1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
|
/*
* drivers/misc/tegra-profiler/hrt.c
*
* Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/sched.h>
#include <linux/hrtimer.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/ptrace.h>
#include <linux/interrupt.h>
#include <linux/err.h>
#include <linux/nsproxy.h>
#include <clocksource/arm_arch_timer.h>
#include <asm/cputype.h>
#include <asm/irq_regs.h>
#include <asm/arch_timer.h>
#include <linux/tegra_profiler.h>
#include "quadd.h"
#include "hrt.h"
#include "comm.h"
#include "mmap.h"
#include "ma.h"
#include "power_clk.h"
#include "tegra.h"
#include "debug.h"
static struct quadd_hrt_ctx hrt;
static void
read_all_sources(struct pt_regs *regs, struct task_struct *task);
struct hrt_event_value {
int event_id;
u32 value;
};
static enum hrtimer_restart hrtimer_handler(struct hrtimer *hrtimer)
{
struct pt_regs *regs;
regs = get_irq_regs();
if (!hrt.active)
return HRTIMER_NORESTART;
qm_debug_handler_sample(regs);
if (regs)
read_all_sources(regs, NULL);
hrtimer_forward_now(hrtimer, ns_to_ktime(hrt.sample_period));
qm_debug_timer_forward(regs, hrt.sample_period);
return HRTIMER_RESTART;
}
static void start_hrtimer(struct quadd_cpu_context *cpu_ctx)
{
u64 period = hrt.sample_period;
__hrtimer_start_range_ns(&cpu_ctx->hrtimer,
ns_to_ktime(period), 0,
HRTIMER_MODE_REL_PINNED, 0);
qm_debug_timer_start(NULL, period);
}
static void cancel_hrtimer(struct quadd_cpu_context *cpu_ctx)
{
hrtimer_cancel(&cpu_ctx->hrtimer);
qm_debug_timer_cancel();
}
static void init_hrtimer(struct quadd_cpu_context *cpu_ctx)
{
hrtimer_init(&cpu_ctx->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
cpu_ctx->hrtimer.function = hrtimer_handler;
}
static inline u64 get_posix_clock_monotonic_time(void)
{
struct timespec ts;
do_posix_clock_monotonic_gettime(&ts);
return timespec_to_ns(&ts);
}
static inline u64 get_arch_time(struct timecounter *tc)
{
cycle_t value;
const struct cyclecounter *cc = tc->cc;
value = cc->read(cc);
return cyclecounter_cyc2ns(cc, value);
}
u64 quadd_get_time(void)
{
struct timecounter *tc = hrt.tc;
return (tc && hrt.use_arch_timer) ?
get_arch_time(tc) :
get_posix_clock_monotonic_time();
}
static void
__put_sample(struct quadd_record_data *data,
struct quadd_iovec *vec,
int vec_count, int cpu_id)
{
ssize_t err;
struct quadd_comm_data_interface *comm = hrt.quadd_ctx->comm;
err = comm->put_sample(data, vec, vec_count, cpu_id);
if (err < 0)
atomic64_inc(&hrt.skipped_samples);
atomic64_inc(&hrt.counter_samples);
}
void
quadd_put_sample_this_cpu(struct quadd_record_data *data,
struct quadd_iovec *vec, int vec_count)
{
__put_sample(data, vec, vec_count, -1);
}
void
quadd_put_sample(struct quadd_record_data *data,
struct quadd_iovec *vec, int vec_count)
{
__put_sample(data, vec, vec_count, 0);
}
static void put_header(void)
{
int cpu_id;
int nr_events = 0, max_events = QUADD_MAX_COUNTERS;
int events[QUADD_MAX_COUNTERS];
struct quadd_record_data record;
struct quadd_header_data *hdr = &record.hdr;
struct quadd_parameters *param = &hrt.quadd_ctx->param;
unsigned int extra = param->reserved[QUADD_PARAM_IDX_EXTRA];
struct quadd_iovec vec;
struct quadd_ctx *ctx = hrt.quadd_ctx;
struct quadd_event_source_interface *pmu = ctx->pmu;
struct quadd_event_source_interface *pl310 = ctx->pl310;
record.record_type = QUADD_RECORD_TYPE_HEADER;
hdr->magic = QUADD_HEADER_MAGIC;
hdr->version = QUADD_SAMPLES_VERSION;
hdr->backtrace = param->backtrace;
hdr->use_freq = param->use_freq;
hdr->system_wide = param->system_wide;
/* TODO: dynamically */
#ifdef QM_DEBUG_SAMPLES_ENABLE
hdr->debug_samples = 1;
#else
hdr->debug_samples = 0;
#endif
hdr->freq = param->freq;
hdr->ma_freq = param->ma_freq;
hdr->power_rate_freq = param->power_rate_freq;
hdr->power_rate = hdr->power_rate_freq > 0 ? 1 : 0;
hdr->get_mmap = (extra & QUADD_PARAM_EXTRA_GET_MMAP) ? 1 : 0;
hdr->reserved = 0;
hdr->extra_length = 0;
hdr->reserved |= hrt.unw_method << QUADD_HDR_UNW_METHOD_SHIFT;
if (hrt.use_arch_timer)
hdr->reserved |= QUADD_HDR_USE_ARCH_TIMER;
if (hrt.get_stack_offset)
hdr->reserved |= QUADD_HDR_STACK_OFFSET;
if (pmu)
nr_events += pmu->get_current_events(events, max_events);
if (pl310)
nr_events += pl310->get_current_events(events + nr_events,
max_events - nr_events);
hdr->nr_events = nr_events;
vec.base = events;
vec.len = nr_events * sizeof(events[0]);
for_each_possible_cpu(cpu_id)
__put_sample(&record, &vec, 1, cpu_id);
}
static void
put_sched_sample(struct task_struct *task, int is_sched_in)
{
unsigned int cpu, flags;
struct quadd_record_data record;
struct quadd_sched_data *s = &record.sched;
record.record_type = QUADD_RECORD_TYPE_SCHED;
cpu = quadd_get_processor_id(NULL, &flags);
s->cpu = cpu;
s->lp_mode = (flags & QUADD_CPUMODE_TEGRA_POWER_CLUSTER_LP) ? 1 : 0;
s->sched_in = is_sched_in ? 1 : 0;
s->time = quadd_get_time();
s->pid = task->pid;
s->reserved = 0;
s->data[0] = 0;
s->data[1] = 0;
quadd_put_sample_this_cpu(&record, NULL, 0);
}
static int get_sample_data(struct quadd_sample_data *sample,
struct pt_regs *regs,
struct task_struct *task)
{
unsigned int cpu, flags;
struct quadd_ctx *quadd_ctx = hrt.quadd_ctx;
cpu = quadd_get_processor_id(regs, &flags);
sample->cpu = cpu;
sample->lp_mode =
(flags & QUADD_CPUMODE_TEGRA_POWER_CLUSTER_LP) ? 1 : 0;
sample->thumb_mode = (flags & QUADD_CPUMODE_THUMB) ? 1 : 0;
sample->user_mode = user_mode(regs) ? 1 : 0;
/* For security reasons, hide IPs from the kernel space. */
if (!sample->user_mode && !quadd_ctx->collect_kernel_ips)
sample->ip = 0;
else
sample->ip = instruction_pointer(regs);
sample->time = quadd_get_time();
sample->reserved = 0;
sample->pid = task->pid;
sample->in_interrupt = in_interrupt() ? 1 : 0;
return 0;
}
static int read_source(struct quadd_event_source_interface *source,
struct pt_regs *regs,
struct hrt_event_value *events_vals,
int max_events)
{
int nr_events, i;
u32 prev_val, val, res_val;
struct event_data events[QUADD_MAX_COUNTERS];
if (!source)
return 0;
max_events = min_t(int, max_events, QUADD_MAX_COUNTERS);
nr_events = source->read(events, max_events);
for (i = 0; i < nr_events; i++) {
struct event_data *s = &events[i];
prev_val = s->prev_val;
val = s->val;
if (prev_val <= val)
res_val = val - prev_val;
else
res_val = QUADD_U32_MAX - prev_val + val;
if (s->event_source == QUADD_EVENT_SOURCE_PL310) {
int nr_active = atomic_read(&hrt.nr_active_all_core);
if (nr_active > 1)
res_val /= nr_active;
}
events_vals[i].event_id = s->event_id;
events_vals[i].value = res_val;
}
return nr_events;
}
static long
get_stack_offset(struct task_struct *task,
struct pt_regs *regs,
struct quadd_callchain *cc)
{
unsigned long sp;
struct vm_area_struct *vma;
struct mm_struct *mm = task->mm;
if (!regs || !mm)
return -ENOMEM;
sp = cc->nr > 0 ? cc->curr_sp :
quadd_user_stack_pointer(regs);
vma = find_vma(mm, sp);
if (!vma)
return -ENOMEM;
return vma->vm_end - sp;
}
static void
read_all_sources(struct pt_regs *regs, struct task_struct *task)
{
u32 state, extra_data = 0;
int i, vec_idx = 0, bt_size = 0;
int nr_events = 0, nr_positive_events = 0;
struct pt_regs *user_regs;
struct quadd_iovec vec[5];
struct hrt_event_value events[QUADD_MAX_COUNTERS];
u32 events_extra[QUADD_MAX_COUNTERS];
struct quadd_record_data record_data;
struct quadd_sample_data *s = &record_data.sample;
struct quadd_ctx *ctx = hrt.quadd_ctx;
struct quadd_cpu_context *cpu_ctx = this_cpu_ptr(hrt.cpu_ctx);
struct quadd_callchain *cc = &cpu_ctx->cc;
if (!regs)
return;
if (atomic_read(&cpu_ctx->nr_active) == 0)
return;
if (!task)
task = current;
rcu_read_lock();
if (!task_nsproxy(task)) {
rcu_read_unlock();
return;
}
rcu_read_unlock();
if (ctx->pmu && ctx->pmu_info.active)
nr_events += read_source(ctx->pmu, regs,
events, QUADD_MAX_COUNTERS);
if (ctx->pl310 && ctx->pl310_info.active)
nr_events += read_source(ctx->pl310, regs,
events + nr_events,
QUADD_MAX_COUNTERS - nr_events);
if (!nr_events)
return;
if (user_mode(regs))
user_regs = regs;
else
user_regs = current_pt_regs();
if (get_sample_data(s, regs, task))
return;
vec[vec_idx].base = &extra_data;
vec[vec_idx].len = sizeof(extra_data);
vec_idx++;
s->reserved = 0;
cc->nr = 0;
cc->curr_sp = 0;
cc->curr_fp = 0;
cc->curr_pc = 0;
if (ctx->param.backtrace) {
cc->unw_method = hrt.unw_method;
bt_size = quadd_get_user_callchain(user_regs, cc, ctx, task);
if (!bt_size && !user_mode(regs)) {
unsigned long pc = instruction_pointer(user_regs);
cc->nr = 0;
#ifdef CONFIG_ARM64
cc->cs_64 = compat_user_mode(user_regs) ? 0 : 1;
#else
cc->cs_64 = 0;
#endif
bt_size += quadd_callchain_store(cc, pc,
QUADD_UNW_TYPE_KCTX);
}
if (bt_size > 0) {
int ip_size = cc->cs_64 ? sizeof(u64) : sizeof(u32);
int nr_types = DIV_ROUND_UP(bt_size, 8);
vec[vec_idx].base = cc->cs_64 ?
(void *)cc->ip_64 : (void *)cc->ip_32;
vec[vec_idx].len = bt_size * ip_size;
vec_idx++;
vec[vec_idx].base = cc->types;
vec[vec_idx].len = nr_types * sizeof(cc->types[0]);
vec_idx++;
if (cc->cs_64)
extra_data |= QUADD_SED_IP64;
}
extra_data |= cc->unw_method << QUADD_SED_UNW_METHOD_SHIFT;
s->reserved |= cc->unw_rc << QUADD_SAMPLE_URC_SHIFT;
}
s->callchain_nr = bt_size;
if (hrt.get_stack_offset) {
long offset = get_stack_offset(task, user_regs, cc);
if (offset > 0) {
u32 off = offset >> 2;
off = min_t(u32, off, 0xffff);
extra_data |= off << QUADD_SED_STACK_OFFSET_SHIFT;
}
}
record_data.record_type = QUADD_RECORD_TYPE_SAMPLE;
s->events_flags = 0;
for (i = 0; i < nr_events; i++) {
u32 value = events[i].value;
if (value > 0) {
s->events_flags |= 1 << i;
events_extra[nr_positive_events++] = value;
}
}
if (nr_positive_events == 0)
return;
vec[vec_idx].base = events_extra;
vec[vec_idx].len = nr_positive_events * sizeof(events_extra[0]);
vec_idx++;
state = task->state;
if (state) {
s->state = 1;
vec[vec_idx].base = &state;
vec[vec_idx].len = sizeof(state);
vec_idx++;
} else {
s->state = 0;
}
quadd_put_sample_this_cpu(&record_data, vec, vec_idx);
}
static inline int
is_profile_process(struct task_struct *task)
{
int i;
pid_t pid, profile_pid;
struct quadd_ctx *ctx = hrt.quadd_ctx;
if (!task)
return 0;
pid = task->tgid;
for (i = 0; i < ctx->param.nr_pids; i++) {
profile_pid = ctx->param.pids[i];
if (profile_pid == pid)
return 1;
}
return 0;
}
static int
add_active_thread(struct quadd_cpu_context *cpu_ctx, pid_t pid, pid_t tgid)
{
struct quadd_thread_data *t_data = &cpu_ctx->active_thread;
if (t_data->pid > 0 ||
atomic_read(&cpu_ctx->nr_active) > 0) {
pr_warn_once("Warning for thread: %d\n", (int)pid);
return 0;
}
t_data->pid = pid;
t_data->tgid = tgid;
return 1;
}
static int remove_active_thread(struct quadd_cpu_context *cpu_ctx, pid_t pid)
{
struct quadd_thread_data *t_data = &cpu_ctx->active_thread;
if (t_data->pid < 0)
return 0;
if (t_data->pid == pid) {
t_data->pid = -1;
t_data->tgid = -1;
return 1;
}
pr_warn_once("Warning for thread: %d\n", (int)pid);
return 0;
}
void __quadd_task_sched_in(struct task_struct *prev,
struct task_struct *task)
{
struct quadd_cpu_context *cpu_ctx = this_cpu_ptr(hrt.cpu_ctx);
struct quadd_ctx *ctx = hrt.quadd_ctx;
struct event_data events[QUADD_MAX_COUNTERS];
/* static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 2); */
if (likely(!hrt.active))
return;
/*
if (__ratelimit(&ratelimit_state))
pr_info("sch_in, cpu: %d, prev: %u (%u) \t--> curr: %u (%u)\n",
smp_processor_id(), (unsigned int)prev->pid,
(unsigned int)prev->tgid, (unsigned int)task->pid,
(unsigned int)task->tgid);
*/
if (is_profile_process(task)) {
put_sched_sample(task, 1);
add_active_thread(cpu_ctx, task->pid, task->tgid);
atomic_inc(&cpu_ctx->nr_active);
if (atomic_read(&cpu_ctx->nr_active) == 1) {
if (ctx->pmu)
ctx->pmu->start();
if (ctx->pl310)
ctx->pl310->read(events, 1);
start_hrtimer(cpu_ctx);
atomic_inc(&hrt.nr_active_all_core);
}
}
}
void __quadd_task_sched_out(struct task_struct *prev,
struct task_struct *next)
{
int n;
struct pt_regs *user_regs;
struct quadd_cpu_context *cpu_ctx = this_cpu_ptr(hrt.cpu_ctx);
struct quadd_ctx *ctx = hrt.quadd_ctx;
/* static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 2); */
if (likely(!hrt.active))
return;
/*
if (__ratelimit(&ratelimit_state))
pr_info("sch_out: cpu: %d, prev: %u (%u) \t--> next: %u (%u)\n",
smp_processor_id(), (unsigned int)prev->pid,
(unsigned int)prev->tgid, (unsigned int)next->pid,
(unsigned int)next->tgid);
*/
if (is_profile_process(prev)) {
user_regs = task_pt_regs(prev);
if (user_regs)
read_all_sources(user_regs, prev);
n = remove_active_thread(cpu_ctx, prev->pid);
atomic_sub(n, &cpu_ctx->nr_active);
if (n && atomic_read(&cpu_ctx->nr_active) == 0) {
cancel_hrtimer(cpu_ctx);
atomic_dec(&hrt.nr_active_all_core);
if (ctx->pmu)
ctx->pmu->stop();
}
put_sched_sample(prev, 0);
}
}
void __quadd_event_mmap(struct vm_area_struct *vma)
{
struct quadd_parameters *param;
if (likely(!hrt.active))
return;
if (!is_profile_process(current))
return;
param = &hrt.quadd_ctx->param;
quadd_process_mmap(vma, param->pids[0]);
}
static void reset_cpu_ctx(void)
{
int cpu_id;
struct quadd_cpu_context *cpu_ctx;
struct quadd_thread_data *t_data;
for (cpu_id = 0; cpu_id < nr_cpu_ids; cpu_id++) {
cpu_ctx = per_cpu_ptr(hrt.cpu_ctx, cpu_id);
t_data = &cpu_ctx->active_thread;
atomic_set(&cpu_ctx->nr_active, 0);
t_data->pid = -1;
t_data->tgid = -1;
}
}
int quadd_hrt_start(void)
{
int err;
u64 period;
long freq;
unsigned int extra;
struct quadd_ctx *ctx = hrt.quadd_ctx;
struct quadd_parameters *param = &ctx->param;
freq = ctx->param.freq;
freq = max_t(long, QUADD_HRT_MIN_FREQ, freq);
period = NSEC_PER_SEC / freq;
hrt.sample_period = period;
if (ctx->param.ma_freq > 0)
hrt.ma_period = MSEC_PER_SEC / ctx->param.ma_freq;
else
hrt.ma_period = 0;
atomic64_set(&hrt.counter_samples, 0);
atomic64_set(&hrt.skipped_samples, 0);
reset_cpu_ctx();
extra = param->reserved[QUADD_PARAM_IDX_EXTRA];
if (extra & QUADD_PARAM_EXTRA_BT_MIXED)
hrt.unw_method = QUADD_UNW_METHOD_MIXED;
else if (extra & QUADD_PARAM_EXTRA_BT_UNWIND_TABLES)
hrt.unw_method = QUADD_UNW_METHOD_EHT;
else if (extra & QUADD_PARAM_EXTRA_BT_FP)
hrt.unw_method = QUADD_UNW_METHOD_FP;
else
hrt.unw_method = QUADD_UNW_METHOD_NONE;
if (hrt.tc && (extra & QUADD_PARAM_EXTRA_USE_ARCH_TIMER))
hrt.use_arch_timer = 1;
else
hrt.use_arch_timer = 0;
pr_info("timer: %s\n", hrt.use_arch_timer ? "arch" : "monotonic clock");
hrt.get_stack_offset =
(extra & QUADD_PARAM_EXTRA_STACK_OFFSET) ? 1 : 0;
put_header();
if (extra & QUADD_PARAM_EXTRA_GET_MMAP) {
err = quadd_get_current_mmap(param->pids[0]);
if (err) {
pr_err("error: quadd_get_current_mmap\n");
return err;
}
}
if (ctx->pl310)
ctx->pl310->start();
quadd_ma_start(&hrt);
hrt.active = 1;
pr_info("Start hrt: freq/period: %ld/%llu\n", freq, period);
return 0;
}
void quadd_hrt_stop(void)
{
struct quadd_ctx *ctx = hrt.quadd_ctx;
pr_info("Stop hrt, samples all/skipped: %llu/%llu\n",
atomic64_read(&hrt.counter_samples),
atomic64_read(&hrt.skipped_samples));
if (ctx->pl310)
ctx->pl310->stop();
quadd_ma_stop(&hrt);
hrt.active = 0;
atomic64_set(&hrt.counter_samples, 0);
atomic64_set(&hrt.skipped_samples, 0);
/* reset_cpu_ctx(); */
}
void quadd_hrt_deinit(void)
{
if (hrt.active)
quadd_hrt_stop();
free_percpu(hrt.cpu_ctx);
}
void quadd_hrt_get_state(struct quadd_module_state *state)
{
state->nr_all_samples = atomic64_read(&hrt.counter_samples);
state->nr_skipped_samples = atomic64_read(&hrt.skipped_samples);
}
static void init_arch_timer(void)
{
u32 cntkctl = arch_timer_get_cntkctl();
if (cntkctl & ARCH_TIMER_USR_VCT_ACCESS_EN)
hrt.tc = arch_timer_get_timecounter();
else
hrt.tc = NULL;
}
struct quadd_hrt_ctx *quadd_hrt_init(struct quadd_ctx *ctx)
{
int cpu_id;
u64 period;
long freq;
struct quadd_cpu_context *cpu_ctx;
hrt.quadd_ctx = ctx;
hrt.active = 0;
freq = ctx->param.freq;
freq = max_t(long, QUADD_HRT_MIN_FREQ, freq);
period = NSEC_PER_SEC / freq;
hrt.sample_period = period;
if (ctx->param.ma_freq > 0)
hrt.ma_period = MSEC_PER_SEC / ctx->param.ma_freq;
else
hrt.ma_period = 0;
atomic64_set(&hrt.counter_samples, 0);
init_arch_timer();
hrt.cpu_ctx = alloc_percpu(struct quadd_cpu_context);
if (!hrt.cpu_ctx)
return ERR_PTR(-ENOMEM);
for_each_possible_cpu(cpu_id) {
cpu_ctx = per_cpu_ptr(hrt.cpu_ctx, cpu_id);
atomic_set(&cpu_ctx->nr_active, 0);
cpu_ctx->active_thread.pid = -1;
cpu_ctx->active_thread.tgid = -1;
cpu_ctx->cc.hrt = &hrt;
init_hrtimer(cpu_ctx);
}
return &hrt;
}
|