summaryrefslogtreecommitdiff
path: root/drivers/ieee1394/amdtp.c
blob: 75897509c4017c3a2f8175b79181cfae4c87bab8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
/* -*- c-basic-offset: 8 -*-
 *
 * amdtp.c - Audio and Music Data Transmission Protocol Driver
 * Copyright (C) 2001 Kristian Høgsberg
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/* OVERVIEW
 * --------
 *
 * The AMDTP driver is designed to expose the IEEE1394 bus as a
 * regular OSS soundcard, i.e. you can link /dev/dsp to /dev/amdtp and
 * then your favourite MP3 player, game or whatever sound program will
 * output to an IEEE1394 isochronous channel.  The signal destination
 * could be a set of IEEE1394 loudspeakers (if and when such things
 * become available) or an amplifier with IEEE1394 input (like the
 * Sony STR-LSA1).  The driver only handles the actual streaming, some
 * connection management is also required for this to actually work.
 * That is outside the scope of this driver, and furthermore it is not
 * really standardized yet.
 *
 * The Audio and Music Data Tranmission Protocol is available at
 *
 *     http://www.1394ta.org/Download/Technology/Specifications/2001/AM20Final-jf2.pdf
 *
 *
 * TODO
 * ----
 *
 * - We should be able to change input sample format between LE/BE, as
 *   we already shift the bytes around when we construct the iso
 *   packets.
 *
 * - Fix DMA stop after bus reset!
 *
 * - Clean up iso context handling in ohci1394.
 *
 *
 * MAYBE TODO
 * ----------
 *
 * - Receive data for local playback or recording.  Playback requires
 *   soft syncing with the sound card.
 *
 * - Signal processing, i.e. receive packets, do some processing, and
 *   transmit them again using the same packet structure and timestamps
 *   offset by processing time.
 *
 * - Maybe make an ALSA interface, that is, create a file_ops
 *   implementation that recognizes ALSA ioctls and uses defaults for
 *   things that can't be controlled through ALSA (iso channel).
 *
 *   Changes:
 *
 * - Audit copy_from_user in amdtp_write.
 *                           Daniele Bellucci <bellucda@tiscali.it>
 *
 */

#include <linux/module.h>
#include <linux/list.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/wait.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/poll.h>
#include <linux/ioctl32.h>
#include <linux/compat.h>
#include <linux/cdev.h>
#include <asm/uaccess.h>
#include <asm/atomic.h>

#include "hosts.h"
#include "highlevel.h"
#include "ieee1394.h"
#include "ieee1394_core.h"
#include "ohci1394.h"

#include "amdtp.h"
#include "cmp.h"

#define FMT_AMDTP 0x10
#define FDF_AM824 0x00
#define FDF_SFC_32KHZ   0x00
#define FDF_SFC_44K1HZ  0x01
#define FDF_SFC_48KHZ   0x02
#define FDF_SFC_88K2HZ  0x03
#define FDF_SFC_96KHZ   0x04
#define FDF_SFC_176K4HZ 0x05
#define FDF_SFC_192KHZ  0x06

struct descriptor_block {
	struct output_more_immediate {
		u32 control;
		u32 pad0;
		u32 skip;
		u32 pad1;
		u32 header[4];
	} header_desc;

	struct output_last {
		u32 control;
		u32 data_address;
		u32 branch;
		u32 status;
	} payload_desc;
};

struct packet {
	struct descriptor_block *db;
	dma_addr_t db_bus;
	struct iso_packet *payload;
	dma_addr_t payload_bus;
};

#include <asm/byteorder.h>

#if defined __BIG_ENDIAN_BITFIELD

struct iso_packet {
	/* First quadlet */
	unsigned int dbs      : 8;
	unsigned int eoh0     : 2;
	unsigned int sid      : 6;

	unsigned int dbc      : 8;
	unsigned int fn       : 2;
	unsigned int qpc      : 3;
	unsigned int sph      : 1;
	unsigned int reserved : 2;

	/* Second quadlet */
	unsigned int fdf      : 8;
	unsigned int eoh1     : 2;
	unsigned int fmt      : 6;

	unsigned int syt      : 16;

        quadlet_t data[0];
};

#elif defined __LITTLE_ENDIAN_BITFIELD

struct iso_packet {
	/* First quadlet */
	unsigned int sid      : 6;
	unsigned int eoh0     : 2;
	unsigned int dbs      : 8;

	unsigned int reserved : 2;
	unsigned int sph      : 1;
	unsigned int qpc      : 3;
	unsigned int fn       : 2;
	unsigned int dbc      : 8;

	/* Second quadlet */
	unsigned int fmt      : 6;
	unsigned int eoh1     : 2;
	unsigned int fdf      : 8;

	unsigned int syt      : 16;

	quadlet_t data[0];
};

#else

#error Unknown bitfield type

#endif

struct fraction {
	int integer;
	int numerator;
	int denominator;
};

#define PACKET_LIST_SIZE 256
#define MAX_PACKET_LISTS 4

struct packet_list {
	struct list_head link;
	int last_cycle_count;
	struct packet packets[PACKET_LIST_SIZE];
};

#define BUFFER_SIZE 128

/* This implements a circular buffer for incoming samples. */

struct buffer {
	size_t head, tail, length, size;
	unsigned char data[0];
};

struct stream {
	int iso_channel;
	int format;
	int rate;
	int dimension;
	int fdf;
	int mode;
	int sample_format;
	struct cmp_pcr *opcr;

	/* Input samples are copied here. */
	struct buffer *input;

	/* ISO Packer state */
	unsigned char dbc;
	struct packet_list *current_packet_list;
	int current_packet;
	struct fraction ready_samples, samples_per_cycle;

	/* We use these to generate control bits when we are packing
	 * iec958 data.
	 */
	int iec958_frame_count;
	int iec958_rate_code;

	/* The cycle_count and cycle_offset fields are used for the
	 * synchronization timestamps (syt) in the cip header.  They
	 * are incremented by at least a cycle every time we put a
	 * time stamp in a packet.  As we don't time stamp all
	 * packages, cycle_count isn't updated in every cycle, and
	 * sometimes it's incremented by 2.  Thus, we have
	 * cycle_count2, which is simply incremented by one with each
	 * packet, so we can compare it to the transmission time
	 * written back in the dma programs.
	 */
	atomic_t cycle_count, cycle_count2;
	struct fraction cycle_offset, ticks_per_syt_offset;
	int syt_interval;
	int stale_count;

	/* Theses fields control the sample output to the DMA engine.
	 * The dma_packet_lists list holds packet lists currently
	 * queued for dma; the head of the list is currently being
	 * processed.  The last program in a packet list generates an
	 * interrupt, which removes the head from dma_packet_lists and
	 * puts it back on the free list.
	 */
	struct list_head dma_packet_lists;
	struct list_head free_packet_lists;
        wait_queue_head_t packet_list_wait;
	spinlock_t packet_list_lock;
	struct ohci1394_iso_tasklet iso_tasklet;
	struct pci_pool *descriptor_pool, *packet_pool;

	/* Streams at a host controller are chained through this field. */
	struct list_head link;
	struct amdtp_host *host;
};

struct amdtp_host {
	struct hpsb_host *host;
	struct ti_ohci *ohci;
	struct list_head stream_list;
	spinlock_t stream_list_lock;
};

static struct hpsb_highlevel amdtp_highlevel;


/* FIXME: This doesn't belong here... */

#define OHCI1394_CONTEXT_CYCLE_MATCH 0x80000000
#define OHCI1394_CONTEXT_RUN         0x00008000
#define OHCI1394_CONTEXT_WAKE        0x00001000
#define OHCI1394_CONTEXT_DEAD        0x00000800
#define OHCI1394_CONTEXT_ACTIVE      0x00000400

static void ohci1394_start_it_ctx(struct ti_ohci *ohci, int ctx,
			   dma_addr_t first_cmd, int z, int cycle_match)
{
	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << ctx);
	reg_write(ohci, OHCI1394_IsoXmitCommandPtr + ctx * 16, first_cmd | z);
	reg_write(ohci, OHCI1394_IsoXmitContextControlClear + ctx * 16, ~0);
	wmb();
	reg_write(ohci, OHCI1394_IsoXmitContextControlSet + ctx * 16,
		  OHCI1394_CONTEXT_CYCLE_MATCH | (cycle_match << 16) |
		  OHCI1394_CONTEXT_RUN);
}

static void ohci1394_wake_it_ctx(struct ti_ohci *ohci, int ctx)
{
	reg_write(ohci, OHCI1394_IsoXmitContextControlSet + ctx * 16,
		  OHCI1394_CONTEXT_WAKE);
}

static void ohci1394_stop_it_ctx(struct ti_ohci *ohci, int ctx, int synchronous)
{
	u32 control;
	int wait;

	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << ctx);
	reg_write(ohci, OHCI1394_IsoXmitContextControlClear + ctx * 16,
		  OHCI1394_CONTEXT_RUN);
	wmb();

	if (synchronous) {
		for (wait = 0; wait < 5; wait++) {
			control = reg_read(ohci, OHCI1394_IsoXmitContextControlSet + ctx * 16);
			if ((control & OHCI1394_CONTEXT_ACTIVE) == 0)
				break;

			schedule_timeout_interruptible(1);
		}
	}
}

/* Note: we can test if free_packet_lists is empty without aquiring
 * the packet_list_lock.  The interrupt handler only adds to the free
 * list, there is no race condition between testing the list non-empty
 * and acquiring the lock.
 */

static struct packet_list *stream_get_free_packet_list(struct stream *s)
{
	struct packet_list *pl;
	unsigned long flags;

	if (list_empty(&s->free_packet_lists))
		return NULL;

	spin_lock_irqsave(&s->packet_list_lock, flags);
	pl = list_entry(s->free_packet_lists.next, struct packet_list, link);
	list_del(&pl->link);
	spin_unlock_irqrestore(&s->packet_list_lock, flags);

	return pl;
}

static void stream_start_dma(struct stream *s, struct packet_list *pl)
{
	u32 syt_cycle, cycle_count, start_cycle;

	cycle_count = reg_read(s->host->ohci,
			       OHCI1394_IsochronousCycleTimer) >> 12;
	syt_cycle = (pl->last_cycle_count - PACKET_LIST_SIZE + 1) & 0x0f;

	/* We program the DMA controller to start transmission at
	 * least 17 cycles from now - this happens when the lower four
	 * bits of cycle_count is 0x0f and syt_cycle is 0, in this
	 * case the start cycle is cycle_count - 15 + 32. */
	start_cycle = (cycle_count & ~0x0f) + 32 + syt_cycle;
	if ((start_cycle & 0x1fff) >= 8000)
		start_cycle = start_cycle - 8000 + 0x2000;

	ohci1394_start_it_ctx(s->host->ohci, s->iso_tasklet.context,
			      pl->packets[0].db_bus, 3,
			      start_cycle & 0x7fff);
}

static void stream_put_dma_packet_list(struct stream *s,
				       struct packet_list *pl)
{
	unsigned long flags;
	struct packet_list *prev;

	/* Remember the cycle_count used for timestamping the last packet. */
	pl->last_cycle_count = atomic_read(&s->cycle_count2) - 1;
	pl->packets[PACKET_LIST_SIZE - 1].db->payload_desc.branch = 0;

	spin_lock_irqsave(&s->packet_list_lock, flags);
	list_add_tail(&pl->link, &s->dma_packet_lists);
	spin_unlock_irqrestore(&s->packet_list_lock, flags);

	prev = list_entry(pl->link.prev, struct packet_list, link);
	if (pl->link.prev != &s->dma_packet_lists) {
		struct packet *last = &prev->packets[PACKET_LIST_SIZE - 1];
		last->db->payload_desc.branch = pl->packets[0].db_bus | 3;
		last->db->header_desc.skip = pl->packets[0].db_bus | 3;
		ohci1394_wake_it_ctx(s->host->ohci, s->iso_tasklet.context);
	}
	else
		stream_start_dma(s, pl);
}

static void stream_shift_packet_lists(unsigned long l)
{
	struct stream *s = (struct stream *) l;
	struct packet_list *pl;
	struct packet *last;
	int diff;

	if (list_empty(&s->dma_packet_lists)) {
		HPSB_ERR("empty dma_packet_lists in %s", __FUNCTION__);
		return;
	}

	/* Now that we know the list is non-empty, we can get the head
	 * of the list without locking, because the process context
	 * only adds to the tail.
	 */
	pl = list_entry(s->dma_packet_lists.next, struct packet_list, link);
	last = &pl->packets[PACKET_LIST_SIZE - 1];

	/* This is weird... if we stop dma processing in the middle of
	 * a packet list, the dma context immediately generates an
	 * interrupt if we enable it again later.  This only happens
	 * when amdtp_release is interrupted while waiting for dma to
	 * complete, though.  Anyway, we detect this by seeing that
	 * the status of the dma descriptor that we expected an
	 * interrupt from is still 0.
	 */
	if (last->db->payload_desc.status == 0) {
		HPSB_INFO("weird interrupt...");
		return;
	}

	/* If the last descriptor block does not specify a branch
	 * address, we have a sample underflow.
	 */
	if (last->db->payload_desc.branch == 0)
		HPSB_INFO("FIXME: sample underflow...");

	/* Here we check when (which cycle) the last packet was sent
	 * and compare it to what the iso packer was using at the
	 * time.  If there is a mismatch, we adjust the cycle count in
	 * the iso packer.  However, there are still up to
	 * MAX_PACKET_LISTS packet lists queued with bad time stamps,
	 * so we disable time stamp monitoring for the next
	 * MAX_PACKET_LISTS packet lists.
	 */
	diff = (last->db->payload_desc.status - pl->last_cycle_count) & 0xf;
	if (diff > 0 && s->stale_count == 0) {
		atomic_add(diff, &s->cycle_count);
		atomic_add(diff, &s->cycle_count2);
		s->stale_count = MAX_PACKET_LISTS;
	}

	if (s->stale_count > 0)
		s->stale_count--;

	/* Finally, we move the packet list that was just processed
	 * back to the free list, and notify any waiters.
	 */
	spin_lock(&s->packet_list_lock);
	list_del(&pl->link);
	list_add_tail(&pl->link, &s->free_packet_lists);
	spin_unlock(&s->packet_list_lock);

	wake_up_interruptible(&s->packet_list_wait);
}

static struct packet *stream_current_packet(struct stream *s)
{
	if (s->current_packet_list == NULL &&
	    (s->current_packet_list = stream_get_free_packet_list(s)) == NULL)
		return NULL;

	return &s->current_packet_list->packets[s->current_packet];
}

static void stream_queue_packet(struct stream *s)
{
	s->current_packet++;
	if (s->current_packet == PACKET_LIST_SIZE) {
		stream_put_dma_packet_list(s, s->current_packet_list);
		s->current_packet_list = NULL;
		s->current_packet = 0;
	}
}

/* Integer fractional math.  When we transmit a 44k1Hz signal we must
 * send 5 41/80 samples per isochronous cycle, as these occur 8000
 * times a second.  Of course, we must send an integral number of
 * samples in a packet, so we use the integer math to alternate
 * between sending 5 and 6 samples per packet.
 */

static void fraction_init(struct fraction *f, int numerator, int denominator)
{
	f->integer = numerator / denominator;
	f->numerator = numerator % denominator;
	f->denominator = denominator;
}

static __inline__ void fraction_add(struct fraction *dst,
				    struct fraction *src1,
				    struct fraction *src2)
{
	/* assert: src1->denominator == src2->denominator */

	int sum, denom;

	/* We use these two local variables to allow gcc to optimize
	 * the division and the modulo into only one division. */

	sum = src1->numerator + src2->numerator;
	denom = src1->denominator;
	dst->integer = src1->integer + src2->integer + sum / denom;
	dst->numerator = sum % denom;
	dst->denominator = denom;
}

static __inline__ void fraction_sub_int(struct fraction *dst,
					struct fraction *src, int integer)
{
	dst->integer = src->integer - integer;
	dst->numerator = src->numerator;
	dst->denominator = src->denominator;
}

static __inline__ int fraction_floor(struct fraction *frac)
{
	return frac->integer;
}

static __inline__ int fraction_ceil(struct fraction *frac)
{
	return frac->integer + (frac->numerator > 0 ? 1 : 0);
}

static void packet_initialize(struct packet *p, struct packet *next)
{
	/* Here we initialize the dma descriptor block for
	 * transferring one iso packet.  We use two descriptors per
	 * packet: an OUTPUT_MORE_IMMMEDIATE descriptor for the
	 * IEEE1394 iso packet header and an OUTPUT_LAST descriptor
	 * for the payload.
	 */

	p->db->header_desc.control =
		DMA_CTL_OUTPUT_MORE | DMA_CTL_IMMEDIATE | 8;

	if (next) {
		p->db->payload_desc.control =
			DMA_CTL_OUTPUT_LAST | DMA_CTL_BRANCH;
		p->db->payload_desc.branch = next->db_bus | 3;
		p->db->header_desc.skip = next->db_bus | 3;
	}
	else {
		p->db->payload_desc.control =
			DMA_CTL_OUTPUT_LAST | DMA_CTL_BRANCH |
			DMA_CTL_UPDATE | DMA_CTL_IRQ;
		p->db->payload_desc.branch = 0;
		p->db->header_desc.skip = 0;
	}
	p->db->payload_desc.data_address = p->payload_bus;
	p->db->payload_desc.status = 0;
}

static struct packet_list *packet_list_alloc(struct stream *s)
{
	int i;
	struct packet_list *pl;
	struct packet *next;

	pl = kmalloc(sizeof *pl, SLAB_KERNEL);
	if (pl == NULL)
		return NULL;

	for (i = 0; i < PACKET_LIST_SIZE; i++) {
		struct packet *p = &pl->packets[i];
		p->db = pci_pool_alloc(s->descriptor_pool, SLAB_KERNEL,
				       &p->db_bus);
		p->payload = pci_pool_alloc(s->packet_pool, SLAB_KERNEL,
					    &p->payload_bus);
	}

	for (i = 0; i < PACKET_LIST_SIZE; i++) {
		if (i < PACKET_LIST_SIZE - 1)
			next = &pl->packets[i + 1];
		else
			next = NULL;
		packet_initialize(&pl->packets[i], next);
	}

	return pl;
}

static void packet_list_free(struct packet_list *pl, struct stream *s)
{
	int i;

	for (i = 0; i < PACKET_LIST_SIZE; i++) {
		struct packet *p = &pl->packets[i];
		pci_pool_free(s->descriptor_pool, p->db, p->db_bus);
		pci_pool_free(s->packet_pool, p->payload, p->payload_bus);
	}
	kfree(pl);
}

static struct buffer *buffer_alloc(int size)
{
	struct buffer *b;

	b = kmalloc(sizeof *b + size, SLAB_KERNEL);
	if (b == NULL)
		return NULL;
	b->head = 0;
	b->tail = 0;
	b->length = 0;
	b->size = size;

	return b;
}

static unsigned char *buffer_get_bytes(struct buffer *buffer, int size)
{
	unsigned char *p;

	if (buffer->head + size > buffer->size)
		BUG();

	p = &buffer->data[buffer->head];
	buffer->head += size;
	if (buffer->head == buffer->size)
		buffer->head = 0;
	buffer->length -= size;

	return p;
}

static unsigned char *buffer_put_bytes(struct buffer *buffer,
				       size_t max, size_t *actual)
{
	size_t length;
	unsigned char *p;

	p = &buffer->data[buffer->tail];
	length = min(buffer->size - buffer->length, max);
	if (buffer->tail + length < buffer->size) {
		*actual = length;
		buffer->tail += length;
	}
	else {
		*actual = buffer->size - buffer->tail;
		 buffer->tail = 0;
	}

	buffer->length += *actual;
	return p;
}

static u32 get_iec958_header_bits(struct stream *s, int sub_frame, u32 sample)
{
	int csi, parity, shift;
	int block_start;
	u32 bits;

	switch (s->iec958_frame_count) {
	case 1:
		csi = s->format == AMDTP_FORMAT_IEC958_AC3;
		break;
	case 2:
	case 9:
		csi = 1;
		break;
	case 24 ... 27:
		csi = (s->iec958_rate_code >> (27 - s->iec958_frame_count)) & 0x01;
		break;
	default:
		csi = 0;
		break;
	}

	block_start = (s->iec958_frame_count == 0 && sub_frame == 0);

	/* The parity bit is the xor of the sample bits and the
	 * channel status info bit. */
	for (shift = 16, parity = sample ^ csi; shift > 0; shift >>= 1)
		parity ^= (parity >> shift);

	bits =  (block_start << 5) |		/* Block start bit */
		((sub_frame == 0) << 4) |	/* Subframe bit */
		((parity & 1) << 3) |		/* Parity bit */
		(csi << 2);			/* Channel status info bit */

	return bits;
}

static u32 get_header_bits(struct stream *s, int sub_frame, u32 sample)
{
	switch (s->format) {
	case AMDTP_FORMAT_IEC958_PCM:
	case AMDTP_FORMAT_IEC958_AC3:
		return get_iec958_header_bits(s, sub_frame, sample);

	case AMDTP_FORMAT_RAW:
		return 0x40;

	default:
		return 0;
	}
}

static void fill_payload_le16(struct stream *s, quadlet_t *data, int nevents)
{
	quadlet_t *event, sample, bits;
	unsigned char *p;
	int i, j;

	for (i = 0, event = data; i < nevents; i++) {

		for (j = 0; j < s->dimension; j++) {
			p = buffer_get_bytes(s->input, 2);
			sample = (p[1] << 16) | (p[0] << 8);
			bits = get_header_bits(s, j, sample);
			event[j] = cpu_to_be32((bits << 24) | sample);
		}

		event += s->dimension;
		if (++s->iec958_frame_count == 192)
			s->iec958_frame_count = 0;
	}
}

static void fill_packet(struct stream *s, struct packet *packet, int nevents)
{
	int syt_index, syt, size;
	u32 control;

	size = (nevents * s->dimension + 2) * sizeof(quadlet_t);

	/* Update DMA descriptors */
	packet->db->payload_desc.status = 0;
	control = packet->db->payload_desc.control & 0xffff0000;
	packet->db->payload_desc.control = control | size;

	/* Fill IEEE1394 headers */
	packet->db->header_desc.header[0] =
		(IEEE1394_SPEED_100 << 16) | (0x01 << 14) |
		(s->iso_channel << 8) | (TCODE_ISO_DATA << 4);
	packet->db->header_desc.header[1] = size << 16;

	/* Calculate synchronization timestamp (syt). First we
	 * determine syt_index, that is, the index in the packet of
	 * the sample for which the timestamp is valid. */
	syt_index = (s->syt_interval - s->dbc) & (s->syt_interval - 1);
	if (syt_index < nevents) {
		syt = ((atomic_read(&s->cycle_count) << 12) |
		       s->cycle_offset.integer) & 0xffff;
		fraction_add(&s->cycle_offset,
			     &s->cycle_offset, &s->ticks_per_syt_offset);

		/* This next addition should be modulo 8000 (0x1f40),
		 * but we only use the lower 4 bits of cycle_count, so
		 * we don't need the modulo. */
		atomic_add(s->cycle_offset.integer / 3072, &s->cycle_count);
		s->cycle_offset.integer %= 3072;
	}
	else
		syt = 0xffff;

	atomic_inc(&s->cycle_count2);

	/* Fill cip header */
	packet->payload->eoh0 = 0;
	packet->payload->sid = s->host->host->node_id & 0x3f;
	packet->payload->dbs = s->dimension;
	packet->payload->fn = 0;
	packet->payload->qpc = 0;
	packet->payload->sph = 0;
	packet->payload->reserved = 0;
	packet->payload->dbc = s->dbc;
	packet->payload->eoh1 = 2;
	packet->payload->fmt = FMT_AMDTP;
	packet->payload->fdf = s->fdf;
	packet->payload->syt = cpu_to_be16(syt);

	switch (s->sample_format) {
	case AMDTP_INPUT_LE16:
		fill_payload_le16(s, packet->payload->data, nevents);
		break;
	}

	s->dbc += nevents;
}

static void stream_flush(struct stream *s)
{
	struct packet *p;
	int nevents;
	struct fraction next;

	/* The AMDTP specifies two transmission modes: blocking and
	 * non-blocking.  In blocking mode you always transfer
	 * syt_interval or zero samples, whereas in non-blocking mode
	 * you send as many samples as you have available at transfer
	 * time.
	 *
	 * The fraction samples_per_cycle specifies the number of
	 * samples that become available per cycle.  We add this to
	 * the fraction ready_samples, which specifies the number of
	 * leftover samples from the previous transmission.  The sum,
	 * stored in the fraction next, specifies the number of
	 * samples available for transmission, and from this we
	 * determine the number of samples to actually transmit.
	 */

	while (1) {
		fraction_add(&next, &s->ready_samples, &s->samples_per_cycle);
		if (s->mode == AMDTP_MODE_BLOCKING) {
			if (fraction_floor(&next) >= s->syt_interval)
				nevents = s->syt_interval;
			else
				nevents = 0;
		}
		else
			nevents = fraction_floor(&next);

		p = stream_current_packet(s);
		if (s->input->length < nevents * s->dimension * 2 || p == NULL)
			break;

		fill_packet(s, p, nevents);
		stream_queue_packet(s);

		/* Now that we have successfully queued the packet for
		 * transmission, we update the fraction ready_samples. */
		fraction_sub_int(&s->ready_samples, &next, nevents);
	}
}

static int stream_alloc_packet_lists(struct stream *s)
{
	int max_nevents, max_packet_size, i;

	if (s->mode == AMDTP_MODE_BLOCKING)
		max_nevents = s->syt_interval;
	else
		max_nevents = fraction_ceil(&s->samples_per_cycle);

	max_packet_size = max_nevents * s->dimension * 4 + 8;
	s->packet_pool = pci_pool_create("packet pool", s->host->ohci->dev,
					 max_packet_size, 0, 0);

	if (s->packet_pool == NULL)
		return -1;

	INIT_LIST_HEAD(&s->free_packet_lists);
	INIT_LIST_HEAD(&s->dma_packet_lists);
	for (i = 0; i < MAX_PACKET_LISTS; i++) {
		struct packet_list *pl = packet_list_alloc(s);
		if (pl == NULL)
			break;
		list_add_tail(&pl->link, &s->free_packet_lists);
	}

	return i < MAX_PACKET_LISTS ? -1 : 0;
}

static void stream_free_packet_lists(struct stream *s)
{
	struct packet_list *packet_l, *packet_l_next;

	if (s->current_packet_list != NULL)
		packet_list_free(s->current_packet_list, s);
	list_for_each_entry_safe(packet_l, packet_l_next, &s->dma_packet_lists, link)
		packet_list_free(packet_l, s);
	list_for_each_entry_safe(packet_l, packet_l_next, &s->free_packet_lists, link)
		packet_list_free(packet_l, s);
	if (s->packet_pool != NULL)
		pci_pool_destroy(s->packet_pool);

	s->current_packet_list = NULL;
	INIT_LIST_HEAD(&s->free_packet_lists);
	INIT_LIST_HEAD(&s->dma_packet_lists);
	s->packet_pool = NULL;
}

static void plug_update(struct cmp_pcr *plug, void *data)
{
	struct stream *s = data;

	HPSB_INFO("plug update: p2p_count=%d, channel=%d",
		  plug->p2p_count, plug->channel);
	s->iso_channel = plug->channel;
	if (plug->p2p_count > 0) {
		struct packet_list *pl;

		pl = list_entry(s->dma_packet_lists.next, struct packet_list, link);
		stream_start_dma(s, pl);
	}
	else {
		ohci1394_stop_it_ctx(s->host->ohci, s->iso_tasklet.context, 0);
	}
}

static int stream_configure(struct stream *s, int cmd, struct amdtp_ioctl *cfg)
{
	const int transfer_delay = 9000;

	if (cfg->format <= AMDTP_FORMAT_IEC958_AC3)
		s->format = cfg->format;
	else
		return -EINVAL;

	switch (cfg->rate) {
	case 32000:
		s->syt_interval = 8;
		s->fdf = FDF_SFC_32KHZ;
		s->iec958_rate_code = 0x0c;
		break;
	case 44100:
		s->syt_interval = 8;
		s->fdf = FDF_SFC_44K1HZ;
		s->iec958_rate_code = 0x00;
		break;
	case 48000:
		s->syt_interval = 8;
		s->fdf = FDF_SFC_48KHZ;
		s->iec958_rate_code = 0x04;
		break;
	case 88200:
		s->syt_interval = 16;
		s->fdf = FDF_SFC_88K2HZ;
		s->iec958_rate_code = 0x00;
		break;
	case 96000:
		s->syt_interval = 16;
		s->fdf = FDF_SFC_96KHZ;
		s->iec958_rate_code = 0x00;
		break;
	case 176400:
		s->syt_interval = 32;
		s->fdf = FDF_SFC_176K4HZ;
		s->iec958_rate_code = 0x00;
		break;
	case 192000:
		s->syt_interval = 32;
		s->fdf = FDF_SFC_192KHZ;
		s->iec958_rate_code = 0x00;
		break;

	default:
		return -EINVAL;
	}

	s->rate = cfg->rate;
	fraction_init(&s->samples_per_cycle, s->rate, 8000);
	fraction_init(&s->ready_samples, 0, 8000);

	/* The ticks_per_syt_offset is initialized to the number of
	 * ticks between syt_interval events.  The number of ticks per
	 * second is 24.576e6, so the number of ticks between
	 * syt_interval events is 24.576e6 * syt_interval / rate.
	 */
	fraction_init(&s->ticks_per_syt_offset,
		      24576000 * s->syt_interval, s->rate);
	fraction_init(&s->cycle_offset, (transfer_delay % 3072) * s->rate, s->rate);
	atomic_set(&s->cycle_count, transfer_delay / 3072);
	atomic_set(&s->cycle_count2, 0);

	s->mode = cfg->mode;
	s->sample_format = AMDTP_INPUT_LE16;

	/* When using the AM824 raw subformat we can stream signals of
	 * any dimension.  The IEC958 subformat, however, only
	 * supports 2 channels.
	 */
	if (s->format == AMDTP_FORMAT_RAW || cfg->dimension == 2)
		s->dimension = cfg->dimension;
	else
		return -EINVAL;

	if (s->opcr != NULL) {
		cmp_unregister_opcr(s->host->host, s->opcr);
		s->opcr = NULL;
	}

	switch(cmd) {
	case AMDTP_IOC_PLUG:
		s->opcr = cmp_register_opcr(s->host->host, cfg->u.plug,
					   /*payload*/ 12, plug_update, s);
		if (s->opcr == NULL)
			return -EINVAL;
		s->iso_channel = s->opcr->channel;
		break;

	case AMDTP_IOC_CHANNEL:
		if (cfg->u.channel >= 0 && cfg->u.channel < 64)
			s->iso_channel = cfg->u.channel;
		else
			return -EINVAL;
		break;
	}

	/* The ioctl settings were all valid, so we realloc the packet
	 * lists to make sure the packet size is big enough.
	 */
	if (s->packet_pool != NULL)
		stream_free_packet_lists(s);

	if (stream_alloc_packet_lists(s) < 0) {
		stream_free_packet_lists(s);
		return -ENOMEM;
	}

	return 0;
}

static struct stream *stream_alloc(struct amdtp_host *host)
{
	struct stream *s;
	unsigned long flags;

        s = kmalloc(sizeof(struct stream), SLAB_KERNEL);
        if (s == NULL)
                return NULL;

        memset(s, 0, sizeof(struct stream));
	s->host = host;

	s->input = buffer_alloc(BUFFER_SIZE);
	if (s->input == NULL) {
		kfree(s);
		return NULL;
	}

	s->descriptor_pool = pci_pool_create("descriptor pool", host->ohci->dev,
					     sizeof(struct descriptor_block),
					     16, 0);

	if (s->descriptor_pool == NULL) {
		kfree(s->input);
		kfree(s);
		return NULL;
	}

	INIT_LIST_HEAD(&s->free_packet_lists);
	INIT_LIST_HEAD(&s->dma_packet_lists);

        init_waitqueue_head(&s->packet_list_wait);
        spin_lock_init(&s->packet_list_lock);

	ohci1394_init_iso_tasklet(&s->iso_tasklet, OHCI_ISO_TRANSMIT,
				  stream_shift_packet_lists,
				  (unsigned long) s);

	if (ohci1394_register_iso_tasklet(host->ohci, &s->iso_tasklet) < 0) {
		pci_pool_destroy(s->descriptor_pool);
		kfree(s->input);
		kfree(s);
		return NULL;
	}

	spin_lock_irqsave(&host->stream_list_lock, flags);
	list_add_tail(&s->link, &host->stream_list);
	spin_unlock_irqrestore(&host->stream_list_lock, flags);

	return s;
}

static void stream_free(struct stream *s)
{
	unsigned long flags;

	/* Stop the DMA.  We wait for the dma packet list to become
	 * empty and let the dma controller run out of programs.  This
	 * seems to be more reliable than stopping it directly, since
	 * that sometimes generates an it transmit interrupt if we
	 * later re-enable the context.
	 */
	wait_event_interruptible(s->packet_list_wait,
				 list_empty(&s->dma_packet_lists));

	ohci1394_stop_it_ctx(s->host->ohci, s->iso_tasklet.context, 1);
	ohci1394_unregister_iso_tasklet(s->host->ohci, &s->iso_tasklet);

	if (s->opcr != NULL)
		cmp_unregister_opcr(s->host->host, s->opcr);

	spin_lock_irqsave(&s->host->stream_list_lock, flags);
	list_del(&s->link);
	spin_unlock_irqrestore(&s->host->stream_list_lock, flags);

	kfree(s->input);

	stream_free_packet_lists(s);
	pci_pool_destroy(s->descriptor_pool);

	kfree(s);
}

/* File operations */

static ssize_t amdtp_write(struct file *file, const char __user *buffer, size_t count,
			   loff_t *offset_is_ignored)
{
	struct stream *s = file->private_data;
	unsigned char *p;
	int i;
	size_t length;

	if (s->packet_pool == NULL)
		return -EBADFD;

	/* Fill the circular buffer from the input buffer and call the
	 * iso packer when the buffer is full.  The iso packer may
	 * leave bytes in the buffer for two reasons: either the
	 * remaining bytes wasn't enough to build a new packet, or
	 * there were no free packet lists.  In the first case we
	 * re-fill the buffer and call the iso packer again or return
	 * if we used all the data from userspace.  In the second
	 * case, the wait_event_interruptible will block until the irq
	 * handler frees a packet list.
	 */

	for (i = 0; i < count; i += length) {
		p = buffer_put_bytes(s->input, count - i, &length);
		if (copy_from_user(p, buffer + i, length))
			return -EFAULT;
		if (s->input->length < s->input->size)
			continue;

		stream_flush(s);

		if (s->current_packet_list != NULL)
			continue;

		if (file->f_flags & O_NONBLOCK)
			return i + length > 0 ? i + length : -EAGAIN;

		if (wait_event_interruptible(s->packet_list_wait,
					     !list_empty(&s->free_packet_lists)))
			return -EINTR;
	}

	return count;
}

static long amdtp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct stream *s = file->private_data;
	struct amdtp_ioctl cfg;
	int err;
	lock_kernel();
	switch(cmd)
	{
	case AMDTP_IOC_PLUG:
	case AMDTP_IOC_CHANNEL:
		if (copy_from_user(&cfg, (struct amdtp_ioctl __user *) arg, sizeof cfg))
			err = -EFAULT;
		else
			err = stream_configure(s, cmd, &cfg);
		break;

	default:
		err = -EINVAL;
		break;
	}
	unlock_kernel();
	return err;
}

static unsigned int amdtp_poll(struct file *file, poll_table *pt)
{
	struct stream *s = file->private_data;

	poll_wait(file, &s->packet_list_wait, pt);

	if (!list_empty(&s->free_packet_lists))
		return POLLOUT | POLLWRNORM;
	else
		return 0;
}

static int amdtp_open(struct inode *inode, struct file *file)
{
	struct amdtp_host *host;
	int i = ieee1394_file_to_instance(file);

	host = hpsb_get_hostinfo_bykey(&amdtp_highlevel, i);
	if (host == NULL)
		return -ENODEV;

	file->private_data = stream_alloc(host);
	if (file->private_data == NULL)
		return -ENOMEM;

	return 0;
}

static int amdtp_release(struct inode *inode, struct file *file)
{
	struct stream *s = file->private_data;

	stream_free(s);

	return 0;
}

static struct cdev amdtp_cdev;
static struct file_operations amdtp_fops =
{
	.owner =	THIS_MODULE,
	.write =	amdtp_write,
	.poll =		amdtp_poll,
	.unlocked_ioctl = amdtp_ioctl,
	.compat_ioctl = amdtp_ioctl, /* All amdtp ioctls are compatible */
	.open =		amdtp_open,
	.release =	amdtp_release
};

/* IEEE1394 Subsystem functions */

static void amdtp_add_host(struct hpsb_host *host)
{
	struct amdtp_host *ah;
	int minor;

	if (strcmp(host->driver->name, OHCI1394_DRIVER_NAME) != 0)
		return;

	ah = hpsb_create_hostinfo(&amdtp_highlevel, host, sizeof(*ah));
	if (!ah) {
		HPSB_ERR("amdtp: Unable able to alloc hostinfo");
		return;
	}

	ah->host = host;
	ah->ohci = host->hostdata;

	hpsb_set_hostinfo_key(&amdtp_highlevel, host, ah->host->id);

	minor = IEEE1394_MINOR_BLOCK_AMDTP * 16 + ah->host->id;

	INIT_LIST_HEAD(&ah->stream_list);
	spin_lock_init(&ah->stream_list_lock);

	devfs_mk_cdev(MKDEV(IEEE1394_MAJOR, minor),
			S_IFCHR|S_IRUSR|S_IWUSR, "amdtp/%d", ah->host->id);
}

static void amdtp_remove_host(struct hpsb_host *host)
{
	struct amdtp_host *ah = hpsb_get_hostinfo(&amdtp_highlevel, host);

	if (ah)
		devfs_remove("amdtp/%d", ah->host->id);

	return;
}

static struct hpsb_highlevel amdtp_highlevel = {
	.name =		"amdtp",
	.add_host =	amdtp_add_host,
	.remove_host =	amdtp_remove_host,
};

/* Module interface */

MODULE_AUTHOR("Kristian Hogsberg <hogsberg@users.sf.net>");
MODULE_DESCRIPTION("Driver for Audio & Music Data Transmission Protocol "
		   "on OHCI boards.");
MODULE_SUPPORTED_DEVICE("amdtp");
MODULE_LICENSE("GPL");

static int __init amdtp_init_module (void)
{
	cdev_init(&amdtp_cdev, &amdtp_fops);
	amdtp_cdev.owner = THIS_MODULE;
	kobject_set_name(&amdtp_cdev.kobj, "amdtp");
	if (cdev_add(&amdtp_cdev, IEEE1394_AMDTP_DEV, 16)) {
		HPSB_ERR("amdtp: unable to add char device");
 		return -EIO;
 	}

	devfs_mk_dir("amdtp");

	hpsb_register_highlevel(&amdtp_highlevel);

	HPSB_INFO("Loaded AMDTP driver");

	return 0;
}

static void __exit amdtp_exit_module (void)
{
        hpsb_unregister_highlevel(&amdtp_highlevel);
	devfs_remove("amdtp");
	cdev_del(&amdtp_cdev);

	HPSB_INFO("Unloaded AMDTP driver");
}

module_init(amdtp_init_module);
module_exit(amdtp_exit_module);