor_data *data)
{
int i;
/* static list of temperature tested */
int temp_list[] = {
30,
35,
40,
45,
50,
55,
60,
61,
62,
63,
64,
65,
70,
75,
80,
85,
90,
95,
100,
105,
110,
115,
120
};
unsigned int counter1, counter2;
dev_dbg(data->hwmon_dev, "Temperature and counter1 and "
"counter2 chart **********\n");
for (i = 0; i < ARRAY_SIZE(temp_list); i++) {
tsensor_temp_2_count(data, temp_list[i],
&counter1, &counter2);
dev_dbg(data->hwmon_dev, "temperature[%d]=%d, "
"counter1=0x%x, counter2=0x%x\n",
i, temp_list[i], counter1, counter2);
}
dev_dbg(data->hwmon_dev, "\n\n");
}
static void dump_a_tsensor_reg(struct tegra_tsensor_data *data,
unsigned int addr)
{
dev_dbg(data->hwmon_dev, "tsensor[%d][0x%x]: 0x%x\n", (addr >> 16),
addr & 0xFFFF, tsensor_readl(data, addr));
}
static void dump_tsensor_regs(struct tegra_tsensor_data *data)
{
int i;
for (i = 0; i < TSENSOR_COUNT; i++) {
/* if STOP bit is set skip this check */
dump_a_tsensor_reg(data, ((i << 16) | SENSOR_CFG0));
dump_a_tsensor_reg(data, ((i << 16) | SENSOR_CFG1));
dump_a_tsensor_reg(data, ((i << 16) | SENSOR_CFG2));
dump_a_tsensor_reg(data, ((i << 16) | SENSOR_STATUS0));
dump_a_tsensor_reg(data, ((i << 16) | SENSOR_TS_STATUS1));
dump_a_tsensor_reg(data, ((i << 16) | SENSOR_TS_STATUS2));
dump_a_tsensor_reg(data, ((i << 16) | 0x0));
dump_a_tsensor_reg(data, ((i << 16) | 0x44));
dump_a_tsensor_reg(data, ((i << 16) | 0x50));
dump_a_tsensor_reg(data, ((i << 16) | 0x54));
dump_a_tsensor_reg(data, ((i << 16) | 0x64));
dump_a_tsensor_reg(data, ((i << 16) | 0x68));
}
}
/*
* function to test if conversion of counter to temperature
* and vice-versa is working
*/
static int test_temperature_algo(struct tegra_tsensor_data *data)
{
unsigned int actual_counter;
unsigned int curr_avg;
unsigned int counter1, counter2;
int T1;
int err = 0;
bool result1, result2;
bool result = false;
/* read actual counter */
err = tsensor_read_counter(data, &curr_avg);
if (err < 0) {
pr_err("Error: tsensor0 counter read, err=%d\n", err);
goto endLabel;
}
actual_counter = ((curr_avg & 0xFFFF0000) >> 16);
dev_dbg(data->hwmon_dev, "counter read=0x%x\n", actual_counter);
/* calculate temperature */
err = tsensor_count_2_temp(data, actual_counter, &T1);
dev_dbg(data->hwmon_dev, "%s actual counter=0x%x, calculated "
"temperature=%d.%d\n", __func__,
actual_counter, get_temperature_int(T1),
get_temperature_fraction(T1));
if (err < 0) {
pr_err("Error: calculate temperature step\n");
goto endLabel;
}
/* calculate counter corresponding to read temperature */
tsensor_temp_2_count(data, get_temperature_round(T1),
&counter1, &counter2);
dev_dbg(data->hwmon_dev, "given temperature=%d, counter1=0x%x,"
" counter2=0x%x\n",
get_temperature_round(T1), counter1, counter2);
err = tsensor_count_2_temp(data, actual_counter, &T1);
dev_dbg(data->hwmon_dev, "%s 2nd time actual counter=0x%x, "
"calculated temperature=%d.%d\n", __func__,
actual_counter, get_temperature_int(T1),
get_temperature_fraction(T1));
if (err < 0) {
pr_err("Error: calculate temperature step\n");
goto endLabel;
}
/* compare counter calculated with actual original counter */
result1 = cmp_counter(data, actual_counter, counter1);
result2 = cmp_counter(data, actual_counter, counter2);
if (result1) {
dev_dbg(data->hwmon_dev, "counter1 matches: actual=%d,"
" calc=%d\n", actual_counter, counter1);
result = true;
}
if (result2) {
dev_dbg(data->hwmon_dev, "counter2 matches: actual=%d,"
" calc=%d\n", actual_counter, counter2);
result = true;
}
if (!result) {
pr_info("NO Match: actual=%d,"
" calc counter2=%d, counter1=%d\n", actual_counter,
counter2, counter1);
err = -EIO;
}
endLabel:
return err;
}
/* tsensor threshold temperature to threshold counter conversion function */
static unsigned int tsensor_get_threshold_counter(
struct tegra_tsensor_data *data,
int temp_threshold)
{
unsigned int counter1, counter2;
unsigned int counter;
if (temp_threshold < 0)
return MAX_THRESHOLD;
tsensor_temp_2_count(data, temp_threshold, &counter1, &counter2);
counter = counter2;
return counter;
}
/* tsensor temperature threshold setup function */
static void tsensor_threshold_setup(struct tegra_tsensor_data *data,
unsigned char index)
{
unsigned long config0;
unsigned char i = index;
unsigned int th2_count = DEFAULT_THRESHOLD_TH2;
unsigned int th3_count = DEFAULT_THRESHOLD_TH3;
unsigned int th1_count = DEFAULT_THRESHOLD_TH1;
int th0_diff = 0;
dev_dbg(data->hwmon_dev, "started tsensor_threshold_setup %d\n",
index);
config0 = tsensor_readl(data, ((i << 16) | SENSOR_CFG0));
dev_dbg(data->hwmon_dev, "before threshold program TH dump:\n");
dump_threshold(data);
dev_dbg(data->hwmon_dev, "th3=0x%x, th2=0x%x, th1=0x%x, th0=0x%x\n",
th3_count, th2_count, th1_count, th0_diff);
config0 = (((th2_count & SENSOR_CFG_X_TH_X_MASK)
<< SENSOR_CFG1_TH2_SHIFT) |
((th1_count & SENSOR_CFG_X_TH_X_MASK) <<
SENSOR_CFG1_TH1_SHIFT));
tsensor_writel(data, config0, ((i << 16) | SENSOR_CFG1));
config0 = (((th0_diff & SENSOR_CFG_X_TH_X_MASK)
<< SENSOR_CFG2_TH0_SHIFT) |
((th3_count & SENSOR_CFG_X_TH_X_MASK) <<
SENSOR_CFG2_TH3_SHIFT));
tsensor_writel(data, config0, ((i << 16) | SENSOR_CFG2));
dev_dbg(data->hwmon_dev, "after threshold program TH dump:\n");
dump_threshold(data);
}
/* tsensor config programming function */
static int tsensor_config_setup(struct tegra_tsensor_data *data)
{
unsigned int config0;
unsigned int i;
int err = 0;
for (i = 0; i < TSENSOR_COUNT; i++) {
/*
* Pre-read setup:
* Set M and N values
* Enable HW features HW_FREQ_DIV_EN, THERMAL_RST_EN
*/
config0 = tsensor_readl(data, ((i << 16) | SENSOR_CFG0));
config0 &= ~((SENSOR_CFG0_M_MASK << SENSOR_CFG0_M_SHIFT) |
(SENSOR_CFG0_N_MASK << SENSOR_CFG0_N_SHIFT) |
(1 << SENSOR_CFG0_OVERFLOW_INTR) |
(1 << SENSOR_CFG0_RST_INTR_SHIFT) |
(1 << SENSOR_CFG0_DVFS_INTR_SHIFT) |
(1 << SENSOR_CFG0_HW_DIV2_INTR_SHIFT) |
(1 << SENSOR_CFG0_RST_ENABLE_SHIFT) |
(1 << SENSOR_CFG0_HW_DIV2_ENABLE_SHIFT)
);
/* Set STOP bit */
/* Set M and N values */
/* Enable HW features HW_FREQ_DIV_EN, THERMAL_RST_EN */
config0 |= (
((DEFAULT_TSENSOR_M & SENSOR_CFG0_M_MASK) <<
SENSOR_CFG0_M_SHIFT) |
((DEFAULT_TSENSOR_N & SENSOR_CFG0_N_MASK) <<
SENSOR_CFG0_N_SHIFT) |
(1 << SENSOR_CFG0_OVERFLOW_INTR) |
(1 << SENSOR_CFG0_DVFS_INTR_SHIFT) |
(1 << SENSOR_CFG0_HW_DIV2_INTR_SHIFT) |
#if ENABLE_TSENSOR_HW_RESET
(1 << SENSOR_CFG0_RST_ENABLE_SHIFT) |
#endif
(1 << SENSOR_CFG0_STOP_SHIFT));
tsensor_writel(data, config0, ((i << 16) | SENSOR_CFG0));
tsensor_threshold_setup(data, i);
}
/* Disable sensor stop bit */
config0 = tsensor_readl(data, (data->instance << 16) | SENSOR_CFG0);
config0 &= ~(1 << SENSOR_CFG0_STOP_SHIFT);
tsensor_writel(data, config0, (data->instance << 16) | SENSOR_CFG0);
/* initialize tsensor chip coefficients */
get_chip_tsensor_coeff(data);
return err;
}
/* function to enable tsensor clock */
static int tsensor_clk_enable(
struct tegra_tsensor_data *data,
bool enable)
{
int err = 0;
unsigned long rate;
struct clk *clk_m;
if (enable) {
clk_enable(data->dev_clk);
rate = clk_get_rate(data->dev_clk);
clk_m = clk_get_sys(NULL, "clk_m");
if (clk_get_parent(data->dev_clk) != clk_m) {
err = clk_set_parent(data->dev_clk, clk_m);
if (err < 0)
goto fail;
}
rate = DEFAULT_TSENSOR_CLK_HZ;
if (rate != clk_get_rate(clk_m)) {
err = clk_set_rate(data->dev_clk, rate);
if (err < 0)
goto fail;
}
} else {
clk_disable(data->dev_clk);
clk_put(data->dev_clk);
}
fail:
return err;
}
/*
* function to set counter threshold corresponding to
* given temperature
*/
static void tsensor_set_limits(
struct tegra_tsensor_data *data,
int temp,
int threshold_index)
{
unsigned int th_count;
unsigned int config;
unsigned short sft, offset;
unsigned int th1_count;
th_count = tsensor_get_threshold_counter(data, temp);
dev_dbg(data->hwmon_dev, "%s : input temp=%d, counter=0x%x\n", __func__,
temp, th_count);
switch (threshold_index) {
case TSENSOR_TH0:
sft = 16;
offset = SENSOR_CFG2;
/* assumed TH1 set before TH0, else we program
* TH0 as TH1 which means hysteresis will be
* same as TH1. Also, caller expected to pass
* (TH1 - hysteresis) as temp argument for this case */
th1_count = tsensor_readl(data,
((data->instance << 16) |
SENSOR_CFG1));
th_count = (th1_count > th_count) ?
(th1_count - th_count) :
th1_count;
break;
case TSENSOR_TH1:
default:
sft = 0;
offset = SENSOR_CFG1;
break;
case TSENSOR_TH2:
sft = 16;
offset = SENSOR_CFG1;
break;
case TSENSOR_TH3:
sft = 0;
offset = SENSOR_CFG2;
break;
}
config = tsensor_readl(data, ((data->instance << 16) | offset));
dev_dbg(data->hwmon_dev, "%s: old config=0x%x, sft=%d, offset=0x%x\n",
__func__, config, sft, offset);
config &= ~(SENSOR_CFG_X_TH_X_MASK << sft);
config |= ((th_count & SENSOR_CFG_X_TH_X_MASK) << sft);
dev_dbg(data->hwmon_dev, "new config=0x%x\n", config);
tsensor_writel(data, config, ((data->instance << 16) | offset));
}
int tsensor_thermal_set_limits(struct tegra_tsensor_data *data,
long lo_limit_milli,
long hi_limit_milli)
{
long lo_limit = MILLICELSIUS_TO_CELSIUS(lo_limit_milli);
long hi_limit = MILLICELSIUS_TO_CELSIUS(hi_limit_milli);
int i, j, hi_limit_first;
if (lo_limit_milli == hi_limit_milli)
return -EINVAL;
mutex_lock(&data->mutex);
if (data->current_lo_limit == lo_limit_milli &&
data->current_hi_limit == hi_limit_milli) {
goto done;
}
/* If going up, change hi limit first. If going down, change lo
limit first */
hi_limit_first = hi_limit_milli > data->current_hi_limit;
for (i = 0; i < 2; i++) {
j = (i + hi_limit_first) % 2;
switch (j) {
case 0:
tsensor_set_limits(data, hi_limit, TSENSOR_TH2);
data->current_hi_limit = hi_limit_milli;
break;
case 1:
tsensor_set_limits(data, lo_limit, TSENSOR_TH1);
data->current_lo_limit = lo_limit_milli;
break;
}
}
done:
mutex_unlock(&data->mutex);
return 0;
}
int tsensor_thermal_set_alert(struct tegra_tsensor_data *data,
void (*alert_func)(void *),
void *alert_data)
{
mutex_lock(&data->mutex);
data->alert_data = alert_data;
data->alert_func = alert_func;
mutex_unlock(&data->mutex);
return 0;
}
int tsensor_thermal_set_shutdown_temp(struct tegra_tsensor_data *data,
long shutdown_temp_milli)
{
long shutdown_temp = MILLICELSIUS_TO_CELSIUS(shutdown_temp_milli);
tsensor_set_limits(data, shutdown_temp, TSENSOR_TH3);
return 0;
}
static int tsensor_within_limits(struct tegra_tsensor_data *data)
{
int ts_state = get_ts_state(data);
return (ts_state == TS_LEVEL1);
}
static void tsensor_work_func(struct work_struct *work)
{
struct tegra_tsensor_data *data = container_of(to_delayed_work(work),
struct tegra_tsensor_data, work);
if (!data->alert_func)
return;
if (!tsensor_within_limits(data)) {
data->alert_func(data->alert_data);
if (!tsensor_within_limits(data))
queue_delayed_work(data->workqueue, &data->work,
HZ * DEFAULT_TSENSOR_M /
DEFAULT_TSENSOR_CLK_HZ);
}
}
/*
* This function enables the tsensor using default configuration
* 1. We would need some configuration APIs to calibrate
* the tsensor counters to right temperature
* 2. hardware triggered divide cpu clock by 2 as well pmu reset is enabled
* implementation. No software actions are enabled at this point
*/
static int tegra_tsensor_setup(struct platform_device *pdev)
{
struct tegra_tsensor_data *data = platform_get_drvdata(pdev);
struct resource *r;
int err = 0;
struct tegra_tsensor_platform_data *tsensor_data;
unsigned int reg;
data->dev_clk = clk_get(&pdev->dev, NULL);
if ((!data->dev_clk) || ((int)data->dev_clk == -(ENOENT))) {
dev_err(&pdev->dev, "Couldn't get the clock\n");
err = PTR_ERR(data->dev_clk);
goto fail;
}
/* Enable tsensor clock */
err = tsensor_clk_enable(data, true);
if (err < 0)
goto err_irq;
/* Reset tsensor */
dev_dbg(&pdev->dev, "before tsensor reset %s\n", __func__);
tegra_periph_reset_assert(data->dev_clk);
udelay(100);
tegra_periph_reset_deassert(data->dev_clk);
udelay(100);
dev_dbg(&pdev->dev, "before tsensor chk pmc reset %s\n",
__func__);
/* Check for previous resets in pmc */
if (pmc_check_rst_sensor(data)) {
dev_err(data->hwmon_dev, "Warning: ***** Last PMC "
"Reset source: tsensor detected\n");
}
dev_dbg(&pdev->dev, "before tsensor pmc reset enable %s\n",
__func__);
/* Enable the sensor reset in PMC */
pmc_rst_enable(data, true);
dev_dbg(&pdev->dev, "before tsensor get platform data %s\n",
__func__);
dev_dbg(&pdev->dev, "tsensor platform_data=0x%x\n",
(unsigned int)pdev->dev.platform_data);
tsensor_data = pdev->dev.platform_data;
/* register interrupt */
r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!r) {
dev_err(&pdev->dev, "Failed to get IRQ\n");
err = -ENXIO;
goto err_irq;
}
data->irq = r->start;
err = request_irq(data->irq, tegra_tsensor_isr,
IRQF_DISABLED, pdev->name, data);
if (err < 0) {
dev_err(&pdev->dev, "Failed to register IRQ\n");
goto err_irq;
}
dev_dbg(&pdev->dev, "tsensor platform_data=0x%x\n",
(unsigned int)pdev->dev.platform_data);
dev_dbg(&pdev->dev, "before tsensor_config_setup\n");
err = tsensor_config_setup(data);
if (err) {
dev_err(&pdev->dev, "[%s,line=%d]: tsensor counters dead!\n",
__func__, __LINE__);
goto err_setup;
}
dev_dbg(&pdev->dev, "before tsensor_get_const_AB\n");
/* calculate constants needed for temperature conversion */
err = tsensor_get_const_AB(data);
if (err < 0) {
dev_err(&pdev->dev, "Failed to extract temperature\n"
"const\n");
goto err_setup;
}
/* test if counter-to-temperature and temperature-to-counter
* are matching */
err = test_temperature_algo(data);
if (err) {
dev_err(&pdev->dev, "Error: read temperature\n"
"algorithm broken\n");
goto err_setup;
}
print_temperature_2_counter_table(data);
/* EDP and throttling support using tsensor enabled
* based on fuse revision */
err = tegra_fuse_get_revision(®);
if (err)
goto err_setup;
data->is_edp_supported = (reg >= STABLE_TSENSOR_FUSE_REV);
if (data->is_edp_supported) {
data->workqueue = create_singlethread_workqueue("tsensor");
INIT_DELAYED_WORK(&data->work, tsensor_work_func);
}
return 0;
err_setup:
free_irq(data->irq, data);
err_irq:
tsensor_clk_enable(data, false);
fail:
dev_err(&pdev->dev, "%s error=%d returned\n", __func__, err);
return err;
}
static int __devinit tegra_tsensor_probe(struct platform_device *pdev)
{
struct tegra_tsensor_data *data;
struct resource *r;
int err;
unsigned int reg;
u8 i;
struct tegra_tsensor_platform_data *tsensor_data;
data = kzalloc(sizeof(struct tegra_tsensor_data), GFP_KERNEL);
if (!data) {
dev_err(&pdev->dev, "[%s,line=%d]: Failed to allocate "
"memory\n", __func__, __LINE__);
err = -ENOMEM;
goto exit;
}
mutex_init(&data->mutex);
platform_set_drvdata(pdev, data);
/* Register sysfs hooks */
for (i = 0; i < ARRAY_SIZE(tsensor_nodes); i++) {
err = device_create_file(&pdev->dev,
&tsensor_nodes[i].dev_attr);
if (err) {
dev_err(&pdev->dev, "device_create_file failed.\n");
goto err0;
}
}
data->hwmon_dev = hwmon_device_register(&pdev->dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto err1;
}
dev_set_drvdata(data->hwmon_dev, data);
spin_lock_init(&data->tsensor_lock);
/* map tsensor register space */
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (r == NULL) {
dev_err(&pdev->dev, "[%s,line=%d]: Failed to get io "
"resource\n", __func__, __LINE__);
err = -ENODEV;
goto err2;
}
if (!request_mem_region(r->start, (r->end - r->start) + 1,
dev_name(&pdev->dev))) {
dev_err(&pdev->dev, "[%s,line=%d]: Error mem busy\n",
__func__, __LINE__);
err = -EBUSY;
goto err2;
}
data->phys = r->start;
data->phys_end = r->end;
data->base = ioremap(r->start, r->end - r->start + 1);
if (!data->base) {
dev_err(&pdev->dev, "[%s, line=%d]: can't ioremap "
"tsensor iomem\n", __FILE__, __LINE__);
err = -ENOMEM;
goto err3;
}
/* map pmc rst_status register */
r = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (r == NULL) {
dev_err(&pdev->dev, "[%s,line=%d]: Failed to get io "
"resource\n", __func__, __LINE__);
err = -ENODEV;
goto err4;
}
if (!request_mem_region(r->start, (r->end - r->start) + 1,
dev_name(&pdev->dev))) {
dev_err(&pdev->dev, "[%s, line=%d]: Error mem busy\n",
__func__, __LINE__);
err = -EBUSY;
goto err4;
}
data->pmc_phys = r->start;
data->pmc_phys_end = r->end;
data->pmc_rst_base = ioremap(r->start, r->end - r->start + 1);
if (!data->pmc_rst_base) {
dev_err(&pdev->dev, "[%s, line=%d]: can't ioremap "
"pmc iomem\n", __FILE__, __LINE__);
err = -ENOMEM;
goto err5;
}
/* fuse revisions less than TSENSOR_FUSE_REV1
bypass tsensor driver init */
/* tsensor active instance decided based on fuse revision */
err = tegra_fuse_get_revision(®);
if (err)
goto err6;
/* check for higher revision done first */
/* instance 0 is used for fuse revision TSENSOR_FUSE_REV2 onwards */
if (reg >= TSENSOR_FUSE_REV2)
data->instance = TSENSOR_INSTANCE1;
/* instance 1 is used for fuse revision TSENSOR_FUSE_REV1 till
TSENSOR_FUSE_REV2 */
else if (reg >= TSENSOR_FUSE_REV1)
data->instance = TSENSOR_INSTANCE2;
pr_info("tsensor active instance=%d\n", data->instance);
/* tegra tsensor - setup and init */
err = tegra_tsensor_setup(pdev);
if (err)
goto err6;
dump_tsensor_regs(data);
dev_dbg(&pdev->dev, "end tegra_tsensor_probe\n");
tsensor_data = pdev->dev.platform_data;
if (tsensor_data->probe_callback)
tsensor_data->probe_callback(data);
return 0;
err6:
iounmap(data->pmc_rst_base);
err5:
release_mem_region(data->pmc_phys, (data->pmc_phys_end -
data->pmc_phys) + 1);
err4:
iounmap(data->base);
err3:
release_mem_region(data->phys, (data->phys_end -
data->phys) + 1);
err2:
hwmon_device_unregister(data->hwmon_dev);
err1:
for (i = 0; i < ARRAY_SIZE(tsensor_nodes); i++)
device_remove_file(&pdev->dev, &tsensor_nodes[i].dev_attr);
err0:
kfree(data);
exit:
dev_err(&pdev->dev, "%s error=%d returned\n", __func__, err);
return err;
}
static int __devexit tegra_tsensor_remove(struct platform_device *pdev)
{
struct tegra_tsensor_data *data = platform_get_drvdata(pdev);
u8 i;
hwmon_device_unregister(data->hwmon_dev);
for (i = 0; i < ARRAY_SIZE(tsensor_nodes); i++)
device_remove_file(&pdev->dev, &tsensor_nodes[i].dev_attr);
if (data->is_edp_supported) {
cancel_delayed_work_sync(&data->work);
destroy_workqueue(data->workqueue);
data->workqueue = NULL;
}
free_irq(data->irq, data);
iounmap(data->pmc_rst_base);
release_mem_region(data->pmc_phys, (data->pmc_phys_end -
data->pmc_phys) + 1);
iounmap(data->base);
release_mem_region(data->phys, (data->phys_end -
data->phys) + 1);
kfree(data);
return 0;
}
static void save_tsensor_regs(struct tegra_tsensor_data *data)
{
int i;
for (i = 0; i < TSENSOR_COUNT; i++) {
data->config0[i] = tsensor_readl(data,
((i << 16) | SENSOR_CFG0));
data->config1[i] = tsensor_readl(data,
((i << 16) | SENSOR_CFG1));
data->config2[i] = tsensor_readl(data,
((i << 16) | SENSOR_CFG2));
}
}
static void restore_tsensor_regs(struct tegra_tsensor_data *data)
{
int i;
for (i = 0; i < TSENSOR_COUNT; i++) {
tsensor_writel(data, data->config0[i],
((i << 16) | SENSOR_CFG0));
tsensor_writel(data, data->config1[i],
((i << 16) | SENSOR_CFG1));
tsensor_writel(data, data->config2[i],
((i << 16) | SENSOR_CFG2));
}
}
#ifdef CONFIG_PM
static int tsensor_suspend(struct platform_device *pdev,
pm_message_t state)
{
struct tegra_tsensor_data *data = platform_get_drvdata(pdev);
unsigned int config0;
/* set STOP bit, else OVERFLOW interrupt seen in LP1 */
config0 = tsensor_readl(data, ((data->instance << 16) | SENSOR_CFG0));
config0 |= (1 << SENSOR_CFG0_STOP_SHIFT);
tsensor_writel(data, config0, ((data->instance << 16) | SENSOR_CFG0));
/* save current settings before suspend, when STOP bit is set */
save_tsensor_regs(data);
tsensor_clk_enable(data, false);
return 0;
}
static int tsensor_resume(struct platform_device *pdev)
{
struct tegra_tsensor_data *data = platform_get_drvdata(pdev);
unsigned int config0;
tsensor_clk_enable(data, true);
/* restore current settings before suspend, no need
* to clear STOP bit */
restore_tsensor_regs(data);
/* clear STOP bit, after restoring regs */
config0 = tsensor_readl(data, ((data->instance << 16) | SENSOR_CFG0));
config0 &= ~(1 << SENSOR_CFG0_STOP_SHIFT);
tsensor_writel(data, config0, ((data->instance << 16) | SENSOR_CFG0));
if (data->is_edp_supported)
schedule_delayed_work(&data->work, 0);
return 0;
}
#endif
static struct platform_driver tegra_tsensor_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "tegra-tsensor",
},
.probe = tegra_tsensor_probe,
.remove = __devexit_p(tegra_tsensor_remove),
#ifdef CONFIG_PM
.suspend = tsensor_suspend,
.resume = tsensor_resume,
#endif
};
static int __init tegra_tsensor_init(void)
{
return platform_driver_register(&tegra_tsensor_driver);
}
module_init(tegra_tsensor_init);
static void __exit tegra_tsensor_exit(void)
{
platform_driver_unregister(&tegra_tsensor_driver);
}
module_exit(tegra_tsensor_exit);
MODULE_AUTHOR("nvidia");
MODULE_DESCRIPTION("Nvidia Tegra Temperature Sensor driver");
MODULE_LICENSE("GPL");
|