1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
|
/*
* Copyright (C) 2010 Google, Inc.
*
* Copyright (c) 2012-2014, NVIDIA CORPORATION. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/err.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/gpio.h>
#include <linux/slab.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include <linux/module.h>
#include <linux/mmc/sd.h>
#include <linux/regulator/consumer.h>
#include <linux/delay.h>
#include <linux/pm_runtime.h>
#include <linux/tegra_pm_domains.h>
#include <linux/dma-mapping.h>
#ifndef CONFIG_ARM64
#include <asm/gpio.h>
#endif
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/reboot.h>
#include <linux/devfreq.h>
#include <linux/clk/tegra.h>
#include <linux/tegra-soc.h>
#include <linux/platform_data/mmc-sdhci-tegra.h>
#include <mach/pinmux.h>
#include "sdhci-pltfm.h"
#if 0
#define SDHCI_TEGRA_DBG(stuff...) pr_info(stuff)
#else
#define SDHCI_TEGRA_DBG(stuff...) do {} while (0)
#endif
#define SDHCI_VNDR_CLK_CTRL 0x100
#define SDHCI_VNDR_CLK_CTRL_SDMMC_CLK 0x1
#define SDHCI_VNDR_CLK_CTRL_PADPIPE_CLKEN_OVERRIDE 0x8
#define SDHCI_VNDR_CLK_CTRL_SPI_MODE_CLKEN_OVERRIDE 0x4
#define SDHCI_VNDR_CLK_CTRL_INPUT_IO_CLK 0x2
#define SDHCI_VNDR_CLK_CTRL_TAP_VALUE_SHIFT 16
#define SDHCI_VNDR_CLK_CTRL_TRIM_VALUE_SHIFT 24
#define SDHCI_VNDR_CLK_CTRL_SDR50_TUNING 0x20
#define SDHCI_VNDR_CLK_CTRL_INTERNAL_CLK 0x2
#define SDHCI_VNDR_MISC_CTRL 0x120
#define SDHCI_VNDR_MISC_CTRL_ENABLE_SDR104_SUPPORT 0x8
#define SDHCI_VNDR_MISC_CTRL_ENABLE_SDR50_SUPPORT 0x10
#define SDHCI_VNDR_MISC_CTRL_ENABLE_DDR50_SUPPORT 0x200
#define SDHCI_VNDR_MISC_CTRL_ENABLE_SD_3_0 0x20
#define SDHCI_VNDR_MISC_CTRL_INFINITE_ERASE_TIMEOUT 0x1
#define SDHCI_VNDR_MISC_CTRL_PIPE_STAGES_MASK 0x180
#define SDHCI_VNDR_MISC_CTRL_EN_EXT_LOOPBACK_SHIFT 17
#define SDHCI_VNDR_PRESET_VAL0_0 0x1d4
#define SDCLK_FREQ_SEL_HS_SHIFT 20
#define SDCLK_FREQ_SEL_DEFAULT_SHIFT 10
#define SDHCI_VNDR_PRESET_VAL1_0 0x1d8
#define SDCLK_FREQ_SEL_SDR50_SHIFT 20
#define SDCLK_FREQ_SEL_SDR25_SHIFT 10
#define SDHCI_VNDR_PRESET_VAL2_0 0x1dc
#define SDCLK_FREQ_SEL_DDR50_SHIFT 10
#define SDMMC_SDMEMCOMPPADCTRL 0x1E0
#define SDMMC_SDMEMCOMPPADCTRL_VREF_SEL_MASK 0xF
#define SDMMC_SDMEMCOMPPADCTRL_PAD_E_INPUT_OR_E_PWRD_MASK 0x80000000
#define SDMMC_AUTO_CAL_CONFIG 0x1E4
#define SDMMC_AUTO_CAL_CONFIG_AUTO_CAL_START 0x80000000
#define SDMMC_AUTO_CAL_CONFIG_AUTO_CAL_ENABLE 0x20000000
#define SDMMC_AUTO_CAL_CONFIG_AUTO_CAL_PD_OFFSET_SHIFT 0x8
#define SDMMC_AUTO_CAL_STATUS 0x1EC
#define SDMMC_AUTO_CAL_STATUS_AUTO_CAL_ACTIVE 0x80000000
#define SDMMC_AUTO_CAL_STATUS_PULLDOWN_OFFSET 24
#define PULLUP_ADJUSTMENT_OFFSET 20
/* Erratum: Version register is invalid in HW */
#define NVQUIRK_FORCE_SDHCI_SPEC_200 BIT(0)
/* Erratum: Enable block gap interrupt detection */
#define NVQUIRK_ENABLE_BLOCK_GAP_DET BIT(1)
/* Do not enable auto calibration if the platform doesn't support */
#define NVQUIRK_DISABLE_AUTO_CALIBRATION BIT(2)
/* Set Calibration Offsets */
#define NVQUIRK_SET_CALIBRATION_OFFSETS BIT(3)
/* Set Drive Strengths */
#define NVQUIRK_SET_DRIVE_STRENGTH BIT(4)
/* Enable PADPIPE CLKEN */
#define NVQUIRK_ENABLE_PADPIPE_CLKEN BIT(5)
/* DISABLE SPI_MODE CLKEN */
#define NVQUIRK_DISABLE_SPI_MODE_CLKEN BIT(6)
/* Set tap delay */
#define NVQUIRK_SET_TAP_DELAY BIT(7)
/* Set trim delay */
#define NVQUIRK_SET_TRIM_DELAY BIT(8)
/* Enable SDHOST v3.0 support */
#define NVQUIRK_ENABLE_SD_3_0 BIT(9)
/* Enable SDR50 mode */
#define NVQUIRK_ENABLE_SDR50 BIT(10)
/* Enable SDR104 mode */
#define NVQUIRK_ENABLE_SDR104 BIT(11)
/*Enable DDR50 mode */
#define NVQUIRK_ENABLE_DDR50 BIT(12)
/* Enable Frequency Tuning for SDR50 mode */
#define NVQUIRK_ENABLE_SDR50_TUNING BIT(13)
/* Enable HS200 mode */
#define NVQUIRK_ENABLE_HS200 BIT(14)
/* Enable Infinite Erase Timeout*/
#define NVQUIRK_INFINITE_ERASE_TIMEOUT BIT(15)
/* No Calibration for sdmmc4 */
#define NVQUIRK_DISABLE_SDMMC4_CALIB BIT(16)
/* ENAABLE FEEDBACK IO CLOCK */
#define NVQUIRK_EN_FEEDBACK_CLK BIT(17)
/* Disable AUTO CMD23 */
#define NVQUIRK_DISABLE_AUTO_CMD23 BIT(18)
/* Shadow write xfer mode reg and write it alongwith CMD register */
#define NVQUIRK_SHADOW_XFER_MODE_REG BIT(19)
/* update PAD_E_INPUT_OR_E_PWRD bit */
#define NVQUIRK_SET_PAD_E_INPUT_OR_E_PWRD BIT(20)
/* Shadow write xfer mode reg and write it alongwith CMD register */
#define NVQUIRK_SET_PIPE_STAGES_MASK_0 BIT(21)
#define NVQUIRK_HIGH_FREQ_TAP_PROCEDURE BIT(22)
/* Disable SDMMC3 external loopback */
#define NVQUIRK_DISABLE_EXTERNAL_LOOPBACK BIT(23)
#define NVQUIRK_TMP_VAR_1_5_TAP_MARGIN BIT(24)
/* Common subset of quirks for Tegra3 and later sdmmc controllers */
#define TEGRA_SDHCI_NVQUIRKS (NVQUIRK_ENABLE_PADPIPE_CLKEN | \
NVQUIRK_DISABLE_SPI_MODE_CLKEN | \
NVQUIRK_EN_FEEDBACK_CLK | \
NVQUIRK_SET_TAP_DELAY | \
NVQUIRK_ENABLE_SDR50_TUNING | \
NVQUIRK_ENABLE_SDR50 | \
NVQUIRK_ENABLE_SDR104 | \
NVQUIRK_SHADOW_XFER_MODE_REG | \
NVQUIRK_DISABLE_AUTO_CMD23)
#define TEGRA_SDHCI_QUIRKS (SDHCI_QUIRK_BROKEN_TIMEOUT_VAL | \
SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK | \
SDHCI_QUIRK_SINGLE_POWER_WRITE | \
SDHCI_QUIRK_NO_HISPD_BIT | \
SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC | \
SDHCI_QUIRK_BROKEN_CARD_DETECTION)
#define TEGRA_SDHCI_QUIRKS2 (SDHCI_QUIRK2_PRESET_VALUE_BROKEN | \
SDHCI_QUIRK2_NON_STD_VOLTAGE_SWITCHING | \
SDHCI_QUIRK2_NON_STANDARD_TUNING | \
SDHCI_QUIRK2_NO_CALC_MAX_DISCARD_TO | \
SDHCI_QUIRK2_REG_ACCESS_REQ_HOST_CLK)
#define IS_QUIRKS2_DELAYED_CLK_GATE(host) \
(host->quirks2 & SDHCI_QUIRK2_DELAYED_CLK_GATE)
/* Interface voltages */
#define SDHOST_1V8_OCR_MASK 0x8
#define SDHOST_HIGH_VOLT_MIN 2700000
#define SDHOST_HIGH_VOLT_MAX 3600000
#define SDHOST_HIGH_VOLT_2V8 2800000
#define SDHOST_LOW_VOLT_MIN 1800000
#define SDHOST_LOW_VOLT_MAX 1800000
#define SDHOST_HIGH_VOLT_3V2 3200000
#define SDHOST_HIGH_VOLT_3V3 3300000
/* Clock related definitions */
#define MAX_DIVISOR_VALUE 128
#define DEFAULT_SDHOST_FREQ 50000000
#define SDMMC_AHB_MAX_FREQ 150000000
#define SDMMC_EMC_MAX_FREQ 150000000
#define SDMMC_EMC_NOM_VOLT_FREQ 900000000
/* Tuning related definitions */
#define MMC_TUNING_BLOCK_SIZE_BUS_WIDTH_8 128
#define MMC_TUNING_BLOCK_SIZE_BUS_WIDTH_4 64
#define MAX_TAP_VALUES 255
#define TUNING_FREQ_COUNT 3
#define TUNING_VOLTAGES_COUNT 3
#define TUNING_RETRIES 1
#define DFS_FREQ_COUNT 2
#define NEG_MAR_CHK_WIN_COUNT 2
/* Tuning core voltage requirements */
#define NOMINAL_VCORE_TUN BIT(0)
#define BOOT_VCORE_TUN BIT(1)
#define MIN_OVERRIDE_VCORE_TUN BIT(2)
/* Tap cmd sysfs commands */
#define TAP_CMD_TRIM_DEFAULT_VOLTAGE 1
#define TAP_CMD_TRIM_HIGH_VOLTAGE 2
/*
* Defined the chip specific quirks and clock sources. For now, the used clock
* sources vary only from chip to chip. If the sources allowed varies from
* platform to platform, then move the clock sources list to platform data.
* When filling the tuning_freq_list in soc_data, the number of entries should
* be equal to TUNNG_FREQ_COUNT. Depending on number DFS frequencies supported,
* set the desired low, high or max frequencies and set the remaining entries
* as 0s. The number of entries should always be equal to TUNING_FREQ_COUNT
* inorder to get the right tuning data.
*/
struct sdhci_tegra_soc_data {
const struct sdhci_pltfm_data *pdata;
u32 nvquirks;
const char *parent_clk_list[2];
unsigned int tuning_freq_list[TUNING_FREQ_COUNT];
u8 t2t_coeffs_count;
u8 tap_hole_coeffs_count;
struct tuning_t2t_coeffs *t2t_coeffs;
struct tap_hole_coeffs *tap_hole_coeffs;
};
enum tegra_regulator_config_ops {
CONFIG_REG_EN,
CONFIG_REG_DIS,
CONFIG_REG_SET_VOLT,
};
enum tegra_tuning_freq {
TUNING_LOW_FREQ,
TUNING_HIGH_FREQ,
TUNING_MAX_FREQ,
};
struct tuning_t2t_coeffs {
const char *dev_id;
int vmax;
int vmin;
unsigned int t2t_vnom_slope;
unsigned int t2t_vnom_int;
unsigned int t2t_vmax_slope;
unsigned int t2t_vmax_int;
unsigned int t2t_vmin_slope;
unsigned int t2t_vmin_int;
};
#define SET_TUNING_COEFFS(_device_id, _vmax, _vmin, _t2t_vnom_slope, \
_t2t_vnom_int, _t2t_vmax_slope, _t2t_vmax_int, _t2t_vmin_slope, \
_t2t_vmin_int) \
{ \
.dev_id = _device_id, \
.vmax = _vmax, \
.vmin = _vmin, \
.t2t_vnom_slope = _t2t_vnom_slope, \
.t2t_vnom_int = _t2t_vnom_int, \
.t2t_vmax_slope = _t2t_vmax_slope, \
.t2t_vmax_int = _t2t_vmax_int, \
.t2t_vmin_slope = _t2t_vmin_slope, \
.t2t_vmin_int = _t2t_vmin_int, \
}
struct tuning_t2t_coeffs t11x_tuning_coeffs[] = {
SET_TUNING_COEFFS("sdhci-tegra.3", 1250, 950, 55, 135434,
73, 170493, 243, 455948),
SET_TUNING_COEFFS("sdhci-tegra.2", 1250, 950, 50, 129738,
73, 168898, 241, 453050),
SET_TUNING_COEFFS("sdhci-tegra.0", 1250, 950, 62, 143469,
82, 180096, 238, 444285),
};
struct tuning_t2t_coeffs t12x_tuning_coeffs[] = {
SET_TUNING_COEFFS("sdhci-tegra.3", 1150, 950, 27, 118295,
27, 118295, 48, 188148),
SET_TUNING_COEFFS("sdhci-tegra.2", 1150, 950, 29, 124427,
29, 124427, 54, 203707),
SET_TUNING_COEFFS("sdhci-tegra.0", 1150, 950, 25, 115933,
25, 115933, 47, 187224),
};
struct tap_hole_coeffs {
const char *dev_id;
unsigned int freq_khz;
unsigned int thole_vnom_slope;
unsigned int thole_vnom_int;
unsigned int thole_vmax_slope;
unsigned int thole_vmax_int;
unsigned int thole_vmin_slope;
unsigned int thole_vmin_int;
};
#define SET_TAP_HOLE_COEFFS(_device_id, _freq_khz, _thole_vnom_slope, \
_thole_vnom_int, _thole_vmax_slope, _thole_vmax_int, \
_thole_vmin_slope, _thole_vmin_int) \
{ \
.dev_id = _device_id, \
.freq_khz = _freq_khz, \
.thole_vnom_slope = _thole_vnom_slope, \
.thole_vnom_int = _thole_vnom_int, \
.thole_vmax_slope = _thole_vmax_slope, \
.thole_vmax_int = _thole_vmax_int, \
.thole_vmin_slope = _thole_vmin_slope, \
.thole_vmin_int = _thole_vmin_int, \
}
struct tap_hole_coeffs t11x_tap_hole_coeffs[] = {
SET_TAP_HOLE_COEFFS("sdhci-tegra.3", 200000, 765, 102357, 507,
81144, 131, 36346),
SET_TAP_HOLE_COEFFS("sdhci-tegra.3", 156000, 1042, 142044, 776,
121659, 152, 48728),
SET_TAP_HOLE_COEFFS("sdhci-tegra.3", 136000, 1215, 167702, 905,
143825, 207, 63477),
SET_TAP_HOLE_COEFFS("sdhci-tegra.3", 81600, 1925, 284516, 1528,
253188, 366, 120001),
SET_TAP_HOLE_COEFFS("sdhci-tegra.2", 204000, 472, 53312, 318,
41756, 84, 15496),
SET_TAP_HOLE_COEFFS("sdhci-tegra.2", 156000, 765, 95512, 526,
77404, 134, 33032),
SET_TAP_HOLE_COEFFS("sdhci-tegra.2", 136000, 949, 121887, 656,
99684, 165, 43992),
SET_TAP_HOLE_COEFFS("sdhci-tegra.2", 81600, 1901, 259035, 1334,
215539, 326, 100986),
SET_TAP_HOLE_COEFFS("sdhci-tegra.0", 204000, 411, 54495, 305,
46415, 91, 20366),
SET_TAP_HOLE_COEFFS("sdhci-tegra.0", 156000, 715, 97623, 516,
82375, 145, 38278),
SET_TAP_HOLE_COEFFS("sdhci-tegra.0", 136000, 905, 124579, 648,
104850, 179, 50204),
SET_TAP_HOLE_COEFFS("sdhci-tegra.0", 81600, 1893, 264746, 1333,
221722, 354, 109880),
};
struct tap_hole_coeffs t12x_tap_hole_coeffs[] = {
SET_TAP_HOLE_COEFFS("sdhci-tegra.3", 200000, 1037, 106934, 1037,
106934, 558, 74315),
SET_TAP_HOLE_COEFFS("sdhci-tegra.3", 136000, 1703, 186307, 1703,
186307, 890, 130617),
SET_TAP_HOLE_COEFFS("sdhci-tegra.3", 100000, 2452, 275601, 2452,
275601, 1264, 193957),
SET_TAP_HOLE_COEFFS("sdhci-tegra.3", 81600, 3090, 351666, 3090,
351666, 1583, 247913),
SET_TAP_HOLE_COEFFS("sdhci-tegra.2", 204000, 468, 36031, 468,
36031, 253, 21264),
SET_TAP_HOLE_COEFFS("sdhci-tegra.2", 200000, 468, 36031, 468,
36031, 253, 21264),
SET_TAP_HOLE_COEFFS("sdhci-tegra.2", 136000, 1146, 117841, 1146,
117841, 589, 78993),
SET_TAP_HOLE_COEFFS("sdhci-tegra.2", 100000, 1879, 206195, 1879,
206195, 953, 141341),
SET_TAP_HOLE_COEFFS("sdhci-tegra.2", 81600, 2504, 281460, 2504,
281460, 1262, 194452),
SET_TAP_HOLE_COEFFS("sdhci-tegra.0", 204000, 874, 85243, 874,
85243, 449, 57321),
SET_TAP_HOLE_COEFFS("sdhci-tegra.0", 136000, 1554, 167210, 1554,
167210, 793, 115672),
SET_TAP_HOLE_COEFFS("sdhci-tegra.0", 100000, 2290, 255734, 2290,
255734, 1164, 178691),
SET_TAP_HOLE_COEFFS("sdhci-tegra.0", 81600, 2916, 331143, 2916,
331143, 1480, 232373),
};
struct freq_tuning_constraints {
unsigned int vcore_mask;
};
static struct freq_tuning_constraints tuning_vcore_constraints[3] = {
[0] = {
.vcore_mask = BOOT_VCORE_TUN,
},
[1] = {
.vcore_mask = BOOT_VCORE_TUN,
},
[2] = {
.vcore_mask = BOOT_VCORE_TUN,
},
};
struct tuning_ui {
int ui;
bool is_valid_ui;
};
enum tap_win_edge_attr {
WIN_EDGE_BOUN_START,
WIN_EDGE_BOUN_END,
WIN_EDGE_HOLE,
};
struct tap_window_data {
int win_start;
int win_end;
enum tap_win_edge_attr win_start_attr;
enum tap_win_edge_attr win_end_attr;
u8 win_size;
u8 hole_pos;
};
struct tuning_values {
int t2t_vmax;
int t2t_vmin;
int ui;
int ui_vmin;
int vmax_thole;
int vmin_thole;
};
struct tegra_tuning_data {
unsigned int freq_hz;
int best_tap_value;
int nom_best_tap_value;
struct freq_tuning_constraints constraints;
struct tap_hole_coeffs *thole_coeffs;
struct tuning_t2t_coeffs *t2t_coeffs;
struct tuning_values est_values;
struct tuning_values calc_values;
struct tap_window_data *tap_data;
struct tap_window_data *final_tap_data;
u8 num_of_valid_tap_wins;
u8 nr_voltages;
u8 freq_band;
bool tuning_done;
bool is_partial_win_valid;
};
#ifdef CONFIG_MMC_FREQ_SCALING
struct freq_gov_params {
u8 idle_mon_cycles;
u8 polling_interval_ms;
u8 active_load_threshold;
};
static struct freq_gov_params gov_params[3] = {
[MMC_TYPE_MMC] = {
.idle_mon_cycles = 3,
.polling_interval_ms = 50,
.active_load_threshold = 25,
},
[MMC_TYPE_SDIO] = {
.idle_mon_cycles = 3,
.polling_interval_ms = 50,
.active_load_threshold = 25,
},
[MMC_TYPE_SD] = {
.idle_mon_cycles = 3,
.polling_interval_ms = 50,
.active_load_threshold = 25,
},
};
#endif
struct tegra_freq_gov_data {
unsigned int curr_active_load;
unsigned int avg_active_load;
unsigned int act_load_high_threshold;
unsigned int max_idle_monitor_cycles;
unsigned int curr_freq;
unsigned int freqs[DFS_FREQ_COUNT];
unsigned int freq_switch_count;
bool monitor_idle_load;
};
struct sdhci_tegra_sd_stats {
unsigned int data_crc_count;
unsigned int cmd_crc_count;
unsigned int data_to_count;
unsigned int cmd_to_count;
};
#ifdef CONFIG_DEBUG_FS
struct dbg_cfg_data {
unsigned int tap_val;
unsigned int trim_val;
bool clk_ungated;
};
#endif
struct sdhci_tegra {
const struct tegra_sdhci_platform_data *plat;
const struct sdhci_tegra_soc_data *soc_data;
bool clk_enabled;
/* ensure atomic set clock calls */
struct mutex set_clock_mutex;
struct regulator *vdd_io_reg;
struct regulator *vdd_slot_reg;
struct regulator *vcore_reg;
/* Host controller instance */
unsigned int instance;
/* vddio_min */
unsigned int vddio_min_uv;
/* vddio_max */
unsigned int vddio_max_uv;
/* DDR and low speed modes clock */
struct clk *ddr_clk;
/* HS200, SDR104 modes clock */
struct clk *sdr_clk;
/* Check if ddr_clk is being used */
bool is_ddr_clk_set;
/* max clk supported by the platform */
unsigned int max_clk_limit;
/* max ddr clk supported by the platform */
unsigned int ddr_clk_limit;
bool card_present;
bool is_rail_enabled;
struct clk *emc_clk;
bool is_sdmmc_emc_clk_on;
struct clk *sclk;
bool is_sdmmc_sclk_on;
struct sdhci_tegra_sd_stats *sd_stat_head;
struct notifier_block reboot_notify;
bool is_parent_pllc;
bool set_1v8_calib_offsets;
int nominal_vcore_mv;
int min_vcore_override_mv;
int boot_vcore_mv;
/* Tuning related structures and variables */
/* Tuning opcode to be used */
unsigned int tuning_opcode;
/* Tuning packet size */
unsigned int tuning_bsize;
/* Num of tuning freqs selected */
int tuning_freq_count;
unsigned int tap_cmd;
/* Tuning status */
unsigned int tuning_status;
bool force_retune;
#define TUNING_STATUS_DONE 1
#define TUNING_STATUS_RETUNE 2
/* Freq tuning information for each sampling clock freq */
struct tegra_tuning_data tuning_data[DFS_FREQ_COUNT];
struct tegra_freq_gov_data *gov_data;
u32 speedo;
#ifdef CONFIG_DEBUG_FS
/* Override debug config data */
struct dbg_cfg_data dbg_cfg;
#endif
};
static struct clk *pll_c;
static struct clk *pll_p;
static unsigned long pll_c_rate;
static unsigned long pll_p_rate;
static bool vcore_overrides_allowed;
static bool maintain_boot_voltage;
static unsigned int boot_volt_req_refcount;
DEFINE_MUTEX(tuning_mutex);
static struct tegra_tuning_data *sdhci_tegra_get_tuning_data(
struct sdhci_host *sdhci, unsigned int clock);
static unsigned long get_nearest_clock_freq(unsigned long pll_rate,
unsigned long desired_rate);
static void sdhci_tegra_set_tap_delay(struct sdhci_host *sdhci,
unsigned int tap_delay);
static int tegra_sdhci_configure_regulators(struct sdhci_tegra *tegra_host,
u8 option, int min_uV, int max_uV);
static void sdhci_tegra_set_trim_delay(struct sdhci_host *sdhci,
unsigned int trim_delay);
static void tegra_sdhci_do_calibration(struct sdhci_host *sdhci,
unsigned char signal_voltage);
static int show_error_stats_dump(struct seq_file *s, void *data)
{
struct sdhci_host *host = s->private;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
struct sdhci_tegra_sd_stats *head;
seq_printf(s, "ErrorStatistics:\n");
seq_printf(s, "DataCRC\tCmdCRC\tDataTimeout\tCmdTimeout\n");
head = tegra_host->sd_stat_head;
if (head != NULL)
seq_printf(s, "%d\t%d\t%d\t%d\n", head->data_crc_count,
head->cmd_crc_count, head->data_to_count,
head->cmd_to_count);
return 0;
}
static int show_dfs_stats_dump(struct seq_file *s, void *data)
{
struct sdhci_host *host = s->private;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
struct tegra_freq_gov_data *gov_data = tegra_host->gov_data;
seq_printf(s, "DFS statistics:\n");
if (host->mmc->dev_stats != NULL)
seq_printf(s, "Polling_period: %d\n",
host->mmc->dev_stats->polling_interval);
if (gov_data != NULL) {
seq_printf(s, "cur_active_load: %d\n",
gov_data->curr_active_load);
seq_printf(s, "avg_active_load: %d\n",
gov_data->avg_active_load);
seq_printf(s, "act_load_high_threshold: %d\n",
gov_data->act_load_high_threshold);
seq_printf(s, "freq_switch_count: %d\n",
gov_data->freq_switch_count);
}
return 0;
}
static int sdhci_error_stats_dump(struct inode *inode, struct file *file)
{
return single_open(file, show_error_stats_dump, inode->i_private);
}
static int sdhci_dfs_stats_dump(struct inode *inode, struct file *file)
{
return single_open(file, show_dfs_stats_dump, inode->i_private);
}
static const struct file_operations sdhci_host_fops = {
.open = sdhci_error_stats_dump,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations sdhci_host_dfs_fops = {
.open = sdhci_dfs_stats_dump,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static u32 tegra_sdhci_readl(struct sdhci_host *host, int reg)
{
u32 val;
if (unlikely(reg == SDHCI_PRESENT_STATE)) {
/* Use wp_gpio here instead? */
val = readl(host->ioaddr + reg);
return val | SDHCI_WRITE_PROTECT;
}
return readl(host->ioaddr + reg);
}
static u16 tegra_sdhci_readw(struct sdhci_host *host, int reg)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data;
if (unlikely((soc_data->nvquirks & NVQUIRK_FORCE_SDHCI_SPEC_200) &&
(reg == SDHCI_HOST_VERSION))) {
return SDHCI_SPEC_200;
}
return readw(host->ioaddr + reg);
}
static void tegra_sdhci_writel(struct sdhci_host *host, u32 val, int reg)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data;
/* Seems like we're getting spurious timeout and crc errors, so
* disable signalling of them. In case of real errors software
* timers should take care of eventually detecting them.
*/
if (unlikely(reg == SDHCI_SIGNAL_ENABLE))
val &= ~(SDHCI_INT_TIMEOUT|SDHCI_INT_CRC);
writel(val, host->ioaddr + reg);
if (unlikely((soc_data->nvquirks & NVQUIRK_ENABLE_BLOCK_GAP_DET) &&
(reg == SDHCI_INT_ENABLE))) {
u8 gap_ctrl = readb(host->ioaddr + SDHCI_BLOCK_GAP_CONTROL);
if (val & SDHCI_INT_CARD_INT)
gap_ctrl |= 0x8;
else
gap_ctrl &= ~0x8;
writeb(gap_ctrl, host->ioaddr + SDHCI_BLOCK_GAP_CONTROL);
}
}
static void tegra_sdhci_writew(struct sdhci_host *host, u16 val, int reg)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data;
if (soc_data->nvquirks & NVQUIRK_SHADOW_XFER_MODE_REG) {
switch (reg) {
case SDHCI_TRANSFER_MODE:
/*
* Postpone this write, we must do it together with a
* command write that is down below.
*/
pltfm_host->xfer_mode_shadow = val;
return;
case SDHCI_COMMAND:
writel((val << 16) | pltfm_host->xfer_mode_shadow,
host->ioaddr + SDHCI_TRANSFER_MODE);
pltfm_host->xfer_mode_shadow = 0;
return;
}
}
writew(val, host->ioaddr + reg);
}
#ifdef CONFIG_MMC_FREQ_SCALING
static bool disable_scaling __read_mostly;
module_param(disable_scaling, bool, 0644);
/*
* Dynamic frequency calculation.
* The active load for the current period and the average active load
* are calculated at the end of each polling interval.
*
* If the current active load is greater than the threshold load, then the
* frequency is boosted(156MHz).
* If the active load is lower than the threshold, then the load is monitored
* for a max of three cycles before reducing the frequency(82MHz). If the
* average active load is lower, then the monitoring cycles is reduced.
*
* The active load threshold value for both eMMC and SDIO is set to 25 which
* is found to give the optimal power and performance. The polling interval is
* set to 50 msec.
*
* The polling interval and active load threshold values can be changed by
* the user through sysfs.
*/
static unsigned long calculate_mmc_target_freq(
struct tegra_freq_gov_data *gov_data)
{
unsigned long desired_freq = gov_data->curr_freq;
unsigned int type = MMC_TYPE_MMC;
if (gov_data->curr_active_load >= gov_data->act_load_high_threshold) {
desired_freq = gov_data->freqs[TUNING_HIGH_FREQ];
gov_data->monitor_idle_load = false;
gov_data->max_idle_monitor_cycles =
gov_params[type].idle_mon_cycles;
} else {
if (gov_data->monitor_idle_load) {
if (!gov_data->max_idle_monitor_cycles) {
desired_freq = gov_data->freqs[TUNING_LOW_FREQ];
gov_data->max_idle_monitor_cycles =
gov_params[type].idle_mon_cycles;
} else {
gov_data->max_idle_monitor_cycles--;
}
} else {
gov_data->monitor_idle_load = true;
gov_data->max_idle_monitor_cycles *=
gov_data->avg_active_load;
gov_data->max_idle_monitor_cycles /= 100;
}
}
return desired_freq;
}
static unsigned long calculate_sdio_target_freq(
struct tegra_freq_gov_data *gov_data)
{
unsigned long desired_freq = gov_data->curr_freq;
unsigned int type = MMC_TYPE_SDIO;
if (gov_data->curr_active_load >= gov_data->act_load_high_threshold) {
desired_freq = gov_data->freqs[TUNING_HIGH_FREQ];
gov_data->monitor_idle_load = false;
gov_data->max_idle_monitor_cycles =
gov_params[type].idle_mon_cycles;
} else {
if (gov_data->monitor_idle_load) {
if (!gov_data->max_idle_monitor_cycles) {
desired_freq = gov_data->freqs[TUNING_LOW_FREQ];
gov_data->max_idle_monitor_cycles =
gov_params[type].idle_mon_cycles;
} else {
gov_data->max_idle_monitor_cycles--;
}
} else {
gov_data->monitor_idle_load = true;
gov_data->max_idle_monitor_cycles *=
gov_data->avg_active_load;
gov_data->max_idle_monitor_cycles /= 100;
}
}
return desired_freq;
}
static unsigned long calculate_sd_target_freq(
struct tegra_freq_gov_data *gov_data)
{
unsigned long desired_freq = gov_data->curr_freq;
unsigned int type = MMC_TYPE_SD;
if (gov_data->curr_active_load >= gov_data->act_load_high_threshold) {
desired_freq = gov_data->freqs[TUNING_HIGH_FREQ];
gov_data->monitor_idle_load = false;
gov_data->max_idle_monitor_cycles =
gov_params[type].idle_mon_cycles;
} else {
if (gov_data->monitor_idle_load) {
if (!gov_data->max_idle_monitor_cycles) {
desired_freq = gov_data->freqs[TUNING_LOW_FREQ];
gov_data->max_idle_monitor_cycles =
gov_params[type].idle_mon_cycles;
} else {
gov_data->max_idle_monitor_cycles--;
}
} else {
gov_data->monitor_idle_load = true;
gov_data->max_idle_monitor_cycles *=
gov_data->avg_active_load;
gov_data->max_idle_monitor_cycles /= 100;
}
}
return desired_freq;
}
static unsigned long sdhci_tegra_get_target_freq(struct sdhci_host *sdhci,
struct devfreq_dev_status *dfs_stats)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
struct tegra_freq_gov_data *gov_data = tegra_host->gov_data;
unsigned long freq = sdhci->mmc->actual_clock;
if (!gov_data) {
dev_err(mmc_dev(sdhci->mmc),
"No gov data. Continue using current freq %ld", freq);
return freq;
}
if (disable_scaling)
return freq;
/*
* If clock gating is enabled and clock is currently disabled, then
* return freq as 0.
*/
if (!tegra_host->clk_enabled)
return 0;
if (dfs_stats->total_time) {
gov_data->curr_active_load = (dfs_stats->busy_time * 100) /
dfs_stats->total_time;
} else {
gov_data->curr_active_load = 0;
}
gov_data->avg_active_load += gov_data->curr_active_load;
gov_data->avg_active_load >>= 1;
if (sdhci->mmc->card) {
if (sdhci->mmc->card->type == MMC_TYPE_SDIO)
freq = calculate_sdio_target_freq(gov_data);
else if (sdhci->mmc->card->type == MMC_TYPE_MMC)
freq = calculate_mmc_target_freq(gov_data);
else if (sdhci->mmc->card->type == MMC_TYPE_SD)
freq = calculate_sd_target_freq(gov_data);
if (gov_data->curr_freq != freq)
gov_data->freq_switch_count++;
gov_data->curr_freq = freq;
}
return freq;
}
static int sdhci_tegra_freq_gov_init(struct sdhci_host *sdhci)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
unsigned int i;
unsigned int freq;
unsigned int type;
if (!((sdhci->mmc->ios.timing == MMC_TIMING_UHS_SDR104) ||
(sdhci->mmc->ios.timing == MMC_TIMING_MMC_HS200))) {
dev_info(mmc_dev(sdhci->mmc),
"DFS not required for current operating mode\n");
return -EACCES;
}
if (!tegra_host->gov_data) {
tegra_host->gov_data = devm_kzalloc(mmc_dev(sdhci->mmc),
sizeof(struct tegra_freq_gov_data), GFP_KERNEL);
if (!tegra_host->gov_data) {
dev_err(mmc_dev(sdhci->mmc),
"Failed to allocate memory for dfs data\n");
return -ENOMEM;
}
}
/* Find the supported frequencies */
dev_info(mmc_dev(sdhci->mmc), "DFS supported freqs");
for (i = 0; i < tegra_host->tuning_freq_count; i++) {
freq = tegra_host->tuning_data[i].freq_hz;
/*
* Check the nearest possible clock with pll_c and pll_p as
* the clock sources. Choose the higher frequency.
*/
tegra_host->gov_data->freqs[i] =
get_nearest_clock_freq(pll_c_rate, freq);
freq = get_nearest_clock_freq(pll_p_rate, freq);
if (freq > tegra_host->gov_data->freqs[i])
tegra_host->gov_data->freqs[i] = freq;
pr_err("%d,", tegra_host->gov_data->freqs[i]);
}
tegra_host->gov_data->monitor_idle_load = false;
tegra_host->gov_data->curr_freq = sdhci->mmc->actual_clock;
if (sdhci->mmc->card) {
type = sdhci->mmc->card->type;
sdhci->mmc->dev_stats->polling_interval =
gov_params[type].polling_interval_ms;
tegra_host->gov_data->act_load_high_threshold =
gov_params[type].active_load_threshold;
tegra_host->gov_data->max_idle_monitor_cycles =
gov_params[type].idle_mon_cycles;
}
return 0;
}
#endif
static unsigned int tegra_sdhci_get_cd(struct sdhci_host *sdhci)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
return tegra_host->card_present;
}
static unsigned int tegra_sdhci_get_ro(struct sdhci_host *sdhci)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
const struct tegra_sdhci_platform_data *plat = tegra_host->plat;
if (!gpio_is_valid(plat->wp_gpio))
return -1;
return gpio_get_value_cansleep(plat->wp_gpio);
}
static int tegra_sdhci_set_uhs_signaling(struct sdhci_host *host,
unsigned int uhs)
{
u16 clk, ctrl_2;
u32 vndr_ctrl, trim_delay, best_tap_value;
struct tegra_tuning_data *tuning_data;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
const struct tegra_sdhci_platform_data *plat = tegra_host->plat;
ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
/* Select Bus Speed Mode for host
* For HS200 we need to set UHS_MODE_SEL to SDR104.
* It works as SDR 104 in SD 4-bit mode and HS200 in eMMC 8-bit mode.
* SDR50 mode timing seems to have issues. Programming SDR104
* mode for SDR50 mode for reliable transfers over interface.
*/
ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
switch (uhs) {
case MMC_TIMING_UHS_SDR12:
ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
break;
case MMC_TIMING_UHS_SDR25:
ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
break;
case MMC_TIMING_UHS_SDR50:
ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
break;
case MMC_TIMING_UHS_DDR50:
ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
break;
}
sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
if (uhs == MMC_TIMING_UHS_DDR50) {
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
clk &= ~(0xFF << SDHCI_DIVIDER_SHIFT);
clk |= 1 << SDHCI_DIVIDER_SHIFT;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
/* Set the ddr mode trim delay if required */
if (plat->ddr_trim_delay != -1) {
trim_delay = plat->ddr_trim_delay;
vndr_ctrl = sdhci_readl(host, SDHCI_VNDR_CLK_CTRL);
vndr_ctrl &= ~(0x1F <<
SDHCI_VNDR_CLK_CTRL_TRIM_VALUE_SHIFT);
vndr_ctrl |= (trim_delay <<
SDHCI_VNDR_CLK_CTRL_TRIM_VALUE_SHIFT);
sdhci_writel(host, vndr_ctrl, SDHCI_VNDR_CLK_CTRL);
}
}
/* Set the best tap value based on timing */
if (((uhs == MMC_TIMING_MMC_HS200) ||
(uhs == MMC_TIMING_UHS_SDR104) ||
(uhs == MMC_TIMING_UHS_SDR50)) &&
(tegra_host->tuning_status == TUNING_STATUS_DONE)) {
tuning_data = sdhci_tegra_get_tuning_data(host,
host->mmc->ios.clock);
best_tap_value = (tegra_host->tap_cmd ==
TAP_CMD_TRIM_HIGH_VOLTAGE) ?
tuning_data->nom_best_tap_value :
tuning_data->best_tap_value;
} else {
best_tap_value = tegra_host->plat->tap_delay;
}
vndr_ctrl = sdhci_readl(host, SDHCI_VNDR_CLK_CTRL);
vndr_ctrl &= ~(0xFF <<
SDHCI_VNDR_CLK_CTRL_TAP_VALUE_SHIFT);
vndr_ctrl |= (best_tap_value <<
SDHCI_VNDR_CLK_CTRL_TAP_VALUE_SHIFT);
sdhci_writel(host, vndr_ctrl, SDHCI_VNDR_CLK_CTRL);
return 0;
}
static void sdhci_status_notify_cb(int card_present, void *dev_id)
{
struct sdhci_host *sdhci = (struct sdhci_host *)dev_id;
struct platform_device *pdev = to_platform_device(mmc_dev(sdhci->mmc));
struct tegra_sdhci_platform_data *plat;
unsigned int status, oldstat;
pr_debug("%s: card_present %d\n", mmc_hostname(sdhci->mmc),
card_present);
plat = pdev->dev.platform_data;
if (!plat->mmc_data.status) {
if (card_present == 1) {
sdhci->mmc->rescan_disable = 0;
mmc_detect_change(sdhci->mmc, 0);
} else if (card_present == 0) {
sdhci->mmc->detect_change = 0;
sdhci->mmc->rescan_disable = 1;
}
return;
}
status = plat->mmc_data.status(mmc_dev(sdhci->mmc));
oldstat = plat->mmc_data.card_present;
plat->mmc_data.card_present = status;
if (status ^ oldstat) {
pr_debug("%s: Slot status change detected (%d -> %d)\n",
mmc_hostname(sdhci->mmc), oldstat, status);
if (status && !plat->mmc_data.built_in)
mmc_detect_change(sdhci->mmc, (5 * HZ) / 2);
else
mmc_detect_change(sdhci->mmc, 0);
}
}
static irqreturn_t carddetect_irq(int irq, void *data)
{
struct sdhci_host *sdhost = (struct sdhci_host *)data;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhost);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
struct platform_device *pdev = to_platform_device(mmc_dev(sdhost->mmc));
struct tegra_sdhci_platform_data *plat;
int err;
plat = pdev->dev.platform_data;
tegra_host->card_present =
(gpio_get_value_cansleep(plat->cd_gpio) == 0);
if (tegra_host->card_present) {
err = tegra_sdhci_configure_regulators(tegra_host,
CONFIG_REG_EN, 0, 0);
if (err)
dev_err(mmc_dev(sdhost->mmc),
"Failed to enable card regulators %d\n", err);
} else {
err = tegra_sdhci_configure_regulators(tegra_host,
CONFIG_REG_DIS, 0 , 0);
if (err)
dev_err(mmc_dev(sdhost->mmc),
"Failed to disable card regulators %d\n", err);
/*
* Set retune request as tuning should be done next time
* a card is inserted.
*/
tegra_host->tuning_status = TUNING_STATUS_RETUNE;
tegra_host->force_retune = true;
}
tasklet_schedule(&sdhost->card_tasklet);
return IRQ_HANDLED;
};
static void tegra_sdhci_reset_exit(struct sdhci_host *host, u8 mask)
{
u32 misc_ctrl;
u32 vendor_ctrl;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
struct tegra_tuning_data *tuning_data;
const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data;
const struct tegra_sdhci_platform_data *plat = tegra_host->plat;
unsigned int best_tap_value;
if (!(mask & SDHCI_RESET_ALL))
return;
if (tegra_host->sd_stat_head != NULL) {
tegra_host->sd_stat_head->data_crc_count = 0;
tegra_host->sd_stat_head->cmd_crc_count = 0;
tegra_host->sd_stat_head->data_to_count = 0;
tegra_host->sd_stat_head->cmd_to_count = 0;
}
if (tegra_host->gov_data != NULL)
tegra_host->gov_data->freq_switch_count = 0;
vendor_ctrl = sdhci_readl(host, SDHCI_VNDR_CLK_CTRL);
if (soc_data->nvquirks & NVQUIRK_ENABLE_PADPIPE_CLKEN) {
vendor_ctrl |=
SDHCI_VNDR_CLK_CTRL_PADPIPE_CLKEN_OVERRIDE;
}
if (soc_data->nvquirks & NVQUIRK_DISABLE_SPI_MODE_CLKEN) {
vendor_ctrl &=
~SDHCI_VNDR_CLK_CTRL_SPI_MODE_CLKEN_OVERRIDE;
}
if (soc_data->nvquirks & NVQUIRK_EN_FEEDBACK_CLK) {
vendor_ctrl &=
~SDHCI_VNDR_CLK_CTRL_INPUT_IO_CLK;
} else {
vendor_ctrl |= SDHCI_VNDR_CLK_CTRL_INTERNAL_CLK;
}
if (soc_data->nvquirks & NVQUIRK_SET_TAP_DELAY) {
if ((tegra_host->tuning_status == TUNING_STATUS_DONE)
&& (host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
tuning_data = sdhci_tegra_get_tuning_data(host,
host->mmc->ios.clock);
best_tap_value = (tegra_host->tap_cmd ==
TAP_CMD_TRIM_HIGH_VOLTAGE) ?
tuning_data->nom_best_tap_value :
tuning_data->best_tap_value;
} else {
best_tap_value = tegra_host->plat->tap_delay;
}
vendor_ctrl &= ~(0xFF << SDHCI_VNDR_CLK_CTRL_TAP_VALUE_SHIFT);
vendor_ctrl |= (best_tap_value <<
SDHCI_VNDR_CLK_CTRL_TAP_VALUE_SHIFT);
}
if (soc_data->nvquirks & NVQUIRK_SET_TRIM_DELAY) {
vendor_ctrl &= ~(0x1F <<
SDHCI_VNDR_CLK_CTRL_TRIM_VALUE_SHIFT);
vendor_ctrl |= (plat->trim_delay <<
SDHCI_VNDR_CLK_CTRL_TRIM_VALUE_SHIFT);
}
if (soc_data->nvquirks & NVQUIRK_ENABLE_SDR50_TUNING)
vendor_ctrl |= SDHCI_VNDR_CLK_CTRL_SDR50_TUNING;
sdhci_writel(host, vendor_ctrl, SDHCI_VNDR_CLK_CTRL);
misc_ctrl = sdhci_readl(host, SDHCI_VNDR_MISC_CTRL);
if (soc_data->nvquirks & NVQUIRK_ENABLE_SD_3_0)
misc_ctrl |= SDHCI_VNDR_MISC_CTRL_ENABLE_SD_3_0;
if (soc_data->nvquirks & NVQUIRK_ENABLE_SDR104) {
misc_ctrl |=
SDHCI_VNDR_MISC_CTRL_ENABLE_SDR104_SUPPORT;
}
if (soc_data->nvquirks & NVQUIRK_ENABLE_SDR50) {
misc_ctrl |=
SDHCI_VNDR_MISC_CTRL_ENABLE_SDR50_SUPPORT;
}
/* Enable DDR mode support only for SDMMC4 */
if (soc_data->nvquirks & NVQUIRK_ENABLE_DDR50) {
if (tegra_host->instance == 3) {
misc_ctrl |=
SDHCI_VNDR_MISC_CTRL_ENABLE_DDR50_SUPPORT;
}
}
if (soc_data->nvquirks & NVQUIRK_INFINITE_ERASE_TIMEOUT) {
misc_ctrl |=
SDHCI_VNDR_MISC_CTRL_INFINITE_ERASE_TIMEOUT;
}
if (soc_data->nvquirks & NVQUIRK_SET_PIPE_STAGES_MASK_0)
misc_ctrl &= ~SDHCI_VNDR_MISC_CTRL_PIPE_STAGES_MASK;
/* External loopback is valid for sdmmc3 only */
if ((soc_data->nvquirks & NVQUIRK_DISABLE_EXTERNAL_LOOPBACK) &&
(tegra_host->instance == 2)) {
if ((tegra_host->tuning_status == TUNING_STATUS_DONE)
&& (host->mmc->pm_flags &
MMC_PM_KEEP_POWER)) {
misc_ctrl &= ~(1 <<
SDHCI_VNDR_MISC_CTRL_EN_EXT_LOOPBACK_SHIFT);
} else {
misc_ctrl |= (1 <<
SDHCI_VNDR_MISC_CTRL_EN_EXT_LOOPBACK_SHIFT);
}
}
sdhci_writel(host, misc_ctrl, SDHCI_VNDR_MISC_CTRL);
if (soc_data->nvquirks & NVQUIRK_DISABLE_AUTO_CMD23)
host->flags &= ~SDHCI_AUTO_CMD23;
/* Mask the support for any UHS modes if specified */
if (plat->uhs_mask & MMC_UHS_MASK_SDR104)
host->mmc->caps &= ~MMC_CAP_UHS_SDR104;
if (plat->uhs_mask & MMC_UHS_MASK_DDR50)
host->mmc->caps &= ~MMC_CAP_UHS_DDR50;
if (plat->uhs_mask & MMC_UHS_MASK_SDR50)
host->mmc->caps &= ~MMC_CAP_UHS_SDR50;
if (plat->uhs_mask & MMC_UHS_MASK_SDR25)
host->mmc->caps &= ~MMC_CAP_UHS_SDR25;
if (plat->uhs_mask & MMC_UHS_MASK_SDR12)
host->mmc->caps &= ~MMC_CAP_UHS_SDR12;
#ifdef CONFIG_MMC_SDHCI_TEGRA_HS200_DISABLE
host->mmc->caps2 &= ~MMC_CAP2_HS200;
#else
if (plat->uhs_mask & MMC_MASK_HS200)
host->mmc->caps2 &= ~MMC_CAP2_HS200;
#endif
}
static int tegra_sdhci_buswidth(struct sdhci_host *sdhci, int bus_width)
{
struct platform_device *pdev = to_platform_device(mmc_dev(sdhci->mmc));
const struct tegra_sdhci_platform_data *plat;
u32 ctrl;
plat = pdev->dev.platform_data;
ctrl = sdhci_readb(sdhci, SDHCI_HOST_CONTROL);
if (plat->is_8bit && bus_width == MMC_BUS_WIDTH_8) {
ctrl &= ~SDHCI_CTRL_4BITBUS;
ctrl |= SDHCI_CTRL_8BITBUS;
} else {
ctrl &= ~SDHCI_CTRL_8BITBUS;
if (bus_width == MMC_BUS_WIDTH_4)
ctrl |= SDHCI_CTRL_4BITBUS;
else
ctrl &= ~SDHCI_CTRL_4BITBUS;
}
sdhci_writeb(sdhci, ctrl, SDHCI_HOST_CONTROL);
return 0;
}
/*
* Calculation of nearest clock frequency for desired rate:
* Get the divisor value, div = p / d_rate
* 1. If it is nearer to ceil(p/d_rate) then increment the div value by 0.5 and
* nearest_rate, i.e. result = p / (div + 0.5) = (p << 1)/((div << 1) + 1).
* 2. If not, result = p / div
* As the nearest clk freq should be <= to desired_rate,
* 3. If result > desired_rate then increment the div by 0.5
* and do, (p << 1)/((div << 1) + 1)
* 4. Else return result
* Here, If condtions 1 & 3 are both satisfied then to keep track of div value,
* defined index variable.
*/
static unsigned long get_nearest_clock_freq(unsigned long pll_rate,
unsigned long desired_rate)
{
unsigned long result;
int div;
int index = 1;
div = pll_rate / desired_rate;
if (div > MAX_DIVISOR_VALUE) {
div = MAX_DIVISOR_VALUE;
result = pll_rate / div;
} else {
if ((pll_rate % desired_rate) >= (desired_rate / 2))
result = (pll_rate << 1) / ((div << 1) + index++);
else
result = pll_rate / div;
if (desired_rate < result) {
/*
* Trying to get lower clock freq than desired clock,
* by increasing the divisor value by 0.5
*/
result = (pll_rate << 1) / ((div << 1) + index);
}
}
return result;
}
static void tegra_sdhci_clock_set_parent(struct sdhci_host *host,
unsigned long desired_rate)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
struct clk *parent_clk;
unsigned long pll_c_freq;
unsigned long pll_p_freq;
int rc;
#ifdef CONFIG_TEGRA_FPGA_PLATFORM
return;
#endif
/*
* Currently pll_p and pll_c are used as clock sources for SDMMC. If clk
* rate is missing for either of them, then no selection is needed and
* the default parent is used.
*/
if (!pll_c_rate || !pll_p_rate)
return ;
pll_c_freq = get_nearest_clock_freq(pll_c_rate, desired_rate);
pll_p_freq = get_nearest_clock_freq(pll_p_rate, desired_rate);
/*
* For low freq requests, both the desired rates might be higher than
* the requested clock frequency. In such cases, select the parent
* with the lower frequency rate.
*/
if ((pll_c_freq > desired_rate) && (pll_p_freq > desired_rate)) {
if (pll_p_freq <= pll_c_freq) {
desired_rate = pll_p_freq;
pll_c_freq = 0;
} else {
desired_rate = pll_c_freq;
pll_p_freq = 0;
}
rc = clk_set_rate(pltfm_host->clk, desired_rate);
}
if (pll_c_freq > pll_p_freq) {
if (!tegra_host->is_parent_pllc) {
parent_clk = pll_c;
tegra_host->is_parent_pllc = true;
clk_set_rate(pltfm_host->clk, DEFAULT_SDHOST_FREQ);
} else
return;
} else if (tegra_host->is_parent_pllc) {
parent_clk = pll_p;
tegra_host->is_parent_pllc = false;
} else
return;
rc = clk_set_parent(pltfm_host->clk, parent_clk);
if (rc)
pr_err("%s: failed to set pll parent clock %d\n",
mmc_hostname(host->mmc), rc);
}
static void tegra_sdhci_set_clk_rate(struct sdhci_host *sdhci,
unsigned int clock)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
unsigned int clk_rate;
#ifdef CONFIG_MMC_FREQ_SCALING
unsigned int tap_value;
struct tegra_tuning_data *tuning_data;
#endif
if (sdhci->mmc->ios.timing == MMC_TIMING_UHS_DDR50) {
/*
* In ddr mode, tegra sdmmc controller clock frequency
* should be double the card clock frequency.
*/
if (tegra_host->ddr_clk_limit)
clk_rate = tegra_host->ddr_clk_limit * 2;
else
clk_rate = clock * 2;
} else {
clk_rate = clock;
}
if (sdhci->mmc->ios.timing == MMC_TIMING_UHS_SDR50)
clk_rate = tegra_host->soc_data->tuning_freq_list[0];
if (tegra_host->max_clk_limit &&
(clk_rate > tegra_host->max_clk_limit))
clk_rate = tegra_host->max_clk_limit;
tegra_sdhci_clock_set_parent(sdhci, clk_rate);
clk_set_rate(pltfm_host->clk, clk_rate);
sdhci->max_clk = clk_get_rate(pltfm_host->clk);
/* FPGA supports 26MHz of clock for SDMMC. */
if (tegra_platform_is_fpga())
sdhci->max_clk = 26000000;
#ifdef CONFIG_MMC_FREQ_SCALING
/* Set the tap delay if tuning is done and dfs is enabled */
if (sdhci->mmc->df &&
(tegra_host->tuning_status == TUNING_STATUS_DONE)) {
tuning_data = sdhci_tegra_get_tuning_data(sdhci, clock);
tap_value = (tegra_host->tap_cmd == TAP_CMD_TRIM_HIGH_VOLTAGE) ?
tuning_data->nom_best_tap_value :
tuning_data->best_tap_value;
sdhci_tegra_set_tap_delay(sdhci, tap_value);
}
#endif
}
static void tegra_sdhci_set_clock(struct sdhci_host *sdhci, unsigned int clock)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
struct platform_device *pdev = to_platform_device(mmc_dev(sdhci->mmc));
u8 ctrl;
int ret = 0;
mutex_lock(&tegra_host->set_clock_mutex);
pr_debug("%s %s %u enabled=%u\n", __func__,
mmc_hostname(sdhci->mmc), clock, tegra_host->clk_enabled);
if (clock) {
if (!tegra_host->clk_enabled) {
pm_runtime_get_sync(&pdev->dev);
ret = clk_prepare_enable(pltfm_host->clk);
if (ret) {
dev_err(mmc_dev(sdhci->mmc),
"clock enable is failed, ret: %d\n", ret);
return;
}
tegra_host->clk_enabled = true;
sdhci->is_clk_on = tegra_host->clk_enabled;
ctrl = sdhci_readb(sdhci, SDHCI_VNDR_CLK_CTRL);
ctrl |= SDHCI_VNDR_CLK_CTRL_SDMMC_CLK;
sdhci_writeb(sdhci, ctrl, SDHCI_VNDR_CLK_CTRL);
}
tegra_sdhci_set_clk_rate(sdhci, clock);
if (tegra_host->emc_clk && (!tegra_host->is_sdmmc_emc_clk_on)) {
ret = clk_prepare_enable(tegra_host->emc_clk);
if (ret) {
dev_err(mmc_dev(sdhci->mmc),
"clock enable is failed, ret: %d\n", ret);
return;
}
tegra_host->is_sdmmc_emc_clk_on = true;
}
if (tegra_host->sclk && (!tegra_host->is_sdmmc_sclk_on)) {
ret = clk_prepare_enable(tegra_host->sclk);
if (ret) {
dev_err(mmc_dev(sdhci->mmc),
"clock enable is failed, ret: %d\n", ret);
return;
}
tegra_host->is_sdmmc_sclk_on = true;
}
} else if (!clock && tegra_host->clk_enabled) {
if (tegra_host->emc_clk && tegra_host->is_sdmmc_emc_clk_on) {
clk_disable_unprepare(tegra_host->emc_clk);
tegra_host->is_sdmmc_emc_clk_on = false;
}
if (tegra_host->sclk && tegra_host->is_sdmmc_sclk_on) {
clk_disable_unprepare(tegra_host->sclk);
tegra_host->is_sdmmc_sclk_on = false;
}
ctrl = sdhci_readb(sdhci, SDHCI_VNDR_CLK_CTRL);
ctrl &= ~SDHCI_VNDR_CLK_CTRL_SDMMC_CLK;
sdhci_writeb(sdhci, ctrl, SDHCI_VNDR_CLK_CTRL);
clk_disable_unprepare(pltfm_host->clk);
tegra_host->clk_enabled = false;
sdhci->is_clk_on = tegra_host->clk_enabled;
pm_runtime_put_sync(&pdev->dev);
}
mutex_unlock(&tegra_host->set_clock_mutex);
}
static void tegra_sdhci_do_calibration(struct sdhci_host *sdhci,
unsigned char signal_voltage)
{
unsigned int val;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data;
unsigned int timeout = 10;
unsigned int calib_offsets = 0;
/* No Calibration for sdmmc4 */
if (unlikely(soc_data->nvquirks & NVQUIRK_DISABLE_SDMMC4_CALIB) &&
(tegra_host->instance == 3))
return;
if (unlikely(soc_data->nvquirks & NVQUIRK_DISABLE_AUTO_CALIBRATION))
return;
val = sdhci_readl(sdhci, SDMMC_SDMEMCOMPPADCTRL);
val &= ~SDMMC_SDMEMCOMPPADCTRL_VREF_SEL_MASK;
if (soc_data->nvquirks & NVQUIRK_SET_PAD_E_INPUT_OR_E_PWRD)
val |= SDMMC_SDMEMCOMPPADCTRL_PAD_E_INPUT_OR_E_PWRD_MASK;
val |= 0x7;
sdhci_writel(sdhci, val, SDMMC_SDMEMCOMPPADCTRL);
/* Enable Auto Calibration*/
val = sdhci_readl(sdhci, SDMMC_AUTO_CAL_CONFIG);
val |= SDMMC_AUTO_CAL_CONFIG_AUTO_CAL_ENABLE;
val |= SDMMC_AUTO_CAL_CONFIG_AUTO_CAL_START;
if (unlikely(soc_data->nvquirks & NVQUIRK_SET_CALIBRATION_OFFSETS)) {
if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
calib_offsets = tegra_host->plat->calib_3v3_offsets;
else if (signal_voltage == MMC_SIGNAL_VOLTAGE_180)
calib_offsets = tegra_host->plat->calib_1v8_offsets;
if (calib_offsets) {
/* Program Auto cal PD offset(bits 8:14) */
val &= ~(0x7F <<
SDMMC_AUTO_CAL_CONFIG_AUTO_CAL_PD_OFFSET_SHIFT);
val |= (((calib_offsets >> 8) & 0xFF) <<
SDMMC_AUTO_CAL_CONFIG_AUTO_CAL_PD_OFFSET_SHIFT);
/* Program Auto cal PU offset(bits 0:6) */
val &= ~0x7F;
val |= (calib_offsets & 0xFF);
}
}
sdhci_writel(sdhci, val, SDMMC_AUTO_CAL_CONFIG);
/* Wait until the calibration is done */
do {
if (!(sdhci_readl(sdhci, SDMMC_AUTO_CAL_STATUS) &
SDMMC_AUTO_CAL_STATUS_AUTO_CAL_ACTIVE))
break;
mdelay(1);
timeout--;
} while (timeout);
if (!timeout)
dev_err(mmc_dev(sdhci->mmc), "Auto calibration failed\n");
if (soc_data->nvquirks & NVQUIRK_SET_PAD_E_INPUT_OR_E_PWRD) {
val = sdhci_readl(sdhci, SDMMC_SDMEMCOMPPADCTRL);
val &= ~SDMMC_SDMEMCOMPPADCTRL_PAD_E_INPUT_OR_E_PWRD_MASK;
sdhci_writel(sdhci, val, SDMMC_SDMEMCOMPPADCTRL);
}
if (unlikely(soc_data->nvquirks & NVQUIRK_SET_DRIVE_STRENGTH)) {
unsigned int pulldown_code;
unsigned int pullup_code;
int pg;
int err;
/* Disable Auto calibration */
val = sdhci_readl(sdhci, SDMMC_AUTO_CAL_CONFIG);
val &= ~SDMMC_AUTO_CAL_CONFIG_AUTO_CAL_ENABLE;
sdhci_writel(sdhci, val, SDMMC_AUTO_CAL_CONFIG);
pg = tegra_drive_get_pingroup(mmc_dev(sdhci->mmc));
if (pg != -1) {
/* Get the pull down codes from auto cal status reg */
pulldown_code = (
sdhci_readl(sdhci, SDMMC_AUTO_CAL_STATUS) >>
SDMMC_AUTO_CAL_STATUS_PULLDOWN_OFFSET);
/* Set the pull down in the pinmux reg */
err = tegra_drive_pinmux_set_pull_down(pg,
pulldown_code);
if (err)
dev_err(mmc_dev(sdhci->mmc),
"Failed to set pulldown codes %d err %d\n",
pulldown_code, err);
/* Calculate the pull up codes */
pullup_code = pulldown_code + PULLUP_ADJUSTMENT_OFFSET;
if (pullup_code >= TEGRA_MAX_PULL)
pullup_code = TEGRA_MAX_PULL - 1;
/* Set the pull up code in the pinmux reg */
err = tegra_drive_pinmux_set_pull_up(pg, pullup_code);
if (err)
dev_err(mmc_dev(sdhci->mmc),
"Failed to set pullup codes %d err %d\n",
pullup_code, err);
}
}
}
static int tegra_sdhci_signal_voltage_switch(struct sdhci_host *sdhci,
unsigned int signal_voltage)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
unsigned int min_uV = tegra_host->vddio_min_uv;
unsigned int max_uV = tegra_host->vddio_max_uv;
unsigned int rc = 0;
u16 ctrl;
ctrl = sdhci_readw(sdhci, SDHCI_HOST_CONTROL2);
if (signal_voltage == MMC_SIGNAL_VOLTAGE_180) {
ctrl |= SDHCI_CTRL_VDD_180;
min_uV = SDHOST_LOW_VOLT_MIN;
max_uV = SDHOST_LOW_VOLT_MAX;
} else if (signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
if (ctrl & SDHCI_CTRL_VDD_180)
ctrl &= ~SDHCI_CTRL_VDD_180;
}
/* Check if the slot can support the required voltage */
if (min_uV > tegra_host->vddio_max_uv)
return 0;
/* Set/clear the 1.8V signalling */
sdhci_writew(sdhci, ctrl, SDHCI_HOST_CONTROL2);
/* Switch the I/O rail voltage */
rc = tegra_sdhci_configure_regulators(tegra_host, CONFIG_REG_SET_VOLT,
min_uV, max_uV);
if (rc && (signal_voltage == MMC_SIGNAL_VOLTAGE_180)) {
dev_err(mmc_dev(sdhci->mmc),
"setting 1.8V failed %d. Revert to 3.3V\n", rc);
rc = tegra_sdhci_configure_regulators(tegra_host,
CONFIG_REG_SET_VOLT, SDHOST_HIGH_VOLT_MIN,
SDHOST_HIGH_VOLT_MAX);
}
return rc;
}
static int tegra_sdhci_configure_regulators(struct sdhci_tegra *tegra_host,
u8 option, int min_uV, int max_uV)
{
int rc = 0;
switch (option) {
case CONFIG_REG_EN:
if (!tegra_host->is_rail_enabled) {
if (tegra_host->vdd_slot_reg)
rc = regulator_enable(tegra_host->vdd_slot_reg);
if (tegra_host->vdd_io_reg)
rc = regulator_enable(tegra_host->vdd_io_reg);
tegra_host->is_rail_enabled = true;
}
break;
case CONFIG_REG_DIS:
if (tegra_host->is_rail_enabled) {
if (tegra_host->vdd_io_reg)
rc = regulator_disable(tegra_host->vdd_io_reg);
if (tegra_host->vdd_slot_reg)
rc = regulator_disable(
tegra_host->vdd_slot_reg);
tegra_host->is_rail_enabled = false;
}
break;
case CONFIG_REG_SET_VOLT:
if (tegra_host->vdd_io_reg)
rc = regulator_set_voltage(tegra_host->vdd_io_reg,
min_uV, max_uV);
break;
default:
pr_err("Invalid argument passed to reg config %d\n", option);
}
return rc;
}
static void tegra_sdhci_reset(struct sdhci_host *sdhci, u8 mask)
{
unsigned long timeout;
sdhci_writeb(sdhci, mask, SDHCI_SOFTWARE_RESET);
/* Wait max 100 ms */
timeout = 100;
/* hw clears the bit when it's done */
while (sdhci_readb(sdhci, SDHCI_SOFTWARE_RESET) & mask) {
if (timeout == 0) {
dev_err(mmc_dev(sdhci->mmc), "Reset 0x%x never"
"completed.\n", (int)mask);
return;
}
timeout--;
mdelay(1);
}
tegra_sdhci_reset_exit(sdhci, mask);
}
static void sdhci_tegra_set_tap_delay(struct sdhci_host *sdhci,
unsigned int tap_delay)
{
u32 vendor_ctrl;
/* Max tap delay value is 255 */
if (tap_delay > MAX_TAP_VALUES) {
dev_err(mmc_dev(sdhci->mmc),
"Valid tap range (0-255). Setting tap value %d\n",
tap_delay);
dump_stack();
return;
}
vendor_ctrl = sdhci_readl(sdhci, SDHCI_VNDR_CLK_CTRL);
vendor_ctrl &= ~(0xFF << SDHCI_VNDR_CLK_CTRL_TAP_VALUE_SHIFT);
vendor_ctrl |= (tap_delay << SDHCI_VNDR_CLK_CTRL_TAP_VALUE_SHIFT);
sdhci_writel(sdhci, vendor_ctrl, SDHCI_VNDR_CLK_CTRL);
}
static void sdhci_tegra_set_trim_delay(struct sdhci_host *sdhci,
unsigned int trim_delay)
{
u32 vendor_ctrl;
vendor_ctrl = sdhci_readl(sdhci, SDHCI_VNDR_CLK_CTRL);
vendor_ctrl &= ~(0x1F << SDHCI_VNDR_CLK_CTRL_TRIM_VALUE_SHIFT);
vendor_ctrl |= (trim_delay << SDHCI_VNDR_CLK_CTRL_TRIM_VALUE_SHIFT);
sdhci_writel(sdhci, vendor_ctrl, SDHCI_VNDR_CLK_CTRL);
}
static int sdhci_tegra_sd_error_stats(struct sdhci_host *host, u32 int_status)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
struct sdhci_tegra_sd_stats *head = tegra_host->sd_stat_head;
if (int_status & SDHCI_INT_DATA_CRC)
head->data_crc_count++;
if (int_status & SDHCI_INT_CRC)
head->cmd_crc_count++;
if (int_status & SDHCI_INT_TIMEOUT)
head->cmd_to_count++;
if (int_status & SDHCI_INT_DATA_TIMEOUT)
head->data_to_count++;
return 0;
}
static struct tegra_tuning_data *sdhci_tegra_get_tuning_data(
struct sdhci_host *sdhci, unsigned int clock)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
struct tegra_tuning_data *tuning_data;
unsigned int low_freq;
u8 i = 0;
if (tegra_host->tuning_freq_count == 1) {
tuning_data = &tegra_host->tuning_data[0];
goto out;
}
/* Get the lowest supported freq */
for (i = 0; i < TUNING_FREQ_COUNT; ++i) {
low_freq = tegra_host->soc_data->tuning_freq_list[i];
if (low_freq)
break;
}
if (clock <= low_freq)
tuning_data = &tegra_host->tuning_data[0];
else
tuning_data = &tegra_host->tuning_data[1];
out:
return tuning_data;
}
static void calculate_vmin_values(struct sdhci_host *sdhci,
struct tegra_tuning_data *tuning_data, int vmin, int boot_mv)
{
struct tuning_values *est_values = &tuning_data->est_values;
struct tuning_values *calc_values = &tuning_data->calc_values;
struct tuning_t2t_coeffs *t2t_coeffs = tuning_data->t2t_coeffs;
struct tap_hole_coeffs *thole_coeffs = tuning_data->thole_coeffs;
int vmin_slope, vmin_int, temp_calc_vmin;
int t2t_vmax, t2t_vmin;
int vmax_thole, vmin_thole;
/*
* If current vmin is equal to vmin or vmax of tuning data, use the
* previously calculated estimated T2T values directly. Note that the
* estimated T2T_vmax is not at Vmax specified in tuning data. It is
* the T2T at the boot or max voltage for the current SKU. Hence,
* boot_mv is used in place of t2t_coeffs->vmax.
*/
if (vmin == t2t_coeffs->vmin) {
t2t_vmin = est_values->t2t_vmin;
} else if (vmin == boot_mv) {
t2t_vmin = est_values->t2t_vmax;
} else {
/*
* For any intermediate voltage between boot voltage and vmin
* of tuning data, calculate the slope and intercept from the
* t2t at boot_mv and vmin and calculate the actual values.
*/
t2t_vmax = 1000 / est_values->t2t_vmax;
t2t_vmin = 1000 / est_values->t2t_vmin;
vmin_slope = ((t2t_vmax - t2t_vmin) * 1000) /
(boot_mv - t2t_coeffs->vmin);
vmin_int = (t2t_vmax * 1000 - (vmin_slope * boot_mv)) / 1000;
t2t_vmin = (vmin_slope * vmin) / 1000 + vmin_int;
t2t_vmin = (1000 / t2t_vmin);
}
calc_values->t2t_vmin = (t2t_vmin * calc_values->t2t_vmax) /
est_values->t2t_vmax;
calc_values->ui_vmin = (1000000 / (tuning_data->freq_hz / 1000000)) /
calc_values->t2t_vmin;
/* Calculate the vmin tap hole at vmin of tuning data */
temp_calc_vmin = (est_values->t2t_vmin * calc_values->t2t_vmax) /
est_values->t2t_vmax;
vmin_thole = (thole_coeffs->thole_vmin_int -
(thole_coeffs->thole_vmin_slope * temp_calc_vmin)) /
1000;
vmax_thole = calc_values->vmax_thole;
if (vmin == t2t_coeffs->vmin) {
calc_values->vmin_thole = vmin_thole;
} else if (vmin == boot_mv) {
calc_values->vmin_thole = vmax_thole;
} else {
/*
* Interpolate the tap hole for any intermediate voltage.
* Calculate the slope and intercept from the available data
* and use them to calculate the actual values.
*/
vmin_slope = ((vmax_thole - vmin_thole) * 1000) /
(boot_mv - t2t_coeffs->vmin);
vmin_int = (vmax_thole * 1000 - (vmin_slope * boot_mv)) / 1000;
calc_values->vmin_thole = (vmin_slope * vmin) / 1000 + vmin_int;
}
/* Adjust the partial win start for Vmin boundary */
if (tuning_data->is_partial_win_valid)
tuning_data->final_tap_data[0].win_start =
(tuning_data->final_tap_data[0].win_start *
tuning_data->calc_values.t2t_vmax) /
tuning_data->calc_values.t2t_vmin;
pr_info("**********Tuning values*********\n");
pr_info("**estimated values**\n");
pr_info("T2T_Vmax %d, T2T_Vmin %d, 1'st_hole_Vmax %d, UI_Vmax %d\n",
est_values->t2t_vmax, est_values->t2t_vmin,
est_values->vmax_thole, est_values->ui);
pr_info("**Calculated values**\n");
pr_info("T2T_Vmax %d, 1'st_hole_Vmax %d, UI_Vmax %d\n",
calc_values->t2t_vmax, calc_values->vmax_thole,
calc_values->ui);
pr_info("T2T_Vmin %d, 1'st_hole_Vmin %d, UI_Vmin %d\n",
calc_values->t2t_vmin, calc_values->vmin_thole,
calc_values->ui_vmin);
pr_info("***********************************\n");
}
static int slide_window_start(struct sdhci_host *sdhci,
struct tegra_tuning_data *tuning_data,
int tap_value, enum tap_win_edge_attr edge_attr, int tap_hole)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data;
if (edge_attr == WIN_EDGE_BOUN_START) {
if (tap_value < 0)
tap_value += (1000 / tuning_data->calc_values.t2t_vmin);
else
tap_value += (1000 / tuning_data->calc_values.t2t_vmax);
} else if (edge_attr == WIN_EDGE_HOLE) {
if (soc_data->nvquirks & NVQUIRK_TMP_VAR_1_5_TAP_MARGIN)
tap_value += ((7 * tap_hole) / 100) + 2;
else
tap_value += ((7 * tap_hole) / 100) +
(((2 * (450 / tuning_data->calc_values.t2t_vmax))
+ 1) / 2);
}
if (tap_value > MAX_TAP_VALUES)
tap_value = MAX_TAP_VALUES;
return tap_value;
}
static int slide_window_end(struct sdhci_host *sdhci,
struct tegra_tuning_data *tuning_data,
int tap_value, enum tap_win_edge_attr edge_attr, int tap_hole)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data;
if (edge_attr == WIN_EDGE_BOUN_END) {
tap_value = (tap_value * tuning_data->calc_values.t2t_vmax) /
tuning_data->calc_values.t2t_vmin;
tap_value -= (1000 / tuning_data->calc_values.t2t_vmin);
} else if (edge_attr == WIN_EDGE_HOLE) {
if (tap_hole > 0)
tap_value = tap_hole;
if (soc_data->nvquirks & NVQUIRK_TMP_VAR_1_5_TAP_MARGIN)
tap_value -= ((7 * tap_hole) / 100) + 2;
else
tap_value -= ((7 * tap_hole) / 100) +
(((2 * (450 / tuning_data->calc_values.t2t_vmin))
+ 1) / 2);
}
return tap_value;
}
static int adjust_window_boundaries(struct sdhci_host *sdhci,
struct tegra_tuning_data *tuning_data,
struct tap_window_data *temp_tap_data)
{
struct tap_window_data *tap_data;
int vmin_tap_hole = 0;
int vmax_tap_hole = 0;
u8 i = 0;
for (i = 0; i < tuning_data->num_of_valid_tap_wins; i++) {
tap_data = &temp_tap_data[i];
/* Update with next hole if first hole is taken care of */
if (tap_data->win_start_attr == WIN_EDGE_HOLE)
vmax_tap_hole = tuning_data->calc_values.vmax_thole +
(tap_data->hole_pos - 1) *
tuning_data->calc_values.ui;
tap_data->win_start = slide_window_start(sdhci, tuning_data,
tap_data->win_start, tap_data->win_start_attr,
vmax_tap_hole);
/* Update with next hole if first hole is taken care of */
if (tap_data->win_end_attr == WIN_EDGE_HOLE)
vmin_tap_hole = tuning_data->calc_values.vmin_thole +
(tap_data->hole_pos - 1) *
tuning_data->calc_values.ui_vmin;
tap_data->win_end = slide_window_end(sdhci, tuning_data,
tap_data->win_end, tap_data->win_end_attr,
vmin_tap_hole);
}
pr_info("***********final tuning windows**********\n");
for (i = 0; i < tuning_data->num_of_valid_tap_wins; i++) {
tap_data = &temp_tap_data[i];
pr_info("win[%d]: %d - %d\n", i, tap_data->win_start,
tap_data->win_end);
}
pr_info("********************************\n");
return 0;
}
static int find_best_tap_value(struct tegra_tuning_data *tuning_data,
struct tap_window_data *temp_tap_data, int vmin)
{
struct tap_window_data *tap_data;
u8 i = 0, sel_win = 0;
int pref_win = 0, curr_win_size = 0;
int best_tap_value = 0;
for (i = 0; i < tuning_data->num_of_valid_tap_wins; i++) {
tap_data = &temp_tap_data[i];
if (!i && tuning_data->is_partial_win_valid) {
pref_win = tap_data->win_end - tap_data->win_start;
if ((tap_data->win_end * 2) < pref_win)
pref_win = tap_data->win_end * 2;
sel_win = 0;
} else {
curr_win_size = tap_data->win_end - tap_data->win_start;
if ((curr_win_size > 0) && (curr_win_size > pref_win)) {
pref_win = curr_win_size;
sel_win = i;
}
}
}
if (pref_win <= 0) {
pr_err("No window opening for %d vmin\n", vmin);
return -1;
}
tap_data = &temp_tap_data[sel_win];
if (!sel_win && tuning_data->is_partial_win_valid) {
i = sel_win;
best_tap_value = tap_data->win_end - (pref_win / 2);
if (best_tap_value < 0)
best_tap_value = 0;
} else {
best_tap_value = tap_data->win_start +
((tap_data->win_end - tap_data->win_start) *
tuning_data->calc_values.t2t_vmin) /
(tuning_data->calc_values.t2t_vmin +
tuning_data->calc_values.t2t_vmax);
}
pr_info("best tap win - (%d-%d), best tap value %d\n",
tap_data->win_start, tap_data->win_end, best_tap_value);
return best_tap_value;
}
static int sdhci_tegra_calculate_best_tap(struct sdhci_host *sdhci,
struct tegra_tuning_data *tuning_data)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
struct tap_window_data *temp_tap_data = NULL;
int vmin, curr_vmin, best_tap_value = 0;
int err = 0;
curr_vmin = tegra_dvfs_predict_millivolts(pltfm_host->clk,
tuning_data->freq_hz);
if (!curr_vmin)
curr_vmin = tegra_host->boot_vcore_mv;
vmin = curr_vmin;
do {
SDHCI_TEGRA_DBG("%s: checking for win opening with vmin %d\n",
mmc_hostname(sdhci->mmc), vmin);
if ((best_tap_value < 0) &&
(vmin > tegra_host->boot_vcore_mv)) {
dev_err(mmc_dev(sdhci->mmc),
"No best tap for any vcore range\n");
kfree(temp_tap_data);
temp_tap_data = NULL;
return -EINVAL;
}
calculate_vmin_values(sdhci, tuning_data, vmin,
tegra_host->boot_vcore_mv);
if (temp_tap_data == NULL) {
temp_tap_data = kzalloc(sizeof(struct tap_window_data) *
tuning_data->num_of_valid_tap_wins, GFP_KERNEL);
if (IS_ERR_OR_NULL(temp_tap_data)) {
dev_err(mmc_dev(sdhci->mmc),
"No memory for final tap value calculation\n");
return -ENOMEM;
}
}
memcpy(temp_tap_data, tuning_data->final_tap_data,
sizeof(struct tap_window_data) *
tuning_data->num_of_valid_tap_wins);
adjust_window_boundaries(sdhci, tuning_data, temp_tap_data);
best_tap_value = find_best_tap_value(tuning_data,
temp_tap_data, vmin);
if (best_tap_value < 0)
vmin += 50;
} while (best_tap_value < 0);
tuning_data->best_tap_value = best_tap_value;
tuning_data->nom_best_tap_value = best_tap_value;
/*
* Set the new vmin if there is any change. If dvfs overrides are
* disabled, then print the error message but continue execution
* rather than disabling tuning altogether.
*/
if ((tuning_data->best_tap_value >= 0) && (curr_vmin != vmin)) {
err = tegra_dvfs_set_fmax_at_vmin(pltfm_host->clk,
tuning_data->freq_hz, vmin);
if ((err == -EPERM) || (err == -ENOSYS)) {
/*
* tegra_dvfs_set_fmax_at_vmin: will return EPERM or
* ENOSYS, when DVFS override is not enabled, continue
* tuning with default core voltage.
*/
SDHCI_TEGRA_DBG(
"dvfs overrides disabled. Vmin not updated\n");
err = 0;
}
}
kfree(temp_tap_data);
return err;
}
static int sdhci_tegra_issue_tuning_cmd(struct sdhci_host *sdhci)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
int err = 0;
u8 ctrl;
u32 mask;
unsigned int timeout = 10;
int flags;
u32 intstatus;
mask = SDHCI_CMD_INHIBIT | SDHCI_DATA_INHIBIT;
while (sdhci_readl(sdhci, SDHCI_PRESENT_STATE) & mask) {
if (timeout == 0) {
dev_err(mmc_dev(sdhci->mmc), "Controller never"
"released inhibit bit(s).\n");
err = -ETIMEDOUT;
goto out;
}
timeout--;
mdelay(1);
}
ctrl = sdhci_readb(sdhci, SDHCI_HOST_CONTROL2);
ctrl &= ~SDHCI_CTRL_TUNED_CLK;
sdhci_writeb(sdhci, ctrl, SDHCI_HOST_CONTROL2);
ctrl = sdhci_readb(sdhci, SDHCI_HOST_CONTROL2);
ctrl |= SDHCI_CTRL_EXEC_TUNING;
sdhci_writeb(sdhci, ctrl, SDHCI_HOST_CONTROL2);
/*
* In response to CMD19, the card sends 64 bytes of tuning
* block to the Host Controller. So we set the block size
* to 64 here.
* In response to CMD21, the card sends 128 bytes of tuning
* block for MMC_BUS_WIDTH_8 and 64 bytes for MMC_BUS_WIDTH_4
* to the Host Controller. So we set the block size to 64 here.
*/
sdhci_writew(sdhci, SDHCI_MAKE_BLKSZ(7, tegra_host->tuning_bsize),
SDHCI_BLOCK_SIZE);
sdhci_writeb(sdhci, 0xE, SDHCI_TIMEOUT_CONTROL);
sdhci_writew(sdhci, SDHCI_TRNS_READ, SDHCI_TRANSFER_MODE);
sdhci_writel(sdhci, 0x0, SDHCI_ARGUMENT);
/* Set the cmd flags */
flags = SDHCI_CMD_RESP_SHORT | SDHCI_CMD_CRC | SDHCI_CMD_DATA;
/* Issue the command */
sdhci_writew(sdhci, SDHCI_MAKE_CMD(
tegra_host->tuning_opcode, flags), SDHCI_COMMAND);
timeout = 5;
do {
timeout--;
mdelay(1);
intstatus = sdhci_readl(sdhci, SDHCI_INT_STATUS);
if (intstatus) {
sdhci_writel(sdhci, intstatus, SDHCI_INT_STATUS);
break;
}
} while(timeout);
if ((intstatus & SDHCI_INT_DATA_AVAIL) &&
!(intstatus & SDHCI_INT_DATA_CRC)) {
err = 0;
sdhci->tuning_done = 1;
} else {
tegra_sdhci_reset(sdhci, SDHCI_RESET_DATA);
tegra_sdhci_reset(sdhci, SDHCI_RESET_CMD);
err = -EIO;
}
if (sdhci->tuning_done) {
sdhci->tuning_done = 0;
ctrl = sdhci_readb(sdhci, SDHCI_HOST_CONTROL2);
if (!(ctrl & SDHCI_CTRL_EXEC_TUNING) &&
(ctrl & SDHCI_CTRL_TUNED_CLK))
err = 0;
else
err = -EIO;
}
mdelay(1);
out:
return err;
}
static int sdhci_tegra_scan_tap_values(struct sdhci_host *sdhci,
unsigned int starting_tap, bool expect_failure)
{
unsigned int tap_value = starting_tap;
int err;
unsigned int retry = TUNING_RETRIES;
do {
/* Set the tap delay */
sdhci_tegra_set_tap_delay(sdhci, tap_value);
/* Run frequency tuning */
err = sdhci_tegra_issue_tuning_cmd(sdhci);
if (err && retry) {
retry--;
continue;
} else {
retry = TUNING_RETRIES;
if ((expect_failure && !err) ||
(!expect_failure && err))
break;
}
tap_value++;
} while (tap_value <= MAX_TAP_VALUES);
return tap_value;
}
static int calculate_actual_tuning_values(int speedo,
struct tegra_tuning_data *tuning_data, int voltage_mv)
{
struct tuning_t2t_coeffs *t2t_coeffs = tuning_data->t2t_coeffs;
struct tap_hole_coeffs *thole_coeffs = tuning_data->thole_coeffs;
struct tuning_values *calc_values = &tuning_data->calc_values;
int slope, inpt;
int vmax_thole, vmin_thole;
/* T2T_Vmax = (1000000/freq_MHz)/Calc_UI */
calc_values->t2t_vmax = (1000000 / (tuning_data->freq_hz / 1000000)) /
calc_values->ui;
/*
* Interpolate the tap hole.
* Vmax_1'st_hole = (Calc_T2T_Vmax*(-thole_slope)+thole_tint.
*/
vmax_thole = (thole_coeffs->thole_vmax_int -
(thole_coeffs->thole_vmax_slope * calc_values->t2t_vmax)) /
1000;
vmin_thole = (thole_coeffs->thole_vmin_int -
(thole_coeffs->thole_vmin_slope * calc_values->t2t_vmax)) /
1000;
if (voltage_mv == t2t_coeffs->vmin) {
calc_values->vmax_thole = vmin_thole;
} else if (voltage_mv == t2t_coeffs->vmax) {
calc_values->vmax_thole = vmax_thole;
} else {
slope = (vmax_thole - vmin_thole) /
(t2t_coeffs->vmax - t2t_coeffs->vmin);
inpt = ((vmax_thole * 1000) - (slope * 1250)) / 1000;
calc_values->vmax_thole = slope * voltage_mv + inpt;
}
return 0;
}
/*
* All coeffs are filled up in the table after multiplying by 1000. So, all
* calculations should have a divide by 1000 at the end.
*/
static int calculate_estimated_tuning_values(int speedo,
struct tegra_tuning_data *tuning_data, int voltage_mv)
{
struct tuning_t2t_coeffs *t2t_coeffs = tuning_data->t2t_coeffs;
struct tap_hole_coeffs *thole_coeffs = tuning_data->thole_coeffs;
struct tuning_values *est_values = &tuning_data->est_values;
int slope, inpt;
int vmax_t2t, vmin_t2t;
int vmax_thole, vmin_thole;
/* Est_T2T_Vmax = (speedo*(-t2t_slope)+t2t_int */
vmax_t2t = (t2t_coeffs->t2t_vmax_int - (speedo *
t2t_coeffs->t2t_vmax_slope)) / 1000;
vmin_t2t = (t2t_coeffs->t2t_vmin_int - (speedo *
t2t_coeffs->t2t_vmin_slope)) / 1000;
est_values->t2t_vmin = vmin_t2t;
if (voltage_mv == t2t_coeffs->vmin) {
est_values->t2t_vmax = vmin_t2t;
} else if (voltage_mv == t2t_coeffs->vmax) {
est_values->t2t_vmax = vmax_t2t;
} else {
vmax_t2t = 1000 / vmax_t2t;
vmin_t2t = 1000 / vmin_t2t;
/*
* For any intermediate voltage between 0.95V and 1.25V,
* calculate the slope and intercept from the T2T and tap hole
* values of 0.95V and 1.25V and use them to calculate the
* actual values. 1/T2T is a linear function of voltage.
*/
slope = ((vmax_t2t - vmin_t2t) * 1000) /
(t2t_coeffs->vmax - t2t_coeffs->vmin);
inpt = (vmax_t2t * 1000 - (slope * t2t_coeffs->vmax)) / 1000;
est_values->t2t_vmax = (slope * voltage_mv) / 1000 + inpt;
est_values->t2t_vmax = (1000 / est_values->t2t_vmax);
}
/* Est_UI = (1000000/freq_MHz)/Est_T2T_Vmax */
est_values->ui = (1000000 / (thole_coeffs->freq_khz / 1000)) /
est_values->t2t_vmax;
/*
* Est_1'st_hole = (Est_T2T_Vmax*(-thole_slope)) + thole_int.
*/
vmax_thole = (thole_coeffs->thole_vmax_int -
(thole_coeffs->thole_vmax_slope * est_values->t2t_vmax)) / 1000;
vmin_thole = (thole_coeffs->thole_vmin_int -
(thole_coeffs->thole_vmin_slope * est_values->t2t_vmax)) / 1000;
if (voltage_mv == t2t_coeffs->vmin) {
est_values->vmax_thole = vmin_thole;
} else if (voltage_mv == t2t_coeffs->vmax) {
est_values->vmax_thole = vmax_thole;
} else {
/*
* For any intermediate voltage between 0.95V and 1.25V,
* calculate the slope and intercept from the t2t and tap hole
* values of 0.95V and 1.25V and use them to calculate the
* actual values. Tap hole is a linear function of voltage.
*/
slope = ((vmax_thole - vmin_thole) * 1000) /
(t2t_coeffs->vmax - t2t_coeffs->vmin);
inpt = (vmax_thole * 1000 - (slope * t2t_coeffs->vmax)) / 1000;
est_values->vmax_thole = (slope * voltage_mv) / 1000 + inpt;
}
est_values->vmin_thole = vmin_thole;
return 0;
}
/*
* Insert the calculated holes and get the final tap windows
* with the boundaries and holes set.
*/
static int adjust_holes_in_tap_windows(struct sdhci_host *sdhci,
struct tegra_tuning_data *tuning_data)
{
struct tap_window_data *tap_data;
struct tap_window_data *final_tap_data;
struct tuning_values *calc_values = &tuning_data->calc_values;
int tap_hole, size = 0;
u8 i = 0, j = 0, num_of_wins, hole_pos = 0;
tuning_data->final_tap_data =
devm_kzalloc(mmc_dev(sdhci->mmc),
sizeof(struct tap_window_data) * 42, GFP_KERNEL);
if (IS_ERR_OR_NULL(tuning_data->final_tap_data)) {
dev_err(mmc_dev(sdhci->mmc), "No mem for final tap wins\n");
return -ENOMEM;
}
num_of_wins = tuning_data->num_of_valid_tap_wins;
tap_hole = calc_values->vmax_thole;
hole_pos++;
do {
tap_data = &tuning_data->tap_data[i];
final_tap_data = &tuning_data->final_tap_data[j];
if (tap_hole < tap_data->win_start) {
tap_hole += calc_values->ui;
hole_pos++;
continue;
} else if (tap_hole > tap_data->win_end) {
memcpy(final_tap_data, tap_data,
sizeof(struct tap_window_data));
i++;
j++;
num_of_wins--;
continue;
} else if ((tap_hole >= tap_data->win_start) &&
(tap_hole <= tap_data->win_end)) {
size = tap_data->win_end - tap_data->win_start;
do {
final_tap_data =
&tuning_data->final_tap_data[j];
if (tap_hole == tap_data->win_start) {
final_tap_data->win_start =
tap_hole + 1;
final_tap_data->win_start_attr =
WIN_EDGE_HOLE;
final_tap_data->hole_pos = hole_pos;
tap_hole += calc_values->ui;
hole_pos++;
} else {
final_tap_data->win_start =
tap_data->win_start;
final_tap_data->win_start_attr =
WIN_EDGE_BOUN_START;
}
if (tap_hole <= tap_data->win_end) {
final_tap_data->win_end = tap_hole - 1;
final_tap_data->win_end_attr =
WIN_EDGE_HOLE;
final_tap_data->hole_pos = hole_pos;
tap_data->win_start = tap_hole;
} else if (tap_hole > tap_data->win_end) {
final_tap_data->win_end =
tap_data->win_end;
final_tap_data->win_end_attr =
WIN_EDGE_BOUN_END;
tap_data->win_start =
tap_data->win_end;
}
size = tap_data->win_end - tap_data->win_start;
j++;
} while (size > 0);
i++;
num_of_wins--;
}
} while (num_of_wins > 0);
/* Update the num of valid wins count after tap holes insertion */
tuning_data->num_of_valid_tap_wins = j;
pr_info("********tuning windows after inserting holes*****\n");
pr_info("WIN_ATTR legend: 0-BOUN_ST, 1-BOUN_END, 2-HOLE\n");
for (i = 0; i < tuning_data->num_of_valid_tap_wins; i++) {
final_tap_data = &tuning_data->final_tap_data[i];
pr_info("win[%d]:%d(%d) - %d(%d)\n", i,
final_tap_data->win_start,
final_tap_data->win_start_attr,
final_tap_data->win_end, final_tap_data->win_end_attr);
}
pr_info("***********************************************\n");
return 0;
}
/*
* Insert the boundaries from negative margin calculations into the windows
* from auto tuning.
*/
static int insert_boundaries_in_tap_windows(struct sdhci_host *sdhci,
struct tegra_tuning_data *tuning_data, u8 boun_end)
{
struct tap_window_data *tap_data;
struct tap_window_data *new_tap_data;
struct tap_window_data *temp_tap_data;
struct tuning_values *calc_values = &tuning_data->calc_values;
int curr_boun;
u8 i = 0, j = 0, num_of_wins;
bool get_next_boun = false;
temp_tap_data = devm_kzalloc(mmc_dev(sdhci->mmc),
sizeof(struct tap_window_data) * 42, GFP_KERNEL);
if (IS_ERR_OR_NULL(temp_tap_data)) {
dev_err(mmc_dev(sdhci->mmc), "No mem for final tap wins\n");
return -ENOMEM;
}
num_of_wins = tuning_data->num_of_valid_tap_wins;
curr_boun = boun_end % calc_values->ui;
do {
if (get_next_boun) {
curr_boun += calc_values->ui;
/*
* If the boun_end exceeds the intial boundary end,
* just copy remaining windows and return.
*/
if (curr_boun >= boun_end)
curr_boun += MAX_TAP_VALUES;
}
tap_data = &tuning_data->tap_data[i];
new_tap_data = &temp_tap_data[j];
if (curr_boun <= tap_data->win_start) {
get_next_boun = true;
continue;
} else if (curr_boun >= tap_data->win_end) {
memcpy(new_tap_data, tap_data,
sizeof(struct tap_window_data));
i++;
j++;
num_of_wins--;
get_next_boun = false;
continue;
} else if ((curr_boun >= tap_data->win_start) &&
(curr_boun <= tap_data->win_end)) {
new_tap_data->win_start = tap_data->win_start;
new_tap_data->win_start_attr =
tap_data->win_start_attr;
new_tap_data->win_end = curr_boun - 1;
new_tap_data->win_end_attr =
tap_data->win_end_attr;
j++;
new_tap_data = &temp_tap_data[j];
new_tap_data->win_start = curr_boun;
new_tap_data->win_end = curr_boun;
new_tap_data->win_start_attr =
WIN_EDGE_BOUN_START;
new_tap_data->win_end_attr =
WIN_EDGE_BOUN_END;
j++;
new_tap_data = &temp_tap_data[j];
new_tap_data->win_start = curr_boun + 1;
new_tap_data->win_start_attr = WIN_EDGE_BOUN_START;
new_tap_data->win_end = tap_data->win_end;
new_tap_data->win_end_attr =
tap_data->win_end_attr;
i++;
j++;
num_of_wins--;
get_next_boun = true;
}
} while (num_of_wins > 0);
/* Update the num of valid wins count after tap holes insertion */
tuning_data->num_of_valid_tap_wins = j;
memcpy(tuning_data->tap_data, temp_tap_data,
j * sizeof(struct tap_window_data));
SDHCI_TEGRA_DBG("***tuning windows after inserting boundaries***\n");
SDHCI_TEGRA_DBG("WIN_ATTR legend: 0-BOUN_ST, 1-BOUN_END, 2-HOLE\n");
for (i = 0; i < tuning_data->num_of_valid_tap_wins; i++) {
new_tap_data = &tuning_data->tap_data[i];
SDHCI_TEGRA_DBG("win[%d]:%d(%d) - %d(%d)\n", i,
new_tap_data->win_start,
new_tap_data->win_start_attr,
new_tap_data->win_end, new_tap_data->win_end_attr);
}
SDHCI_TEGRA_DBG("***********************************************\n");
return 0;
}
/*
* Scan for all tap values and get all passing tap windows.
*/
static int sdhci_tegra_get_tap_window_data(struct sdhci_host *sdhci,
struct tegra_tuning_data *tuning_data)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
struct tap_window_data *tap_data;
struct tuning_ui tuning_ui[10];
int err = 0, partial_win_start = 0, temp_margin = 0;
unsigned int tap_value, calc_ui = 0;
u8 prev_boundary_end = 0, num_of_wins = 0;
u8 num_of_uis = 0, valid_num_uis = 0;
u8 ref_ui, first_valid_full_win = 0;
u8 boun_end = 0, next_boun_end = 0;
u8 j = 0;
bool valid_ui_found = false;
/*
* Assume there are a max of 10 windows and allocate tap window
* structures for the same. If there are more windows, the array
* size can be adjusted later using realloc.
*/
tuning_data->tap_data = devm_kzalloc(mmc_dev(sdhci->mmc),
sizeof(struct tap_window_data) * 42, GFP_KERNEL);
if (IS_ERR_OR_NULL(tuning_data->tap_data)) {
dev_err(mmc_dev(sdhci->mmc), "No memory for tap data\n");
return -ENOMEM;
}
spin_lock(&sdhci->lock);
tap_value = 0;
do {
tap_data = &tuning_data->tap_data[num_of_wins];
/* Get the window start */
tap_value = sdhci_tegra_scan_tap_values(sdhci, tap_value, true);
tap_data->win_start = min_t(u8, tap_value, MAX_TAP_VALUES);
tap_value++;
if (tap_value >= MAX_TAP_VALUES) {
/* If it's first iteration, then all taps failed */
if (!num_of_wins) {
dev_err(mmc_dev(sdhci->mmc),
"All tap values(0-255) failed\n");
spin_unlock(&sdhci->lock);
return -EINVAL;
} else {
/* All windows obtained */
break;
}
}
/* Get the window end */
tap_value = sdhci_tegra_scan_tap_values(sdhci,
tap_value, false);
tap_data->win_end = min_t(u8, (tap_value - 1), MAX_TAP_VALUES);
tap_data->win_size = tap_data->win_end - tap_data->win_start;
tap_value++;
/*
* If the size of window is more than 4 taps wide, then it is a
* valid window. If tap value 0 has passed, then a partial
* window exists. Mark all the window edges as boundary edges.
*/
if (tap_data->win_size > 4) {
if (tap_data->win_start == 0)
tuning_data->is_partial_win_valid = true;
tap_data->win_start_attr = WIN_EDGE_BOUN_START;
tap_data->win_end_attr = WIN_EDGE_BOUN_END;
} else {
/* Invalid window as size is less than 5 taps */
SDHCI_TEGRA_DBG("Invalid tuning win (%d-%d) ignored\n",
tap_data->win_start, tap_data->win_end);
continue;
}
/* Ignore first and last partial UIs */
if (tap_data->win_end_attr == WIN_EDGE_BOUN_END) {
tuning_ui[num_of_uis].ui = tap_data->win_end -
prev_boundary_end;
tuning_ui[num_of_uis].is_valid_ui = true;
num_of_uis++;
prev_boundary_end = tap_data->win_end;
}
num_of_wins++;
} while (tap_value < MAX_TAP_VALUES);
spin_unlock(&sdhci->lock);
tuning_data->num_of_valid_tap_wins = num_of_wins;
valid_num_uis = num_of_uis;
/* Print info of all tap windows */
pr_info("**********Auto tuning windows*************\n");
pr_info("WIN_ATTR legend: 0-BOUN_ST, 1-BOUN_END, 2-HOLE\n");
for (j = 0; j < tuning_data->num_of_valid_tap_wins; j++) {
tap_data = &tuning_data->tap_data[j];
pr_info("win[%d]: %d(%d) - %d(%d)\n",
j, tap_data->win_start, tap_data->win_start_attr,
tap_data->win_end, tap_data->win_end_attr);
}
pr_info("***************************************\n");
/* Mark the first last partial UIs as invalid */
tuning_ui[0].is_valid_ui = false;
tuning_ui[num_of_uis - 1].is_valid_ui = false;
valid_num_uis -= 2;
/* Discredit all uis at either end with size less than 30% of est ui */
ref_ui = (30 * tuning_data->est_values.ui) / 100;
for (j = 0; j < num_of_uis; j++) {
if (tuning_ui[j].is_valid_ui) {
tuning_ui[j].is_valid_ui = false;
valid_num_uis--;
}
if (tuning_ui[j].ui > ref_ui)
break;
}
for (j = num_of_uis; j > 0; j--) {
if (tuning_ui[j - 1].ui < ref_ui) {
if (tuning_ui[j - 1].is_valid_ui) {
tuning_ui[j - 1].is_valid_ui = false;
valid_num_uis--;
}
} else
break;
}
/* Calculate 0.75*est_UI */
ref_ui = (75 * tuning_data->est_values.ui) / 100;
/*
* Check for valid UIs and discredit invalid UIs. A UI is considered
* valid if it's greater than (0.75*est_UI). If an invalid UI is found,
* also discredit the smaller of the two adjacent windows.
*/
for (j = 1; j < (num_of_uis - 1); j++) {
if (tuning_ui[j].ui > ref_ui && tuning_ui[j].is_valid_ui) {
tuning_ui[j].is_valid_ui = true;
} else {
if (tuning_ui[j].is_valid_ui) {
tuning_ui[j].is_valid_ui = false;
valid_num_uis--;
}
if (!tuning_ui[j + 1].is_valid_ui ||
!tuning_ui[j - 1].is_valid_ui) {
if (tuning_ui[j - 1].is_valid_ui) {
tuning_ui[j - 1].is_valid_ui = false;
valid_num_uis--;
} else if (tuning_ui[j + 1].is_valid_ui) {
tuning_ui[j + 1].is_valid_ui = false;
valid_num_uis--;
}
} else {
if (tuning_ui[j - 1].ui > tuning_ui[j + 1].ui)
tuning_ui[j + 1].is_valid_ui = false;
else
tuning_ui[j - 1].is_valid_ui = false;
valid_num_uis--;
}
}
}
/* Calculate the cumulative UI if there are valid UIs left */
if (valid_num_uis) {
for (j = 0; j < num_of_uis; j++)
if (tuning_ui[j].is_valid_ui) {
calc_ui += tuning_ui[j].ui;
if (!first_valid_full_win)
first_valid_full_win = j;
}
}
if (calc_ui) {
tuning_data->calc_values.ui = (calc_ui / valid_num_uis);
valid_ui_found = true;
} else {
tuning_data->calc_values.ui = tuning_data->est_values.ui;
valid_ui_found = false;
}
SDHCI_TEGRA_DBG("****Tuning UIs***********\n");
for (j = 0; j < num_of_uis; j++)
SDHCI_TEGRA_DBG("Tuning UI[%d] : %d, Is valid[%d]\n",
j, tuning_ui[j].ui, tuning_ui[j].is_valid_ui);
SDHCI_TEGRA_DBG("*************************\n");
/* Get the calculated tuning values */
err = calculate_actual_tuning_values(tegra_host->speedo, tuning_data,
tegra_host->boot_vcore_mv);
/*
* Calculate negative margin if partial win is valid. There are two
* cases here.
* Case 1: If Avg_UI is found, then keep subtracting avg_ui from start
* of first valid full window until a value <=0 is obtained.
* Case 2: If Avg_UI is not found, subtract avg_ui from all boundary
* starts until a value <=0 is found.
*/
if (tuning_data->is_partial_win_valid && (num_of_wins > 1)) {
if (valid_ui_found) {
partial_win_start =
tuning_data->tap_data[first_valid_full_win].win_start;
boun_end = partial_win_start;
partial_win_start %= tuning_data->calc_values.ui;
partial_win_start -= tuning_data->calc_values.ui;
} else {
for (j = 0; j < NEG_MAR_CHK_WIN_COUNT; j++) {
temp_margin =
tuning_data->tap_data[j + 1].win_start;
if (!boun_end)
boun_end = temp_margin;
else if (!next_boun_end)
next_boun_end = temp_margin;
temp_margin %= tuning_data->calc_values.ui;
temp_margin -= tuning_data->calc_values.ui;
if (!partial_win_start ||
(temp_margin > partial_win_start))
partial_win_start = temp_margin;
}
}
if (partial_win_start <= 0)
tuning_data->tap_data[0].win_start = partial_win_start;
}
if (boun_end)
insert_boundaries_in_tap_windows(sdhci, tuning_data, boun_end);
if (next_boun_end)
insert_boundaries_in_tap_windows(sdhci, tuning_data, next_boun_end);
/* Insert calculated holes into the windows */
err = adjust_holes_in_tap_windows(sdhci, tuning_data);
return err;
}
static void sdhci_tegra_dump_tuning_constraints(struct sdhci_host *sdhci)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
struct tegra_tuning_data *tuning_data;
u8 i;
SDHCI_TEGRA_DBG("%s: Num of tuning frequencies%d\n",
mmc_hostname(sdhci->mmc), tegra_host->tuning_freq_count);
for (i = 0; i < tegra_host->tuning_freq_count; ++i) {
tuning_data = &tegra_host->tuning_data[i];
SDHCI_TEGRA_DBG("%s: Tuning freq[%d]: %d, freq band %d\n",
mmc_hostname(sdhci->mmc), i,
tuning_data->freq_hz, tuning_data->freq_band);
}
}
static unsigned int get_tuning_voltage(struct sdhci_tegra *tegra_host, u8 *mask)
{
u8 i = 0;
i = ffs(*mask) - 1;
*mask &= ~(1 << i);
switch (BIT(i)) {
case NOMINAL_VCORE_TUN:
return tegra_host->nominal_vcore_mv;
case BOOT_VCORE_TUN:
return tegra_host->boot_vcore_mv;
case MIN_OVERRIDE_VCORE_TUN:
return tegra_host->min_vcore_override_mv;
}
return tegra_host->boot_vcore_mv;
}
static u8 sdhci_tegra_get_freq_point(struct sdhci_host *sdhci)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
const unsigned int *freq_list;
u32 curr_clock;
u8 i;
curr_clock = sdhci->max_clk;
freq_list = tegra_host->soc_data->tuning_freq_list;
for (i = 0; i < TUNING_FREQ_COUNT; ++i)
if (curr_clock <= freq_list[i])
return i;
return TUNING_MAX_FREQ;
}
/*
* The frequency tuning algorithm tries to calculate the tap-to-tap delay
* UI and estimate holes using equations and predetermined coefficients from
* the characterization data. The algorithm will not work without this data.
*/
static int find_tuning_coeffs_data(struct sdhci_host *sdhci,
bool force_retuning)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data;
struct tegra_tuning_data *tuning_data;
struct tuning_t2t_coeffs *t2t_coeffs;
struct tap_hole_coeffs *thole_coeffs;
const char *dev_id;
unsigned int freq_khz;
u8 i, j;
bool coeffs_set = false;
dev_id = dev_name(mmc_dev(sdhci->mmc));
/* Find the coeffs data for all supported frequencies */
for (i = 0; i < tegra_host->tuning_freq_count; i++) {
tuning_data = &tegra_host->tuning_data[i];
/* Skip if T2T coeffs are already found */
if (tuning_data->t2t_coeffs == NULL || force_retuning) {
t2t_coeffs = soc_data->t2t_coeffs;
for (j = 0; j < soc_data->t2t_coeffs_count; j++) {
if (!strcmp(dev_id, t2t_coeffs->dev_id)) {
tuning_data->t2t_coeffs = t2t_coeffs;
coeffs_set = true;
dev_info(mmc_dev(sdhci->mmc),
"Found T2T coeffs data\n");
break;
}
t2t_coeffs++;
}
if (!coeffs_set) {
dev_err(mmc_dev(sdhci->mmc),
"T2T coeffs data missing\n");
tuning_data->t2t_coeffs = NULL;
return -ENODATA;
}
}
coeffs_set = false;
/* Skip if tap hole coeffs are already found */
if (tuning_data->thole_coeffs == NULL || force_retuning) {
thole_coeffs = soc_data->tap_hole_coeffs;
freq_khz = tuning_data->freq_hz / 1000;
for (j = 0; j < soc_data->tap_hole_coeffs_count; j++) {
if (!strcmp(dev_id, thole_coeffs->dev_id) &&
(freq_khz == thole_coeffs->freq_khz)) {
tuning_data->thole_coeffs =
thole_coeffs;
coeffs_set = true;
dev_info(mmc_dev(sdhci->mmc),
"%dMHz tap hole coeffs found\n",
(freq_khz / 1000));
break;
}
thole_coeffs++;
}
if (!coeffs_set) {
dev_err(mmc_dev(sdhci->mmc),
"%dMHz Tap hole coeffs data missing\n",
(freq_khz / 1000));
tuning_data->thole_coeffs = NULL;
return -ENODATA;
}
}
}
return 0;
}
/*
* Determines the numbers of frequencies required and then fills up the tuning
* constraints for each of the frequencies. The data of lower frequency is
* filled first and then the higher frequency data. Max supported frequencies
* is currently two.
*/
static int setup_freq_constraints(struct sdhci_host *sdhci,
const unsigned int *freq_list)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
struct tegra_tuning_data *tuning_data;
int i, freq_count;
u8 freq_band;
if ((sdhci->mmc->ios.timing != MMC_TIMING_UHS_SDR50) &&
(sdhci->mmc->caps2 & MMC_CAP2_FREQ_SCALING))
freq_count = DFS_FREQ_COUNT;
else
freq_count = 1;
freq_band = sdhci_tegra_get_freq_point(sdhci);
/* Fill up the req frequencies */
switch (freq_count) {
case 1:
tuning_data = &tegra_host->tuning_data[0];
tuning_data->freq_hz = sdhci->max_clk;
tuning_data->freq_band = freq_band;
tuning_data->constraints.vcore_mask =
tuning_vcore_constraints[freq_band].vcore_mask;
tuning_data->nr_voltages =
hweight32(tuning_data->constraints.vcore_mask);
break;
case 2:
tuning_data = &tegra_host->tuning_data[1];
tuning_data->freq_hz = sdhci->max_clk;
tuning_data->freq_band = freq_band;
tuning_data->constraints.vcore_mask =
tuning_vcore_constraints[freq_band].vcore_mask;
tuning_data->nr_voltages =
hweight32(tuning_data->constraints.vcore_mask);
tuning_data = &tegra_host->tuning_data[0];
for (i = (freq_band - 1); i >= 0; i--) {
if (!freq_list[i])
continue;
tuning_data->freq_hz = freq_list[i];
tuning_data->freq_band = i;
tuning_data->nr_voltages = 1;
tuning_data->constraints.vcore_mask =
tuning_vcore_constraints[i].vcore_mask;
tuning_data->nr_voltages =
hweight32(tuning_data->constraints.vcore_mask);
}
break;
default:
dev_err(mmc_dev(sdhci->mmc), "Unsupported freq count\n");
freq_count = -1;
}
return freq_count;
}
/*
* Get the supported frequencies and other tuning related constraints for each
* frequency. The supported frequencies should be determined from the list of
* frequencies in the soc data and also consider the platform clock limits as
* well as any DFS related restrictions.
*/
static int sdhci_tegra_get_tuning_constraints(struct sdhci_host *sdhci,
bool force_retuning)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
const unsigned int *freq_list;
int err = 0;
/* A valid freq count means freq constraints are already set up */
if (!tegra_host->tuning_freq_count || force_retuning) {
freq_list = tegra_host->soc_data->tuning_freq_list;
tegra_host->tuning_freq_count =
setup_freq_constraints(sdhci, freq_list);
if (tegra_host->tuning_freq_count < 0) {
dev_err(mmc_dev(sdhci->mmc),
"Invalid tuning freq count\n");
return -EINVAL;
}
}
err = find_tuning_coeffs_data(sdhci, force_retuning);
if (err)
return err;
sdhci_tegra_dump_tuning_constraints(sdhci);
return err;
}
/*
* During boot, only boot voltage for vcore can be set. Check if the current
* voltage is allowed to be used. Nominal and min override voltages can be
* set once boot is done. This will be notified through late subsys init call.
*/
static int sdhci_tegra_set_tuning_voltage(struct sdhci_host *sdhci,
unsigned int voltage)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
int err = 0;
bool nom_emc_freq_set = false;
if (voltage && (voltage != tegra_host->boot_vcore_mv) &&
!vcore_overrides_allowed) {
SDHCI_TEGRA_DBG("%s: Override vcore %dmv not allowed\n",
mmc_hostname(sdhci->mmc), voltage);
return -EPERM;
}
SDHCI_TEGRA_DBG("%s: Setting vcore override %d\n",
mmc_hostname(sdhci->mmc), voltage);
/*
* First clear any previous dvfs override settings. If dvfs overrides
* are disabled, then print the error message but continue execution
* rather than failing tuning altogether.
*/
err = tegra_dvfs_override_core_voltage(pltfm_host->clk, 0);
if ((err == -EPERM) || (err == -ENOSYS)) {
/*
* tegra_dvfs_override_core_voltage will return EPERM or ENOSYS,
* when DVFS override is not enabled. Continue tuning
* with default core voltage
*/
SDHCI_TEGRA_DBG("dvfs overrides disabled. Nothing to clear\n");
err = 0;
}
if (!voltage)
return err;
/* EMC clock freq boost might be required for nominal core voltage */
if ((voltage == tegra_host->nominal_vcore_mv) &&
tegra_host->plat->en_nominal_vcore_tuning &&
tegra_host->emc_clk) {
err = clk_set_rate(tegra_host->emc_clk,
SDMMC_EMC_NOM_VOLT_FREQ);
if (err)
dev_err(mmc_dev(sdhci->mmc),
"Failed to set emc nom clk freq %d\n", err);
else
nom_emc_freq_set = true;
}
/*
* If dvfs overrides are disabled, then print the error message but
* continue tuning execution rather than failing tuning altogether.
*/
err = tegra_dvfs_override_core_voltage(pltfm_host->clk, voltage);
if ((err == -EPERM) || (err == -ENOSYS)) {
/*
* tegra_dvfs_override_core_voltage will return EPERM or ENOSYS,
* when DVFS override is not enabled. Continue tuning
* with default core voltage
*/
SDHCI_TEGRA_DBG("dvfs overrides disabled. No overrides set\n");
err = 0;
} else if (err)
dev_err(mmc_dev(sdhci->mmc),
"failed to set vcore override %dmv\n", voltage);
/* Revert emc clock to normal freq */
if (nom_emc_freq_set) {
err = clk_set_rate(tegra_host->emc_clk, SDMMC_EMC_MAX_FREQ);
if (err)
dev_err(mmc_dev(sdhci->mmc),
"Failed to revert emc nom clk freq %d\n", err);
}
return err;
}
static int sdhci_tegra_run_tuning(struct sdhci_host *sdhci,
struct tegra_tuning_data *tuning_data)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
int err = 0;
int voltage = 0;
u8 i, vcore_mask = 0;
vcore_mask = tuning_data->constraints.vcore_mask;
for (i = 0; i < tuning_data->nr_voltages; i++) {
voltage = get_tuning_voltage(tegra_host, &vcore_mask);
err = sdhci_tegra_set_tuning_voltage(sdhci, voltage);
if (err) {
dev_err(mmc_dev(sdhci->mmc),
"Unable to set override voltage.\n");
return err;
}
/* Get the tuning window info */
SDHCI_TEGRA_DBG("Getting tuning windows...\n");
err = sdhci_tegra_get_tap_window_data(sdhci, tuning_data);
if (err) {
dev_err(mmc_dev(sdhci->mmc),
"Failed to get tap win %d\n", err);
return err;
}
SDHCI_TEGRA_DBG("%s: %d tuning window data obtained\n",
mmc_hostname(sdhci->mmc), tuning_data->freq_hz);
}
return err;
}
static int sdhci_tegra_verify_best_tap(struct sdhci_host *sdhci)
{
struct tegra_tuning_data *tuning_data;
int err = 0;
tuning_data = sdhci_tegra_get_tuning_data(sdhci, sdhci->max_clk);
if ((tuning_data->best_tap_value < 0) ||
(tuning_data->best_tap_value > MAX_TAP_VALUES)) {
dev_err(mmc_dev(sdhci->mmc),
"Trying to verify invalid best tap value\n");
return -EINVAL;
} else {
dev_info(mmc_dev(sdhci->mmc),
"%s: tuning freq %dhz, best tap %d\n",
__func__, tuning_data->freq_hz,
tuning_data->best_tap_value);
}
/* Set the best tap value */
sdhci_tegra_set_tap_delay(sdhci, tuning_data->best_tap_value);
/* Run tuning after setting the best tap value */
err = sdhci_tegra_issue_tuning_cmd(sdhci);
if (err)
dev_err(mmc_dev(sdhci->mmc),
"%dMHz best tap value verification failed %d\n",
tuning_data->freq_hz, err);
return err;
}
static int sdhci_tegra_execute_tuning(struct sdhci_host *sdhci, u32 opcode)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
struct tegra_tuning_data *tuning_data;
const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data;
int err;
u16 ctrl_2;
u32 misc_ctrl;
u32 ier;
u8 i, set_retuning = 0;
bool force_retuning = false;
bool enable_lb_clk;
/* Tuning is valid only in SDR104 and SDR50 modes */
ctrl_2 = sdhci_readw(sdhci, SDHCI_HOST_CONTROL2);
if (!(((ctrl_2 & SDHCI_CTRL_UHS_MASK) == SDHCI_CTRL_UHS_SDR104) ||
(((ctrl_2 & SDHCI_CTRL_UHS_MASK) == SDHCI_CTRL_UHS_SDR50) &&
(sdhci->flags & SDHCI_SDR50_NEEDS_TUNING))))
return 0;
/* Tuning should be done only for MMC_BUS_WIDTH_8 and MMC_BUS_WIDTH_4 */
if (sdhci->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
tegra_host->tuning_bsize = MMC_TUNING_BLOCK_SIZE_BUS_WIDTH_8;
else if (sdhci->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
tegra_host->tuning_bsize = MMC_TUNING_BLOCK_SIZE_BUS_WIDTH_4;
else
return -EINVAL;
SDHCI_TEGRA_DBG("%s: Starting freq tuning\n", mmc_hostname(sdhci->mmc));
enable_lb_clk = (soc_data->nvquirks &
NVQUIRK_DISABLE_EXTERNAL_LOOPBACK) &&
(tegra_host->instance == 2);
if (enable_lb_clk) {
misc_ctrl = sdhci_readl(sdhci, SDHCI_VNDR_MISC_CTRL);
misc_ctrl &= ~(1 <<
SDHCI_VNDR_MISC_CTRL_EN_EXT_LOOPBACK_SHIFT);
sdhci_writel(sdhci, misc_ctrl, SDHCI_VNDR_MISC_CTRL);
}
mutex_lock(&tuning_mutex);
/* Set the tuning command to be used */
tegra_host->tuning_opcode = opcode;
/*
* Disable all interrupts signalling.Enable interrupt status
* detection for buffer read ready and data crc. We use
* polling for tuning as it involves less overhead.
*/
ier = sdhci_readl(sdhci, SDHCI_INT_ENABLE);
sdhci_writel(sdhci, 0, SDHCI_SIGNAL_ENABLE);
sdhci_writel(sdhci, SDHCI_INT_DATA_AVAIL |
SDHCI_INT_DATA_CRC, SDHCI_INT_ENABLE);
/*
* If tuning is already done and retune request is not set, then skip
* best tap value calculation and use the old best tap value. If the
* previous best tap value verification failed, force retuning.
*/
if (tegra_host->tuning_status == TUNING_STATUS_DONE) {
err = sdhci_tegra_verify_best_tap(sdhci);
if (err) {
dev_err(mmc_dev(sdhci->mmc),
"Prev best tap failed. Re-running tuning\n");
force_retuning = true;
} else {
goto out;
}
}
if (tegra_host->force_retune == true) {
force_retuning = true;
tegra_host->force_retune = false;
}
tegra_host->tuning_status = 0;
err = sdhci_tegra_get_tuning_constraints(sdhci, force_retuning);
if (err) {
dev_err(mmc_dev(sdhci->mmc),
"Failed to get tuning constraints\n");
goto out;
}
for (i = 0; i < tegra_host->tuning_freq_count; i++) {
tuning_data = &tegra_host->tuning_data[i];
if (tuning_data->tuning_done && !force_retuning)
continue;
SDHCI_TEGRA_DBG("%s: Setting tuning freq%d\n",
mmc_hostname(sdhci->mmc), tuning_data->freq_hz);
tegra_sdhci_set_clock(sdhci, tuning_data->freq_hz);
SDHCI_TEGRA_DBG("%s: Calculating estimated tuning values\n",
mmc_hostname(sdhci->mmc));
err = calculate_estimated_tuning_values(tegra_host->speedo,
tuning_data, tegra_host->boot_vcore_mv);
if (err)
goto out;
SDHCI_TEGRA_DBG("Running tuning...\n");
err = sdhci_tegra_run_tuning(sdhci, tuning_data);
if (err)
goto out;
SDHCI_TEGRA_DBG("calculating best tap value\n");
err = sdhci_tegra_calculate_best_tap(sdhci, tuning_data);
if (err)
goto out;
err = sdhci_tegra_verify_best_tap(sdhci);
if (!err && !set_retuning) {
tuning_data->tuning_done = true;
tegra_host->tuning_status |= TUNING_STATUS_DONE;
} else {
tegra_host->tuning_status |= TUNING_STATUS_RETUNE;
}
}
out:
/* Release any override core voltages set */
sdhci_tegra_set_tuning_voltage(sdhci, 0);
/* Enable interrupts. Enable full range for core voltage */
sdhci_writel(sdhci, ier, SDHCI_INT_ENABLE);
sdhci_writel(sdhci, ier, SDHCI_SIGNAL_ENABLE);
mutex_unlock(&tuning_mutex);
SDHCI_TEGRA_DBG("%s: Freq tuning done\n", mmc_hostname(sdhci->mmc));
if (enable_lb_clk) {
misc_ctrl = sdhci_readl(sdhci, SDHCI_VNDR_MISC_CTRL);
if (err) {
/* Tuning is failed and card will try to enumerate in
* Legacy High Speed mode. So, Enable External Loopback
* for SDMMC3.
*/
misc_ctrl |= (1 <<
SDHCI_VNDR_MISC_CTRL_EN_EXT_LOOPBACK_SHIFT);
} else {
misc_ctrl &= ~(1 <<
SDHCI_VNDR_MISC_CTRL_EN_EXT_LOOPBACK_SHIFT);
}
sdhci_writel(sdhci, misc_ctrl, SDHCI_VNDR_MISC_CTRL);
}
return err;
}
static int __init sdhci_tegra_enable_vcore_override_tuning(void)
{
vcore_overrides_allowed = true;
maintain_boot_voltage = false;
return 0;
}
late_initcall(sdhci_tegra_enable_vcore_override_tuning);
static int tegra_sdhci_suspend(struct sdhci_host *sdhci)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
int err = 0;
struct platform_device *pdev = to_platform_device(mmc_dev(sdhci->mmc));
const struct tegra_sdhci_platform_data *plat;
unsigned int cd_irq;
tegra_sdhci_set_clock(sdhci, 0);
/* Disable the power rails if any */
if (tegra_host->card_present) {
err = tegra_sdhci_configure_regulators(tegra_host,
CONFIG_REG_DIS, 0, 0);
if (err)
dev_err(mmc_dev(sdhci->mmc),
"Regulators disable in suspend failed %d\n", err);
}
plat = pdev->dev.platform_data;
if (plat && gpio_is_valid(plat->cd_gpio)) {
if (!plat->cd_wakeup_incapable) {
/* Enable wake irq at end of suspend */
cd_irq = gpio_to_irq(plat->cd_gpio);
err = enable_irq_wake(cd_irq);
if (err < 0)
dev_err(mmc_dev(sdhci->mmc),
"SD card wake-up event registration for irq=%d failed with error: %d\n",
cd_irq, err);
}
}
return err;
}
static int tegra_sdhci_resume(struct sdhci_host *sdhci)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
struct platform_device *pdev;
struct tegra_sdhci_platform_data *plat;
unsigned int signal_voltage = 0;
int err;
unsigned int cd_irq;
pdev = to_platform_device(mmc_dev(sdhci->mmc));
plat = pdev->dev.platform_data;
if (plat && gpio_is_valid(plat->cd_gpio)) {
/* disable wake capability at start of resume */
if (!plat->cd_wakeup_incapable) {
cd_irq = gpio_to_irq(plat->cd_gpio);
disable_irq_wake(cd_irq);
}
tegra_host->card_present =
(gpio_get_value_cansleep(plat->cd_gpio) == 0);
}
/* Setting the min identification clock of freq 400KHz */
tegra_sdhci_set_clock(sdhci, 400000);
/* Enable the power rails if any */
if (tegra_host->card_present) {
err = tegra_sdhci_configure_regulators(tegra_host,
CONFIG_REG_EN, 0, 0);
if (err) {
dev_err(mmc_dev(sdhci->mmc),
"Regulators enable in resume failed %d\n", err);
return err;
}
if (tegra_host->vdd_io_reg) {
if (plat && (plat->mmc_data.ocr_mask &
SDHOST_1V8_OCR_MASK))
signal_voltage = MMC_SIGNAL_VOLTAGE_180;
else
signal_voltage = MMC_SIGNAL_VOLTAGE_330;
tegra_sdhci_signal_voltage_switch(sdhci,
signal_voltage);
}
}
/* Reset the controller and power on if MMC_KEEP_POWER flag is set*/
if (sdhci->mmc->pm_flags & MMC_PM_KEEP_POWER) {
tegra_sdhci_reset(sdhci, SDHCI_RESET_ALL);
sdhci_writeb(sdhci, SDHCI_POWER_ON, SDHCI_POWER_CONTROL);
sdhci->pwr = 0;
tegra_sdhci_do_calibration(sdhci, signal_voltage);
}
return 0;
}
static void tegra_sdhci_post_resume(struct sdhci_host *sdhci)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
/* Turn OFF the clocks if the device is not present */
if ((!tegra_host->card_present || !sdhci->mmc->card) &&
tegra_host->clk_enabled)
tegra_sdhci_set_clock(sdhci, 0);
}
/*
* For tegra specific tuning, core voltage has to be fixed at different
* voltages to get the tap values. Fixing the core voltage during tuning for one
* device might affect transfers of other SDMMC devices. Check if tuning mutex
* is locked before starting a data transfer. The new tuning procedure might
* take at max 1.5s for completion for a single run. Taking DFS into count,
* setting the max timeout for tuning mutex check a 3 secs. Since tuning is
* run only during boot or the first time device is inserted, there wouldn't
* be any delays in cmd/xfer execution once devices enumeration is done.
*/
static void tegra_sdhci_get_bus(struct sdhci_host *sdhci)
{
unsigned int timeout = 300;
while (mutex_is_locked(&tuning_mutex)) {
msleep(10);
--timeout;
if (!timeout) {
dev_err(mmc_dev(sdhci->mmc),
"Tuning mutex locked for long time\n");
return;
}
};
}
/*
* The host/device can be powered off before the retuning request is handled in
* case of SDIDO being off if Wifi is turned off, sd card removal etc. In such
* cases, cancel the pending tuning timer and remove any core voltage
* constraints that are set earlier.
*/
static void tegra_sdhci_power_off(struct sdhci_host *sdhci, u8 power_mode)
{
int retuning_req_set = 0;
retuning_req_set = (timer_pending(&sdhci->tuning_timer) ||
(sdhci->flags & SDHCI_NEEDS_RETUNING));
if (retuning_req_set) {
del_timer_sync(&sdhci->tuning_timer);
if (boot_volt_req_refcount)
--boot_volt_req_refcount;
if (!boot_volt_req_refcount) {
sdhci_tegra_set_tuning_voltage(sdhci, 0);
SDHCI_TEGRA_DBG("%s: Release override as host is off\n",
mmc_hostname(sdhci->mmc));
}
}
}
static int show_polling_period(void *data, u64 *value)
{
struct sdhci_host *host = (struct sdhci_host *)data;
if (host->mmc->dev_stats != NULL)
*value = host->mmc->dev_stats->polling_interval;
return 0;
}
static int set_polling_period(void *data, u64 value)
{
struct sdhci_host *host = (struct sdhci_host *)data;
if (host->mmc->dev_stats != NULL) {
/* Limiting the maximum polling period to 1 sec */
if (value > 1000)
value = 1000;
host->mmc->dev_stats->polling_interval = value;
}
return 0;
}
static int show_active_load_high_threshold(void *data, u64 *value)
{
struct sdhci_host *host = (struct sdhci_host *)data;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
struct tegra_freq_gov_data *gov_data = tegra_host->gov_data;
if (gov_data != NULL)
*value = gov_data->act_load_high_threshold;
return 0;
}
static int set_active_load_high_threshold(void *data, u64 value)
{
struct sdhci_host *host = (struct sdhci_host *)data;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
struct tegra_freq_gov_data *gov_data = tegra_host->gov_data;
if (gov_data != NULL) {
/* Maximum threshold load percentage is 100.*/
if (value > 100)
value = 100;
gov_data->act_load_high_threshold = value;
}
return 0;
}
static int show_disableclkgating_value(void *data, u64 *value)
{
struct sdhci_host *host = (struct sdhci_host *)data;
if (host != NULL) {
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
if (tegra_host != NULL)
*value = tegra_host->dbg_cfg.clk_ungated;
}
return 0;
}
static int set_disableclkgating_value(void *data, u64 value)
{
struct sdhci_host *host = (struct sdhci_host *)data;
if (host != NULL) {
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
if (pltfm_host != NULL) {
struct sdhci_tegra *tegra_host = pltfm_host->priv;
/* Set the CAPS2 register to reflect
* the clk gating value
*/
if (tegra_host != NULL) {
if (value) {
host->mmc->ops->set_ios(host->mmc,
&host->mmc->ios);
tegra_host->dbg_cfg.clk_ungated = true;
host->mmc->caps2 &=
~MMC_CAP2_CLOCK_GATING;
} else {
tegra_host->dbg_cfg.clk_ungated = false;
host->mmc->caps2 |=
MMC_CAP2_CLOCK_GATING;
}
}
}
}
return 0;
}
static int set_trim_override_value(void *data, u64 value)
{
struct sdhci_host *host = (struct sdhci_host *)data;
if (host != NULL) {
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
if (pltfm_host != NULL) {
struct sdhci_tegra *tegra_host = pltfm_host->priv;
if (tegra_host != NULL) {
/* Make sure clock gating is disabled */
if ((tegra_host->dbg_cfg.clk_ungated) &&
(tegra_host->clk_enabled)) {
sdhci_tegra_set_trim_delay(host, value);
tegra_host->dbg_cfg.trim_val =
value;
} else {
pr_info("%s: Disable clock gating before setting value\n",
mmc_hostname(host->mmc));
}
}
}
}
return 0;
}
static int show_trim_override_value(void *data, u64 *value)
{
struct sdhci_host *host = (struct sdhci_host *)data;
if (host != NULL) {
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
if (pltfm_host != NULL) {
struct sdhci_tegra *tegra_host = pltfm_host->priv;
if (tegra_host != NULL)
*value = tegra_host->dbg_cfg.trim_val;
}
}
return 0;
}
static int show_tap_override_value(void *data, u64 *value)
{
struct sdhci_host *host = (struct sdhci_host *)data;
if (host != NULL) {
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
if (pltfm_host != NULL) {
struct sdhci_tegra *tegra_host = pltfm_host->priv;
if (tegra_host != NULL)
*value = tegra_host->dbg_cfg.tap_val;
}
}
return 0;
}
static int set_tap_override_value(void *data, u64 value)
{
struct sdhci_host *host = (struct sdhci_host *)data;
if (host != NULL) {
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
if (pltfm_host != NULL) {
struct sdhci_tegra *tegra_host = pltfm_host->priv;
if (tegra_host != NULL) {
/* Make sure clock gating is disabled */
if ((tegra_host->dbg_cfg.clk_ungated) &&
(tegra_host->clk_enabled)) {
sdhci_tegra_set_tap_delay(host, value);
tegra_host->dbg_cfg.tap_val = value;
} else {
pr_info("%s: Disable clock gating before setting value\n",
mmc_hostname(host->mmc));
}
}
}
}
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(sdhci_polling_period_fops, show_polling_period,
set_polling_period, "%llu\n");
DEFINE_SIMPLE_ATTRIBUTE(sdhci_active_load_high_threshold_fops,
show_active_load_high_threshold,
set_active_load_high_threshold, "%llu\n");
DEFINE_SIMPLE_ATTRIBUTE(sdhci_disable_clkgating_fops,
show_disableclkgating_value,
set_disableclkgating_value, "%llu\n");
DEFINE_SIMPLE_ATTRIBUTE(sdhci_override_trim_data_fops,
show_trim_override_value,
set_trim_override_value, "%llu\n");
DEFINE_SIMPLE_ATTRIBUTE(sdhci_override_tap_data_fops,
show_tap_override_value,
set_tap_override_value, "%llu\n");
static void sdhci_tegra_error_stats_debugfs(struct sdhci_host *host)
{
struct dentry *root = host->debugfs_root;
struct dentry *dfs_root;
unsigned saved_line;
if (!root) {
root = debugfs_create_dir(dev_name(mmc_dev(host->mmc)), NULL);
if (IS_ERR_OR_NULL(root)) {
saved_line = __LINE__;
goto err_root;
}
host->debugfs_root = root;
}
dfs_root = debugfs_create_dir("dfs_stats_dir", root);
if (IS_ERR_OR_NULL(dfs_root)) {
saved_line = __LINE__;
goto err_node;
}
if (!debugfs_create_file("error_stats", S_IRUSR, root, host,
&sdhci_host_fops)) {
saved_line = __LINE__;
goto err_node;
}
if (!debugfs_create_file("dfs_stats", S_IRUSR, dfs_root, host,
&sdhci_host_dfs_fops)) {
saved_line = __LINE__;
goto err_node;
}
if (!debugfs_create_file("polling_period", 0644, dfs_root, (void *)host,
&sdhci_polling_period_fops)) {
saved_line = __LINE__;
goto err_node;
}
if (!debugfs_create_file("active_load_high_threshold", 0644,
dfs_root, (void *)host,
&sdhci_active_load_high_threshold_fops)) {
saved_line = __LINE__;
goto err_node;
}
dfs_root = debugfs_create_dir("override_data", root);
if (IS_ERR_OR_NULL(dfs_root)) {
saved_line = __LINE__;
goto err_node;
}
if (!debugfs_create_file("clk_gate_disabled", 0644,
dfs_root, (void *)host,
&sdhci_disable_clkgating_fops)) {
saved_line = __LINE__;
goto err_node;
}
if (!debugfs_create_file("tap_value", 0644,
dfs_root, (void *)host,
&sdhci_override_tap_data_fops)) {
saved_line = __LINE__;
goto err_node;
}
if (!debugfs_create_file("trim_value", 0644,
dfs_root, (void *)host,
&sdhci_override_trim_data_fops)) {
saved_line = __LINE__;
goto err_node;
}
if (IS_QUIRKS2_DELAYED_CLK_GATE(host)) {
host->clk_gate_tmout_ticks = -1;
if (!debugfs_create_u32("clk_gate_tmout_ticks",
S_IRUGO | S_IWUSR,
root, (u32 *)&host->clk_gate_tmout_ticks)) {
saved_line = __LINE__;
goto err_node;
}
}
return;
err_node:
debugfs_remove_recursive(root);
host->debugfs_root = NULL;
err_root:
pr_err("%s %s: Failed to initialize debugfs functionality at line=%d\n", __func__,
mmc_hostname(host->mmc), saved_line);
return;
}
static ssize_t sdhci_handle_boost_mode_tap(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int tap_cmd;
struct mmc_card *card;
char *p = (char *)buf;
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
struct tegra_tuning_data *tuning_data;
u32 present_state;
u8 timeout;
bool clk_set_for_tap_prog = false;
tap_cmd = memparse(p, &p);
card = host->mmc->card;
if (!card)
return -ENODEV;
/* if not uhs -- no tuning and no tap value to set */
if (!mmc_sd_card_uhs(card) && !mmc_card_hs200(card))
return count;
/* if no change in tap value -- just exit */
if (tap_cmd == tegra_host->tap_cmd)
return count;
if ((tap_cmd != TAP_CMD_TRIM_DEFAULT_VOLTAGE) &&
(tap_cmd != TAP_CMD_TRIM_HIGH_VOLTAGE)) {
pr_info("echo 1 > cmd_state # to set normal voltage\n");
pr_info("echo 2 > cmd_state # to set high voltage\n");
return -EINVAL;
}
tegra_host->tap_cmd = tap_cmd;
tuning_data = sdhci_tegra_get_tuning_data(host, host->max_clk);
/* Check if host clock is enabled */
if (!tegra_host->clk_enabled) {
/* Nothing to do if the host is not powered ON */
if (host->mmc->ios.power_mode != MMC_POWER_ON)
return count;
else {
tegra_sdhci_set_clock(host, host->mmc->ios.clock);
clk_set_for_tap_prog = true;
}
} else {
timeout = 10;
/* Wait for any on-going data transfers */
present_state = sdhci_readl(host, SDHCI_PRESENT_STATE);
while (present_state & (SDHCI_DOING_WRITE | SDHCI_DOING_READ)) {
if (!timeout)
break;
timeout--;
mdelay(1);
present_state = sdhci_readl(host, SDHCI_PRESENT_STATE);
};
}
spin_lock(&host->lock);
switch (tap_cmd) {
case TAP_CMD_TRIM_DEFAULT_VOLTAGE:
/* set tap value for voltage range 1.1 to 1.25 */
sdhci_tegra_set_tap_delay(host, tuning_data->best_tap_value);
break;
case TAP_CMD_TRIM_HIGH_VOLTAGE:
/* set tap value for voltage range 1.25 to 1.39 */
sdhci_tegra_set_tap_delay(host,
tuning_data->nom_best_tap_value);
break;
}
spin_unlock(&host->lock);
if (clk_set_for_tap_prog) {
tegra_sdhci_set_clock(host, 0);
clk_set_for_tap_prog = false;
}
return count;
}
static ssize_t sdhci_show_turbo_mode(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
return sprintf(buf, "%d\n", tegra_host->tap_cmd);
}
static DEVICE_ATTR(cmd_state, 0644, sdhci_show_turbo_mode,
sdhci_handle_boost_mode_tap);
static int tegra_sdhci_reboot_notify(struct notifier_block *nb,
unsigned long event, void *data)
{
struct sdhci_tegra *tegra_host =
container_of(nb, struct sdhci_tegra, reboot_notify);
int err;
switch (event) {
case SYS_RESTART:
case SYS_POWER_OFF:
err = tegra_sdhci_configure_regulators(tegra_host,
CONFIG_REG_DIS, 0, 0);
if (err)
pr_err("Disable regulator in reboot notify failed %d\n",
err);
return NOTIFY_OK;
}
return NOTIFY_DONE;
}
void tegra_sdhci_ios_config_enter(struct sdhci_host *sdhci, struct mmc_ios *ios)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
struct clk *new_mode_clk;
bool change_clk = false;
/*
* Tegra sdmmc controllers require clock to be enabled for any register
* access. Set the minimum controller clock if no clock is requested.
*/
if (!sdhci->clock && !ios->clock) {
tegra_sdhci_set_clock(sdhci, sdhci->mmc->f_min);
sdhci->clock = sdhci->mmc->f_min;
} else if (ios->clock && (ios->clock != sdhci->clock)) {
tegra_sdhci_set_clock(sdhci, ios->clock);
}
/*
* Check for DDR50 mode setting and set ddr_clk if not already
* done. Return if only one clock option is available.
*/
if (!tegra_host->ddr_clk || !tegra_host->sdr_clk) {
return;
} else {
if ((ios->timing == MMC_TIMING_UHS_DDR50) &&
!tegra_host->is_ddr_clk_set) {
change_clk = true;
new_mode_clk = tegra_host->ddr_clk;
} else if ((ios->timing != MMC_TIMING_UHS_DDR50) &&
tegra_host->is_ddr_clk_set) {
change_clk = true;
new_mode_clk = tegra_host->sdr_clk;
}
if (change_clk) {
tegra_sdhci_set_clock(sdhci, 0);
pltfm_host->clk = new_mode_clk;
/* Restore the previous frequency */
tegra_sdhci_set_clock(sdhci, sdhci->max_clk);
tegra_host->is_ddr_clk_set =
!tegra_host->is_ddr_clk_set;
}
}
}
void tegra_sdhci_ios_config_exit(struct sdhci_host *sdhci, struct mmc_ios *ios)
{
/*
* Do any required handling for retuning requests before powering off
* the host.
*/
if (ios->power_mode == MMC_POWER_OFF)
tegra_sdhci_power_off(sdhci, ios->power_mode);
/*
* In case of power off, turn off controller clock now as all the
* required register accesses are already done.
*/
if (!ios->clock && !sdhci->mmc->skip_host_clkgate)
tegra_sdhci_set_clock(sdhci, 0);
}
static int tegra_sdhci_get_drive_strength(struct sdhci_host *sdhci,
unsigned int max_dtr, int host_drv, int card_drv)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(sdhci);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
const struct tegra_sdhci_platform_data *plat = tegra_host->plat;
return plat->default_drv_type;
}
static const struct sdhci_ops tegra_sdhci_ops = {
.get_ro = tegra_sdhci_get_ro,
.get_cd = tegra_sdhci_get_cd,
.read_l = tegra_sdhci_readl,
.read_w = tegra_sdhci_readw,
.write_l = tegra_sdhci_writel,
.write_w = tegra_sdhci_writew,
.platform_bus_width = tegra_sdhci_buswidth,
.set_clock = tegra_sdhci_set_clock,
.suspend = tegra_sdhci_suspend,
.resume = tegra_sdhci_resume,
.platform_resume = tegra_sdhci_post_resume,
.platform_reset_exit = tegra_sdhci_reset_exit,
.platform_get_bus = tegra_sdhci_get_bus,
.platform_ios_config_enter = tegra_sdhci_ios_config_enter,
.platform_ios_config_exit = tegra_sdhci_ios_config_exit,
.set_uhs_signaling = tegra_sdhci_set_uhs_signaling,
.switch_signal_voltage = tegra_sdhci_signal_voltage_switch,
.switch_signal_voltage_exit = tegra_sdhci_do_calibration,
.execute_freq_tuning = sdhci_tegra_execute_tuning,
.sd_error_stats = sdhci_tegra_sd_error_stats,
#ifdef CONFIG_MMC_FREQ_SCALING
.dfs_gov_init = sdhci_tegra_freq_gov_init,
.dfs_gov_get_target_freq = sdhci_tegra_get_target_freq,
#endif
.get_drive_strength = tegra_sdhci_get_drive_strength,
};
static struct sdhci_pltfm_data sdhci_tegra11_pdata = {
.quirks = TEGRA_SDHCI_QUIRKS,
.quirks2 = TEGRA_SDHCI_QUIRKS2,
.ops = &tegra_sdhci_ops,
};
static struct sdhci_tegra_soc_data soc_data_tegra11 = {
.pdata = &sdhci_tegra11_pdata,
.nvquirks = TEGRA_SDHCI_NVQUIRKS |
NVQUIRK_SET_DRIVE_STRENGTH |
NVQUIRK_SET_TRIM_DELAY |
NVQUIRK_ENABLE_DDR50 |
NVQUIRK_ENABLE_HS200 |
NVQUIRK_INFINITE_ERASE_TIMEOUT |
NVQUIRK_DISABLE_EXTERNAL_LOOPBACK |
NVQUIRK_DISABLE_SDMMC4_CALIB,
.parent_clk_list = {"pll_p", "pll_c"},
.tuning_freq_list = {81600000, 156000000, 200000000},
.t2t_coeffs = t11x_tuning_coeffs,
.t2t_coeffs_count = 3,
.tap_hole_coeffs = t11x_tap_hole_coeffs,
.tap_hole_coeffs_count = 12,
};
static struct sdhci_pltfm_data sdhci_tegra12_pdata = {
.quirks = TEGRA_SDHCI_QUIRKS,
.quirks2 = TEGRA_SDHCI_QUIRKS2 |
SDHCI_QUIRK2_HOST_OFF_CARD_ON |
SDHCI_QUIRK2_SUPPORT_64BIT_DMA |
SDHCI_QUIRK2_USE_64BIT_ADDR,
.ops = &tegra_sdhci_ops,
};
static struct sdhci_tegra_soc_data soc_data_tegra12 = {
.pdata = &sdhci_tegra12_pdata,
.nvquirks = TEGRA_SDHCI_NVQUIRKS |
NVQUIRK_SET_TRIM_DELAY |
NVQUIRK_ENABLE_DDR50 |
NVQUIRK_ENABLE_HS200 |
NVQUIRK_INFINITE_ERASE_TIMEOUT |
NVQUIRK_SET_PAD_E_INPUT_OR_E_PWRD |
NVQUIRK_HIGH_FREQ_TAP_PROCEDURE |
NVQUIRK_SET_CALIBRATION_OFFSETS |
NVQUIRK_DISABLE_EXTERNAL_LOOPBACK,
.parent_clk_list = {"pll_p", "pll_c"},
.tuning_freq_list = {81600000, 136000000, 200000000},
.t2t_coeffs = t12x_tuning_coeffs,
.t2t_coeffs_count = 3,
.tap_hole_coeffs = t12x_tap_hole_coeffs,
.tap_hole_coeffs_count = 13,
};
static const struct of_device_id sdhci_tegra_dt_match[] = {
{ .compatible = "nvidia,tegra124-sdhci", .data = &soc_data_tegra12 },
{ .compatible = "nvidia,tegra114-sdhci", .data = &soc_data_tegra11 },
{}
};
MODULE_DEVICE_TABLE(of, sdhci_dt_ids);
static struct tegra_sdhci_platform_data *sdhci_tegra_dt_parse_pdata(
struct platform_device *pdev)
{
int val;
struct tegra_sdhci_platform_data *plat;
struct device_node *np = pdev->dev.of_node;
u32 bus_width;
if (!np)
return NULL;
plat = devm_kzalloc(&pdev->dev, sizeof(*plat), GFP_KERNEL);
if (!plat) {
dev_err(&pdev->dev, "Can't allocate platform data\n");
return NULL;
}
plat->cd_gpio = of_get_named_gpio(np, "cd-gpios", 0);
plat->wp_gpio = of_get_named_gpio(np, "wp-gpios", 0);
plat->power_gpio = of_get_named_gpio(np, "power-gpios", 0);
if (of_property_read_u32(np, "bus-width", &bus_width) == 0 &&
bus_width == 8)
plat->is_8bit = 1;
of_property_read_u32(np, "tap-delay", &plat->tap_delay);
of_property_read_u32(np, "trim-delay", &plat->trim_delay);
of_property_read_u32(np, "ddr-clk-limit", &plat->ddr_clk_limit);
of_property_read_u32(np, "max-clk-limit", &plat->max_clk_limit);
of_property_read_u32(np, "uhs_mask", &plat->uhs_mask);
if (of_find_property(np, "built-in", NULL))
plat->mmc_data.built_in = 1;
if (!of_property_read_u32(np, "mmc-ocr-mask", &val)) {
if (val == 0)
plat->mmc_data.ocr_mask = MMC_OCR_1V8_MASK;
else if (val == 1)
plat->mmc_data.ocr_mask = MMC_OCR_2V8_MASK;
else if (val == 2)
plat->mmc_data.ocr_mask = MMC_OCR_3V2_MASK;
else if (val == 3)
plat->mmc_data.ocr_mask = MMC_OCR_3V3_MASK;
}
return plat;
}
static int sdhci_tegra_probe(struct platform_device *pdev)
{
const struct of_device_id *match;
const struct sdhci_tegra_soc_data *soc_data;
struct sdhci_host *host;
struct sdhci_pltfm_host *pltfm_host;
struct tegra_sdhci_platform_data *plat;
struct sdhci_tegra *tegra_host;
unsigned int low_freq;
int rc;
u8 i;
match = of_match_device(sdhci_tegra_dt_match, &pdev->dev);
if (match) {
soc_data = match->data;
} else {
/* Use id tables and remove the following chip defines */
#if defined(CONFIG_ARCH_TEGRA_11x_SOC)
soc_data = &soc_data_tegra11;
#else
soc_data = &soc_data_tegra12;
#endif
}
host = sdhci_pltfm_init(pdev, soc_data->pdata);
/* sdio delayed clock gate quirk in sdhci_host used */
host->quirks2 |= SDHCI_QUIRK2_DELAYED_CLK_GATE;
if (IS_ERR(host))
return PTR_ERR(host);
pltfm_host = sdhci_priv(host);
plat = pdev->dev.platform_data;
if (plat == NULL)
plat = sdhci_tegra_dt_parse_pdata(pdev);
if (plat == NULL) {
dev_err(mmc_dev(host->mmc), "missing platform data\n");
rc = -ENXIO;
goto err_no_plat;
}
/* FIXME: This is for until dma-mask binding is supported in DT.
* Set coherent_dma_mask for each Tegra SKUs.
* If dma_mask is NULL, set it to coherent_dma_mask. */
if (soc_data == &soc_data_tegra11)
pdev->dev.coherent_dma_mask = DMA_BIT_MASK(32);
else
pdev->dev.coherent_dma_mask = DMA_BIT_MASK(64);
if (!pdev->dev.dma_mask)
pdev->dev.dma_mask = &pdev->dev.coherent_dma_mask;
tegra_host = devm_kzalloc(&pdev->dev, sizeof(*tegra_host), GFP_KERNEL);
if (!tegra_host) {
dev_err(mmc_dev(host->mmc), "failed to allocate tegra_host\n");
rc = -ENOMEM;
goto err_no_plat;
}
tegra_host->plat = plat;
pdev->dev.platform_data = plat;
tegra_host->sd_stat_head = devm_kzalloc(&pdev->dev,
sizeof(struct sdhci_tegra_sd_stats), GFP_KERNEL);
if (!tegra_host->sd_stat_head) {
dev_err(mmc_dev(host->mmc), "failed to allocate sd_stat_head\n");
rc = -ENOMEM;
goto err_power_req;
}
tegra_host->soc_data = soc_data;
pltfm_host->priv = tegra_host;
for (i = 0; i < ARRAY_SIZE(soc_data->parent_clk_list); i++) {
if (!soc_data->parent_clk_list[i])
continue;
if (!strcmp(soc_data->parent_clk_list[i], "pll_c")) {
pll_c = clk_get_sys(NULL, "pll_c");
if (IS_ERR(pll_c)) {
rc = PTR_ERR(pll_c);
dev_err(mmc_dev(host->mmc),
"clk error in getting pll_c: %d\n", rc);
}
pll_c_rate = clk_get_rate(pll_c);
}
if (!strcmp(soc_data->parent_clk_list[i], "pll_p")) {
pll_p = clk_get_sys(NULL, "pll_p");
if (IS_ERR(pll_p)) {
rc = PTR_ERR(pll_p);
dev_err(mmc_dev(host->mmc),
"clk error in getting pll_p: %d\n", rc);
}
pll_p_rate = clk_get_rate(pll_p);
}
}
#ifdef CONFIG_MMC_EMBEDDED_SDIO
if (plat->mmc_data.embedded_sdio)
mmc_set_embedded_sdio_data(host->mmc,
&plat->mmc_data.embedded_sdio->cis,
&plat->mmc_data.embedded_sdio->cccr,
plat->mmc_data.embedded_sdio->funcs,
plat->mmc_data.embedded_sdio->num_funcs);
#endif
if (gpio_is_valid(plat->power_gpio)) {
rc = gpio_request(plat->power_gpio, "sdhci_power");
if (rc) {
dev_err(mmc_dev(host->mmc),
"failed to allocate power gpio\n");
goto err_power_req;
}
gpio_direction_output(plat->power_gpio, 1);
}
if (gpio_is_valid(plat->cd_gpio)) {
rc = gpio_request(plat->cd_gpio, "sdhci_cd");
if (rc) {
dev_err(mmc_dev(host->mmc),
"failed to allocate cd gpio\n");
goto err_cd_req;
}
gpio_direction_input(plat->cd_gpio);
tegra_host->card_present =
(gpio_get_value_cansleep(plat->cd_gpio) == 0);
} else if (plat->mmc_data.register_status_notify) {
plat->mmc_data.register_status_notify(sdhci_status_notify_cb, host);
}
if (plat->mmc_data.status) {
plat->mmc_data.card_present = plat->mmc_data.status(mmc_dev(host->mmc));
}
if (gpio_is_valid(plat->wp_gpio)) {
rc = gpio_request(plat->wp_gpio, "sdhci_wp");
if (rc) {
dev_err(mmc_dev(host->mmc),
"failed to allocate wp gpio\n");
goto err_wp_req;
}
gpio_direction_input(plat->wp_gpio);
}
/*
* If there is no card detect gpio, assume that the
* card is always present.
*/
if (!gpio_is_valid(plat->cd_gpio))
tegra_host->card_present = 1;
if (plat->mmc_data.ocr_mask & SDHOST_1V8_OCR_MASK) {
tegra_host->vddio_min_uv = SDHOST_LOW_VOLT_MIN;
tegra_host->vddio_max_uv = SDHOST_LOW_VOLT_MAX;
} else if (plat->mmc_data.ocr_mask & MMC_OCR_2V8_MASK) {
tegra_host->vddio_min_uv = SDHOST_HIGH_VOLT_2V8;
tegra_host->vddio_max_uv = SDHOST_HIGH_VOLT_MAX;
} else if (plat->mmc_data.ocr_mask & MMC_OCR_3V2_MASK) {
tegra_host->vddio_min_uv = SDHOST_HIGH_VOLT_3V2;
tegra_host->vddio_max_uv = SDHOST_HIGH_VOLT_MAX;
} else if (plat->mmc_data.ocr_mask & MMC_OCR_3V3_MASK) {
tegra_host->vddio_min_uv = SDHOST_HIGH_VOLT_3V3;
tegra_host->vddio_max_uv = SDHOST_HIGH_VOLT_MAX;
} else {
/*
* Set the minV and maxV to default
* voltage range of 2.7V - 3.6V
*/
tegra_host->vddio_min_uv = SDHOST_HIGH_VOLT_MIN;
tegra_host->vddio_max_uv = SDHOST_HIGH_VOLT_MAX;
}
tegra_host->vdd_io_reg = regulator_get(mmc_dev(host->mmc),
"vddio_sdmmc");
if (IS_ERR_OR_NULL(tegra_host->vdd_io_reg)) {
dev_info(mmc_dev(host->mmc), "%s regulator not found: %ld."
"Assuming vddio_sdmmc is not required.\n",
"vddio_sdmmc", PTR_ERR(tegra_host->vdd_io_reg));
tegra_host->vdd_io_reg = NULL;
} else {
rc = tegra_sdhci_configure_regulators(tegra_host,
CONFIG_REG_SET_VOLT,
tegra_host->vddio_min_uv,
tegra_host->vddio_max_uv);
if (rc) {
dev_err(mmc_dev(host->mmc),
"Init volt(%duV-%duV) setting failed %d\n",
tegra_host->vddio_min_uv,
tegra_host->vddio_max_uv, rc);
regulator_put(tegra_host->vdd_io_reg);
tegra_host->vdd_io_reg = NULL;
}
}
tegra_host->vdd_slot_reg = regulator_get(mmc_dev(host->mmc),
"vddio_sd_slot");
if (IS_ERR_OR_NULL(tegra_host->vdd_slot_reg)) {
dev_info(mmc_dev(host->mmc), "%s regulator not found: %ld."
" Assuming vddio_sd_slot is not required.\n",
"vddio_sd_slot", PTR_ERR(tegra_host->vdd_slot_reg));
tegra_host->vdd_slot_reg = NULL;
}
if (tegra_host->card_present) {
rc = tegra_sdhci_configure_regulators(tegra_host, CONFIG_REG_EN,
0, 0);
if (rc) {
dev_err(mmc_dev(host->mmc),
"Enable regulators failed in probe %d\n", rc);
goto err_clk_get;
}
}
tegra_pd_add_device(&pdev->dev);
pm_runtime_enable(&pdev->dev);
/* Get the ddr clock */
tegra_host->ddr_clk = clk_get(mmc_dev(host->mmc), "ddr");
if (IS_ERR(tegra_host->ddr_clk)) {
dev_err(mmc_dev(host->mmc), "ddr clk err\n");
tegra_host->ddr_clk = NULL;
}
/* Get high speed clock */
tegra_host->sdr_clk = clk_get(mmc_dev(host->mmc), NULL);
if (IS_ERR(tegra_host->sdr_clk)) {
dev_err(mmc_dev(host->mmc), "sdr clk err\n");
tegra_host->sdr_clk = NULL;
/* If both ddr and sdr clks are missing, then fail probe */
if (!tegra_host->ddr_clk && !tegra_host->sdr_clk) {
dev_err(mmc_dev(host->mmc),
"Failed to get ddr and sdr clks\n");
rc = -EINVAL;
goto err_clk_get;
}
}
if (tegra_host->sdr_clk) {
pltfm_host->clk = tegra_host->sdr_clk;
tegra_host->is_ddr_clk_set = false;
} else {
pltfm_host->clk = tegra_host->ddr_clk;
tegra_host->is_ddr_clk_set = true;
}
if (clk_get_parent(pltfm_host->clk) == pll_c)
tegra_host->is_parent_pllc = true;
pm_runtime_get_sync(&pdev->dev);
rc = clk_prepare_enable(pltfm_host->clk);
if (rc != 0)
goto err_clk_put;
tegra_host->emc_clk = devm_clk_get(mmc_dev(host->mmc), "emc");
if (IS_ERR_OR_NULL(tegra_host->emc_clk)) {
dev_err(mmc_dev(host->mmc), "Can't get emc clk\n");
tegra_host->emc_clk = NULL;
} else {
clk_set_rate(tegra_host->emc_clk, SDMMC_EMC_MAX_FREQ);
}
tegra_host->sclk = devm_clk_get(mmc_dev(host->mmc), "sclk");
if (IS_ERR_OR_NULL(tegra_host->sclk)) {
dev_err(mmc_dev(host->mmc), "Can't get sclk clock\n");
tegra_host->sclk = NULL;
} else {
clk_set_rate(tegra_host->sclk, SDMMC_AHB_MAX_FREQ);
}
pltfm_host->priv = tegra_host;
tegra_host->clk_enabled = true;
host->is_clk_on = tegra_host->clk_enabled;
mutex_init(&tegra_host->set_clock_mutex);
tegra_host->max_clk_limit = plat->max_clk_limit;
tegra_host->ddr_clk_limit = plat->ddr_clk_limit;
tegra_host->instance = pdev->id;
tegra_host->tap_cmd = TAP_CMD_TRIM_DEFAULT_VOLTAGE;
tegra_host->speedo = plat->cpu_speedo;
dev_info(mmc_dev(host->mmc), "Speedo value %d\n", tegra_host->speedo);
host->mmc->pm_caps |= plat->pm_caps;
host->mmc->pm_flags |= plat->pm_flags;
host->mmc->caps |= MMC_CAP_ERASE;
/* enable 1/8V DDR capable */
host->mmc->caps |= MMC_CAP_1_8V_DDR;
if (plat->is_8bit)
host->mmc->caps |= MMC_CAP_8_BIT_DATA;
host->mmc->caps |= MMC_CAP_SDIO_IRQ;
host->mmc->pm_caps |= MMC_PM_KEEP_POWER | MMC_PM_IGNORE_PM_NOTIFY;
if (plat->mmc_data.built_in) {
host->mmc->caps |= MMC_CAP_NONREMOVABLE;
}
host->mmc->pm_flags |= MMC_PM_IGNORE_PM_NOTIFY;
/* disable access to boot partitions */
host->mmc->caps2 |= MMC_CAP2_BOOTPART_NOACC;
#if !defined(CONFIG_ARCH_TEGRA_2x_SOC) && !defined(CONFIG_ARCH_TEGRA_3x_SOC)
if (soc_data->nvquirks & NVQUIRK_ENABLE_HS200)
host->mmc->caps2 |= MMC_CAP2_HS200;
#ifdef CONFIG_TEGRA_FPGA_PLATFORM
/* Enable HS200 mode */
host->mmc->caps2 |= MMC_CAP2_HS200;
#else
host->mmc->caps2 |= MMC_CAP2_CACHE_CTRL;
host->mmc->caps |= MMC_CAP_CMD23;
host->mmc->caps2 |= MMC_CAP2_PACKED_CMD;
#endif
#endif
/*
* Enable dyamic frequency scaling support only if the platform clock
* limit is higher than the lowest supported frequency by tuning.
*/
for (i = 0; i < TUNING_FREQ_COUNT; i++) {
low_freq = soc_data->tuning_freq_list[i];
if (low_freq)
break;
}
if (plat->en_freq_scaling && (plat->max_clk_limit > low_freq))
host->mmc->caps2 |= MMC_CAP2_FREQ_SCALING;
if (!plat->disable_clock_gate)
host->mmc->caps2 |= MMC_CAP2_CLOCK_GATING;
if (plat->nominal_vcore_mv)
tegra_host->nominal_vcore_mv = plat->nominal_vcore_mv;
if (plat->min_vcore_override_mv)
tegra_host->min_vcore_override_mv = plat->min_vcore_override_mv;
if (plat->boot_vcore_mv)
tegra_host->boot_vcore_mv = plat->boot_vcore_mv;
dev_info(mmc_dev(host->mmc),
"Tuning constraints: nom_mv %d, boot_mv %d, min_or_mv %d\n",
tegra_host->nominal_vcore_mv, tegra_host->boot_vcore_mv,
tegra_host->min_vcore_override_mv);
/*
* If nominal voltage is equal to boot voltage, there is no need for
* nominal voltage tuning.
*/
if (plat->nominal_vcore_mv <= plat->boot_vcore_mv)
plat->en_nominal_vcore_tuning = false;
INIT_DELAYED_WORK(&host->delayed_clk_gate_wrk, delayed_clk_gate_cb);
rc = sdhci_add_host(host);
if (rc)
goto err_add_host;
if (gpio_is_valid(plat->cd_gpio)) {
rc = request_threaded_irq(gpio_to_irq(plat->cd_gpio), NULL,
carddetect_irq,
IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING | IRQF_ONESHOT,
mmc_hostname(host->mmc), host);
if (rc) {
dev_err(mmc_dev(host->mmc), "request irq error\n");
goto err_cd_irq_req;
}
}
sdhci_tegra_error_stats_debugfs(host);
device_create_file(&pdev->dev, &dev_attr_cmd_state);
/* Enable async suspend/resume to reduce LP0 latency */
device_enable_async_suspend(&pdev->dev);
if (plat->power_off_rail) {
tegra_host->reboot_notify.notifier_call =
tegra_sdhci_reboot_notify;
register_reboot_notifier(&tegra_host->reboot_notify);
}
#ifdef CONFIG_DEBUG_FS
tegra_host->dbg_cfg.tap_val =
plat->tap_delay;
tegra_host->dbg_cfg.trim_val =
plat->ddr_trim_delay;
tegra_host->dbg_cfg.clk_ungated =
plat->disable_clock_gate;
#endif
return 0;
err_cd_irq_req:
if (gpio_is_valid(plat->cd_gpio))
gpio_free(plat->cd_gpio);
err_add_host:
if (tegra_host->is_ddr_clk_set)
clk_disable_unprepare(tegra_host->ddr_clk);
else
clk_disable_unprepare(tegra_host->sdr_clk);
pm_runtime_put_sync(&pdev->dev);
err_clk_put:
if (tegra_host->ddr_clk)
clk_put(tegra_host->ddr_clk);
if (tegra_host->sdr_clk)
clk_put(tegra_host->sdr_clk);
err_clk_get:
if (gpio_is_valid(plat->wp_gpio))
gpio_free(plat->wp_gpio);
err_wp_req:
if (gpio_is_valid(plat->cd_gpio))
free_irq(gpio_to_irq(plat->cd_gpio), host);
err_cd_req:
if (gpio_is_valid(plat->power_gpio))
gpio_free(plat->power_gpio);
err_power_req:
err_no_plat:
sdhci_pltfm_free(pdev);
return rc;
}
static int sdhci_tegra_remove(struct platform_device *pdev)
{
struct sdhci_host *host = platform_get_drvdata(pdev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = pltfm_host->priv;
const struct tegra_sdhci_platform_data *plat = tegra_host->plat;
int dead = (readl(host->ioaddr + SDHCI_INT_STATUS) == 0xffffffff);
int rc = 0;
sdhci_remove_host(host, dead);
rc = tegra_sdhci_configure_regulators(tegra_host, CONFIG_REG_DIS, 0, 0);
if (rc)
dev_err(mmc_dev(host->mmc),
"Regulator disable in remove failed %d\n", rc);
if (tegra_host->vdd_slot_reg)
regulator_put(tegra_host->vdd_slot_reg);
if (tegra_host->vdd_io_reg)
regulator_put(tegra_host->vdd_io_reg);
if (gpio_is_valid(plat->wp_gpio))
gpio_free(plat->wp_gpio);
if (gpio_is_valid(plat->cd_gpio)) {
free_irq(gpio_to_irq(plat->cd_gpio), host);
gpio_free(plat->cd_gpio);
}
if (gpio_is_valid(plat->power_gpio))
gpio_free(plat->power_gpio);
if (tegra_host->clk_enabled) {
if (tegra_host->is_ddr_clk_set)
clk_disable_unprepare(tegra_host->ddr_clk);
else
clk_disable_unprepare(tegra_host->sdr_clk);
pm_runtime_put_sync(&pdev->dev);
}
if (tegra_host->ddr_clk)
clk_put(tegra_host->ddr_clk);
if (tegra_host->sdr_clk)
clk_put(tegra_host->sdr_clk);
if (tegra_host->emc_clk && tegra_host->is_sdmmc_emc_clk_on)
clk_disable_unprepare(tegra_host->emc_clk);
if (tegra_host->sclk && tegra_host->is_sdmmc_sclk_on)
clk_disable_unprepare(tegra_host->sclk);
if (plat->power_off_rail)
unregister_reboot_notifier(&tegra_host->reboot_notify);
sdhci_pltfm_free(pdev);
return rc;
}
static struct platform_driver sdhci_tegra_driver = {
.driver = {
.name = "sdhci-tegra",
.owner = THIS_MODULE,
.of_match_table = sdhci_tegra_dt_match,
.pm = SDHCI_PLTFM_PMOPS,
},
.probe = sdhci_tegra_probe,
.remove = sdhci_tegra_remove,
};
module_platform_driver(sdhci_tegra_driver);
MODULE_DESCRIPTION("SDHCI driver for Tegra");
MODULE_AUTHOR("Google, Inc.");
MODULE_LICENSE("GPL v2");
|