summaryrefslogtreecommitdiff
path: root/drivers/mtd/chips/amd_flash.c
blob: 57115618c4968903e0a4d70052bc6d54c6e64e3b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
/*
 * MTD map driver for AMD compatible flash chips (non-CFI)
 *
 * Author: Jonas Holmberg <jonas.holmberg@axis.com>
 *
 * $Id: amd_flash.c,v 1.28 2005/11/07 11:14:22 gleixner Exp $
 *
 * Copyright (c) 2001 Axis Communications AB
 *
 * This file is under GPL.
 *
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/mtd/map.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/flashchip.h>

/* There's no limit. It exists only to avoid realloc. */
#define MAX_AMD_CHIPS 8

#define DEVICE_TYPE_X8	(8 / 8)
#define DEVICE_TYPE_X16	(16 / 8)
#define DEVICE_TYPE_X32	(32 / 8)

/* Addresses */
#define ADDR_MANUFACTURER		0x0000
#define ADDR_DEVICE_ID			0x0001
#define ADDR_SECTOR_LOCK		0x0002
#define ADDR_HANDSHAKE			0x0003
#define ADDR_UNLOCK_1			0x0555
#define ADDR_UNLOCK_2			0x02AA

/* Commands */
#define CMD_UNLOCK_DATA_1		0x00AA
#define CMD_UNLOCK_DATA_2		0x0055
#define CMD_MANUFACTURER_UNLOCK_DATA	0x0090
#define CMD_UNLOCK_BYPASS_MODE		0x0020
#define CMD_PROGRAM_UNLOCK_DATA		0x00A0
#define CMD_RESET_DATA			0x00F0
#define CMD_SECTOR_ERASE_UNLOCK_DATA	0x0080
#define CMD_SECTOR_ERASE_UNLOCK_DATA_2	0x0030

#define CMD_UNLOCK_SECTOR		0x0060

/* Manufacturers */
#define MANUFACTURER_AMD	0x0001
#define MANUFACTURER_ATMEL	0x001F
#define MANUFACTURER_FUJITSU	0x0004
#define MANUFACTURER_ST		0x0020
#define MANUFACTURER_SST	0x00BF
#define MANUFACTURER_TOSHIBA	0x0098

/* AMD */
#define AM29F800BB	0x2258
#define AM29F800BT	0x22D6
#define AM29LV800BB	0x225B
#define AM29LV800BT	0x22DA
#define AM29LV160DT	0x22C4
#define AM29LV160DB	0x2249
#define AM29BDS323D     0x22D1

/* Atmel */
#define AT49xV16x	0x00C0
#define AT49xV16xT	0x00C2

/* Fujitsu */
#define MBM29LV160TE	0x22C4
#define MBM29LV160BE	0x2249
#define MBM29LV800BB	0x225B

/* ST - www.st.com */
#define M29W800T	0x00D7
#define M29W160DT	0x22C4
#define M29W160DB	0x2249

/* SST */
#define SST39LF800	0x2781
#define SST39LF160	0x2782

/* Toshiba */
#define TC58FVT160	0x00C2
#define TC58FVB160	0x0043

#define D6_MASK	0x40

struct amd_flash_private {
	int device_type;
	int interleave;
	int numchips;
	unsigned long chipshift;
//	const char *im_name;
	struct flchip chips[0];
};

struct amd_flash_info {
	const __u16 mfr_id;
	const __u16 dev_id;
	const char *name;
	const u_long size;
	const int numeraseregions;
	const struct mtd_erase_region_info regions[4];
};



static int amd_flash_read(struct mtd_info *, loff_t, size_t, size_t *,
			  u_char *);
static int amd_flash_write(struct mtd_info *, loff_t, size_t, size_t *,
			   const u_char *);
static int amd_flash_erase(struct mtd_info *, struct erase_info *);
static void amd_flash_sync(struct mtd_info *);
static int amd_flash_suspend(struct mtd_info *);
static void amd_flash_resume(struct mtd_info *);
static void amd_flash_destroy(struct mtd_info *);
static struct mtd_info *amd_flash_probe(struct map_info *map);


static struct mtd_chip_driver amd_flash_chipdrv = {
	.probe = amd_flash_probe,
	.destroy = amd_flash_destroy,
	.name = "amd_flash",
	.module = THIS_MODULE
};



static const char im_name[] = "amd_flash";



static inline __u32 wide_read(struct map_info *map, __u32 addr)
{
	if (map->buswidth == 1) {
		return map_read8(map, addr);
	} else if (map->buswidth == 2) {
		return map_read16(map, addr);
	} else if (map->buswidth == 4) {
		return map_read32(map, addr);
        }

	return 0;
}

static inline void wide_write(struct map_info *map, __u32 val, __u32 addr)
{
	if (map->buswidth == 1) {
		map_write8(map, val, addr);
	} else if (map->buswidth == 2) {
		map_write16(map, val, addr);
	} else if (map->buswidth == 4) {
		map_write32(map, val, addr);
	}
}

static inline __u32 make_cmd(struct map_info *map, __u32 cmd)
{
	const struct amd_flash_private *private = map->fldrv_priv;
	if ((private->interleave == 2) &&
	    (private->device_type == DEVICE_TYPE_X16)) {
		cmd |= (cmd << 16);
	}

	return cmd;
}

static inline void send_unlock(struct map_info *map, unsigned long base)
{
	wide_write(map, (CMD_UNLOCK_DATA_1 << 16) | CMD_UNLOCK_DATA_1,
		   base + (map->buswidth * ADDR_UNLOCK_1));
	wide_write(map, (CMD_UNLOCK_DATA_2 << 16) | CMD_UNLOCK_DATA_2,
		   base + (map->buswidth * ADDR_UNLOCK_2));
}

static inline void send_cmd(struct map_info *map, unsigned long base, __u32 cmd)
{
	send_unlock(map, base);
	wide_write(map, make_cmd(map, cmd),
		   base + (map->buswidth * ADDR_UNLOCK_1));
}

static inline void send_cmd_to_addr(struct map_info *map, unsigned long base,
				    __u32 cmd, unsigned long addr)
{
	send_unlock(map, base);
	wide_write(map, make_cmd(map, cmd), addr);
}

static inline int flash_is_busy(struct map_info *map, unsigned long addr,
				int interleave)
{

	if ((interleave == 2) && (map->buswidth == 4)) {
		__u32 read1, read2;

		read1 = wide_read(map, addr);
		read2 = wide_read(map, addr);

		return (((read1 >> 16) & D6_MASK) !=
			((read2 >> 16) & D6_MASK)) ||
		       (((read1 & 0xffff) & D6_MASK) !=
			((read2 & 0xffff) & D6_MASK));
	}

	return ((wide_read(map, addr) & D6_MASK) !=
		(wide_read(map, addr) & D6_MASK));
}

static inline void unlock_sector(struct map_info *map, unsigned long sect_addr,
				 int unlock)
{
	/* Sector lock address. A6 = 1 for unlock, A6 = 0 for lock */
	int SLA = unlock ?
		(sect_addr |  (0x40 * map->buswidth)) :
		(sect_addr & ~(0x40 * map->buswidth)) ;

	__u32 cmd = make_cmd(map, CMD_UNLOCK_SECTOR);

	wide_write(map, make_cmd(map, CMD_RESET_DATA), 0);
	wide_write(map, cmd, SLA); /* 1st cycle: write cmd to any address */
	wide_write(map, cmd, SLA); /* 2nd cycle: write cmd to any address */
	wide_write(map, cmd, SLA); /* 3rd cycle: write cmd to SLA */
}

static inline int is_sector_locked(struct map_info *map,
				   unsigned long sect_addr)
{
	int status;

	wide_write(map, CMD_RESET_DATA, 0);
	send_cmd(map, sect_addr, CMD_MANUFACTURER_UNLOCK_DATA);

	/* status is 0x0000 for unlocked and 0x0001 for locked */
	status = wide_read(map, sect_addr + (map->buswidth * ADDR_SECTOR_LOCK));
	wide_write(map, CMD_RESET_DATA, 0);
	return status;
}

static int amd_flash_do_unlock(struct mtd_info *mtd, loff_t ofs, size_t len,
			       int is_unlock)
{
	struct map_info *map;
	struct mtd_erase_region_info *merip;
	int eraseoffset, erasesize, eraseblocks;
	int i;
	int retval = 0;
	int lock_status;

	map = mtd->priv;

	/* Pass the whole chip through sector by sector and check for each
	   sector if the sector and the given interval overlap */
	for(i = 0; i < mtd->numeraseregions; i++) {
		merip = &mtd->eraseregions[i];

		eraseoffset = merip->offset;
		erasesize = merip->erasesize;
		eraseblocks = merip->numblocks;

		if (ofs > eraseoffset + erasesize)
			continue;

		while (eraseblocks > 0) {
			if (ofs < eraseoffset + erasesize && ofs + len > eraseoffset) {
				unlock_sector(map, eraseoffset, is_unlock);

				lock_status = is_sector_locked(map, eraseoffset);

				if (is_unlock && lock_status) {
					printk("Cannot unlock sector at address %x length %xx\n",
					       eraseoffset, merip->erasesize);
					retval = -1;
				} else if (!is_unlock && !lock_status) {
					printk("Cannot lock sector at address %x length %x\n",
					       eraseoffset, merip->erasesize);
					retval = -1;
				}
			}
			eraseoffset += erasesize;
			eraseblocks --;
		}
	}
	return retval;
}

static int amd_flash_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
{
	return amd_flash_do_unlock(mtd, ofs, len, 1);
}

static int amd_flash_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
{
	return amd_flash_do_unlock(mtd, ofs, len, 0);
}


/*
 * Reads JEDEC manufacturer ID and device ID and returns the index of the first
 * matching table entry (-1 if not found or alias for already found chip).
 */
static int probe_new_chip(struct mtd_info *mtd, __u32 base,
			  struct flchip *chips,
			  struct amd_flash_private *private,
			  const struct amd_flash_info *table, int table_size)
{
	__u32 mfr_id;
	__u32 dev_id;
	struct map_info *map = mtd->priv;
	struct amd_flash_private temp;
	int i;

	temp.device_type = DEVICE_TYPE_X16;	// Assume X16 (FIXME)
	temp.interleave = 2;
	map->fldrv_priv = &temp;

	/* Enter autoselect mode. */
	send_cmd(map, base, CMD_RESET_DATA);
	send_cmd(map, base, CMD_MANUFACTURER_UNLOCK_DATA);

	mfr_id = wide_read(map, base + (map->buswidth * ADDR_MANUFACTURER));
	dev_id = wide_read(map, base + (map->buswidth * ADDR_DEVICE_ID));

	if ((map->buswidth == 4) && ((mfr_id >> 16) == (mfr_id & 0xffff)) &&
	    ((dev_id >> 16) == (dev_id & 0xffff))) {
		mfr_id &= 0xffff;
		dev_id &= 0xffff;
	} else {
		temp.interleave = 1;
	}

	for (i = 0; i < table_size; i++) {
		if ((mfr_id == table[i].mfr_id) &&
		    (dev_id == table[i].dev_id)) {
			if (chips) {
				int j;

				/* Is this an alias for an already found chip?
				 * In that case that chip should be in
				 * autoselect mode now.
				 */
				for (j = 0; j < private->numchips; j++) {
					__u32 mfr_id_other;
					__u32 dev_id_other;

					mfr_id_other =
						wide_read(map, chips[j].start +
							       (map->buswidth *
								ADDR_MANUFACTURER
							       ));
					dev_id_other =
						wide_read(map, chips[j].start +
					    		       (map->buswidth *
							        ADDR_DEVICE_ID));
					if (temp.interleave == 2) {
						mfr_id_other &= 0xffff;
						dev_id_other &= 0xffff;
					}
					if ((mfr_id_other == mfr_id) &&
					    (dev_id_other == dev_id)) {

						/* Exit autoselect mode. */
						send_cmd(map, base,
							 CMD_RESET_DATA);

						return -1;
					}
				}

				if (private->numchips == MAX_AMD_CHIPS) {
					printk(KERN_WARNING
					       "%s: Too many flash chips "
					       "detected. Increase "
					       "MAX_AMD_CHIPS from %d.\n",
					       map->name, MAX_AMD_CHIPS);

					return -1;
				}

				chips[private->numchips].start = base;
				chips[private->numchips].state = FL_READY;
				chips[private->numchips].mutex =
					&chips[private->numchips]._spinlock;
				private->numchips++;
			}

			printk("%s: Found %d x %ldMiB %s at 0x%x\n", map->name,
			       temp.interleave, (table[i].size)/(1024*1024),
			       table[i].name, base);

			mtd->size += table[i].size * temp.interleave;
			mtd->numeraseregions += table[i].numeraseregions;

			break;
		}
	}

	/* Exit autoselect mode. */
	send_cmd(map, base, CMD_RESET_DATA);

	if (i == table_size) {
		printk(KERN_DEBUG "%s: unknown flash device at 0x%x, "
		       "mfr id 0x%x, dev id 0x%x\n", map->name,
		       base, mfr_id, dev_id);
		map->fldrv_priv = NULL;

		return -1;
	}

	private->device_type = temp.device_type;
	private->interleave = temp.interleave;

	return i;
}



static struct mtd_info *amd_flash_probe(struct map_info *map)
{
	static const struct amd_flash_info table[] = {
	{
		.mfr_id = MANUFACTURER_AMD,
		.dev_id = AM29LV160DT,
		.name = "AMD AM29LV160DT",
		.size = 0x00200000,
		.numeraseregions = 4,
		.regions = {
			{ .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 },
			{ .offset = 0x1F0000, .erasesize = 0x08000, .numblocks =  1 },
			{ .offset = 0x1F8000, .erasesize = 0x02000, .numblocks =  2 },
			{ .offset = 0x1FC000, .erasesize = 0x04000, .numblocks =  1 }
		}
	}, {
		.mfr_id = MANUFACTURER_AMD,
		.dev_id = AM29LV160DB,
		.name = "AMD AM29LV160DB",
		.size = 0x00200000,
		.numeraseregions = 4,
		.regions = {
			{ .offset = 0x000000, .erasesize = 0x04000, .numblocks =  1 },
			{ .offset = 0x004000, .erasesize = 0x02000, .numblocks =  2 },
			{ .offset = 0x008000, .erasesize = 0x08000, .numblocks =  1 },
			{ .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 }
		}
	}, {
		.mfr_id = MANUFACTURER_TOSHIBA,
		.dev_id = TC58FVT160,
		.name = "Toshiba TC58FVT160",
		.size = 0x00200000,
		.numeraseregions = 4,
		.regions = {
			{ .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 },
			{ .offset = 0x1F0000, .erasesize = 0x08000, .numblocks =  1 },
			{ .offset = 0x1F8000, .erasesize = 0x02000, .numblocks =  2 },
			{ .offset = 0x1FC000, .erasesize = 0x04000, .numblocks =  1 }
		}
	}, {
		.mfr_id = MANUFACTURER_FUJITSU,
		.dev_id = MBM29LV160TE,
		.name = "Fujitsu MBM29LV160TE",
		.size = 0x00200000,
		.numeraseregions = 4,
		.regions = {
			{ .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 },
			{ .offset = 0x1F0000, .erasesize = 0x08000, .numblocks =  1 },
			{ .offset = 0x1F8000, .erasesize = 0x02000, .numblocks =  2 },
			{ .offset = 0x1FC000, .erasesize = 0x04000, .numblocks =  1 }
		}
	}, {
		.mfr_id = MANUFACTURER_TOSHIBA,
		.dev_id = TC58FVB160,
		.name = "Toshiba TC58FVB160",
		.size = 0x00200000,
		.numeraseregions = 4,
		.regions = {
			{ .offset = 0x000000, .erasesize = 0x04000, .numblocks =  1 },
			{ .offset = 0x004000, .erasesize = 0x02000, .numblocks =  2 },
			{ .offset = 0x008000, .erasesize = 0x08000, .numblocks =  1 },
			{ .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 }
		}
	}, {
		.mfr_id = MANUFACTURER_FUJITSU,
		.dev_id = MBM29LV160BE,
		.name = "Fujitsu MBM29LV160BE",
		.size = 0x00200000,
		.numeraseregions = 4,
		.regions = {
			{ .offset = 0x000000, .erasesize = 0x04000, .numblocks =  1 },
			{ .offset = 0x004000, .erasesize = 0x02000, .numblocks =  2 },
			{ .offset = 0x008000, .erasesize = 0x08000, .numblocks =  1 },
			{ .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 }
		}
	}, {
		.mfr_id = MANUFACTURER_AMD,
		.dev_id = AM29LV800BB,
		.name = "AMD AM29LV800BB",
		.size = 0x00100000,
		.numeraseregions = 4,
		.regions = {
			{ .offset = 0x000000, .erasesize = 0x04000, .numblocks =  1 },
			{ .offset = 0x004000, .erasesize = 0x02000, .numblocks =  2 },
			{ .offset = 0x008000, .erasesize = 0x08000, .numblocks =  1 },
			{ .offset = 0x010000, .erasesize = 0x10000, .numblocks = 15 }
		}
	}, {
		.mfr_id = MANUFACTURER_AMD,
		.dev_id = AM29F800BB,
		.name = "AMD AM29F800BB",
		.size = 0x00100000,
		.numeraseregions = 4,
		.regions = {
			{ .offset = 0x000000, .erasesize = 0x04000, .numblocks =  1 },
			{ .offset = 0x004000, .erasesize = 0x02000, .numblocks =  2 },
			{ .offset = 0x008000, .erasesize = 0x08000, .numblocks =  1 },
			{ .offset = 0x010000, .erasesize = 0x10000, .numblocks = 15 }
		}
	}, {
		.mfr_id = MANUFACTURER_AMD,
		.dev_id = AM29LV800BT,
		.name = "AMD AM29LV800BT",
		.size = 0x00100000,
		.numeraseregions = 4,
		.regions = {
			{ .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 },
			{ .offset = 0x0F0000, .erasesize = 0x08000, .numblocks =  1 },
			{ .offset = 0x0F8000, .erasesize = 0x02000, .numblocks =  2 },
			{ .offset = 0x0FC000, .erasesize = 0x04000, .numblocks =  1 }
		}
	}, {
		.mfr_id = MANUFACTURER_AMD,
		.dev_id = AM29F800BT,
		.name = "AMD AM29F800BT",
		.size = 0x00100000,
		.numeraseregions = 4,
		.regions = {
			{ .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 },
			{ .offset = 0x0F0000, .erasesize = 0x08000, .numblocks =  1 },
			{ .offset = 0x0F8000, .erasesize = 0x02000, .numblocks =  2 },
			{ .offset = 0x0FC000, .erasesize = 0x04000, .numblocks =  1 }
		}
	}, {
		.mfr_id = MANUFACTURER_AMD,
		.dev_id = AM29LV800BB,
		.name = "AMD AM29LV800BB",
		.size = 0x00100000,
		.numeraseregions = 4,
		.regions = {
			{ .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 },
			{ .offset = 0x0F0000, .erasesize = 0x08000, .numblocks =  1 },
			{ .offset = 0x0F8000, .erasesize = 0x02000, .numblocks =  2 },
			{ .offset = 0x0FC000, .erasesize = 0x04000, .numblocks =  1 }
		}
	}, {
		.mfr_id = MANUFACTURER_FUJITSU,
		.dev_id = MBM29LV800BB,
		.name = "Fujitsu MBM29LV800BB",
		.size = 0x00100000,
		.numeraseregions = 4,
		.regions = {
			{ .offset = 0x000000, .erasesize = 0x04000, .numblocks =  1 },
			{ .offset = 0x004000, .erasesize = 0x02000, .numblocks =  2 },
			{ .offset = 0x008000, .erasesize = 0x08000, .numblocks =  1 },
			{ .offset = 0x010000, .erasesize = 0x10000, .numblocks = 15 }
		}
	}, {
		.mfr_id = MANUFACTURER_ST,
		.dev_id = M29W800T,
		.name = "ST M29W800T",
		.size = 0x00100000,
		.numeraseregions = 4,
		.regions = {
			{ .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 },
			{ .offset = 0x0F0000, .erasesize = 0x08000, .numblocks =  1 },
			{ .offset = 0x0F8000, .erasesize = 0x02000, .numblocks =  2 },
			{ .offset = 0x0FC000, .erasesize = 0x04000, .numblocks =  1 }
		}
	}, {
		.mfr_id = MANUFACTURER_ST,
		.dev_id = M29W160DT,
		.name = "ST M29W160DT",
		.size = 0x00200000,
		.numeraseregions = 4,
		.regions = {
			{ .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 },
			{ .offset = 0x1F0000, .erasesize = 0x08000, .numblocks =  1 },
			{ .offset = 0x1F8000, .erasesize = 0x02000, .numblocks =  2 },
			{ .offset = 0x1FC000, .erasesize = 0x04000, .numblocks =  1 }
		}
	}, {
		.mfr_id = MANUFACTURER_ST,
		.dev_id = M29W160DB,
		.name = "ST M29W160DB",
		.size = 0x00200000,
		.numeraseregions = 4,
		.regions = {
			{ .offset = 0x000000, .erasesize = 0x04000, .numblocks =  1 },
			{ .offset = 0x004000, .erasesize = 0x02000, .numblocks =  2 },
			{ .offset = 0x008000, .erasesize = 0x08000, .numblocks =  1 },
			{ .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 }
		}
	}, {
		.mfr_id = MANUFACTURER_AMD,
		.dev_id = AM29BDS323D,
		.name = "AMD AM29BDS323D",
		.size = 0x00400000,
		.numeraseregions = 3,
		.regions = {
			{ .offset = 0x000000, .erasesize = 0x10000, .numblocks = 48 },
			{ .offset = 0x300000, .erasesize = 0x10000, .numblocks = 15 },
			{ .offset = 0x3f0000, .erasesize = 0x02000, .numblocks =  8 },
		}
	}, {
		.mfr_id = MANUFACTURER_ATMEL,
		.dev_id = AT49xV16x,
		.name = "Atmel AT49xV16x",
		.size = 0x00200000,
		.numeraseregions = 2,
		.regions = {
			{ .offset = 0x000000, .erasesize = 0x02000, .numblocks =  8 },
			{ .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 }
		}
	}, {
		.mfr_id = MANUFACTURER_ATMEL,
		.dev_id = AT49xV16xT,
		.name = "Atmel AT49xV16xT",
		.size = 0x00200000,
		.numeraseregions = 2,
		.regions = {
			{ .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 },
			{ .offset = 0x1F0000, .erasesize = 0x02000, .numblocks =  8 }
		}
	}
	};

	struct mtd_info *mtd;
	struct flchip chips[MAX_AMD_CHIPS];
	int table_pos[MAX_AMD_CHIPS];
	struct amd_flash_private temp;
	struct amd_flash_private *private;
	u_long size;
	unsigned long base;
	int i;
	int reg_idx;
	int offset;

	mtd = (struct mtd_info*)kmalloc(sizeof(*mtd), GFP_KERNEL);
	if (!mtd) {
		printk(KERN_WARNING
		       "%s: kmalloc failed for info structure\n", map->name);
		return NULL;
	}
	memset(mtd, 0, sizeof(*mtd));
	mtd->priv = map;

	memset(&temp, 0, sizeof(temp));

	printk("%s: Probing for AMD compatible flash...\n", map->name);

	if ((table_pos[0] = probe_new_chip(mtd, 0, NULL, &temp, table,
					   ARRAY_SIZE(table)))
	    == -1) {
		printk(KERN_WARNING
		       "%s: Found no AMD compatible device at location zero\n",
		       map->name);
		kfree(mtd);

		return NULL;
	}

	chips[0].start = 0;
	chips[0].state = FL_READY;
	chips[0].mutex = &chips[0]._spinlock;
	temp.numchips = 1;
	for (size = mtd->size; size > 1; size >>= 1) {
		temp.chipshift++;
	}
	switch (temp.interleave) {
		case 2:
			temp.chipshift += 1;
			break;
		case 4:
			temp.chipshift += 2;
			break;
	}

	/* Find out if there are any more chips in the map. */
	for (base = (1 << temp.chipshift);
	     base < map->size;
	     base += (1 << temp.chipshift)) {
	     	int numchips = temp.numchips;
		table_pos[numchips] = probe_new_chip(mtd, base, chips,
			&temp, table, ARRAY_SIZE(table));
	}

	mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) *
				    mtd->numeraseregions, GFP_KERNEL);
	if (!mtd->eraseregions) {
		printk(KERN_WARNING "%s: Failed to allocate "
		       "memory for MTD erase region info\n", map->name);
		kfree(mtd);
		map->fldrv_priv = NULL;
		return NULL;
	}

	reg_idx = 0;
	offset = 0;
	for (i = 0; i < temp.numchips; i++) {
		int dev_size;
		int j;

		dev_size = 0;
		for (j = 0; j < table[table_pos[i]].numeraseregions; j++) {
			mtd->eraseregions[reg_idx].offset = offset +
				(table[table_pos[i]].regions[j].offset *
				 temp.interleave);
			mtd->eraseregions[reg_idx].erasesize =
				table[table_pos[i]].regions[j].erasesize *
				temp.interleave;
			mtd->eraseregions[reg_idx].numblocks =
				table[table_pos[i]].regions[j].numblocks;
			if (mtd->erasesize <
			    mtd->eraseregions[reg_idx].erasesize) {
				mtd->erasesize =
					mtd->eraseregions[reg_idx].erasesize;
			}
			dev_size += mtd->eraseregions[reg_idx].erasesize *
				    mtd->eraseregions[reg_idx].numblocks;
			reg_idx++;
		}
		offset += dev_size;
	}
	mtd->type = MTD_NORFLASH;
	mtd->flags = MTD_CAP_NORFLASH;
	mtd->name = map->name;
	mtd->erase = amd_flash_erase;
	mtd->read = amd_flash_read;
	mtd->write = amd_flash_write;
	mtd->sync = amd_flash_sync;
	mtd->suspend = amd_flash_suspend;
	mtd->resume = amd_flash_resume;
	mtd->lock = amd_flash_lock;
	mtd->unlock = amd_flash_unlock;

	private = kmalloc(sizeof(*private) + (sizeof(struct flchip) *
					      temp.numchips), GFP_KERNEL);
	if (!private) {
		printk(KERN_WARNING
		       "%s: kmalloc failed for private structure\n", map->name);
		kfree(mtd);
		map->fldrv_priv = NULL;
		return NULL;
	}
	memcpy(private, &temp, sizeof(temp));
	memcpy(private->chips, chips,
	       sizeof(struct flchip) * private->numchips);
	for (i = 0; i < private->numchips; i++) {
		init_waitqueue_head(&private->chips[i].wq);
		spin_lock_init(&private->chips[i]._spinlock);
	}

	map->fldrv_priv = private;

	map->fldrv = &amd_flash_chipdrv;

	__module_get(THIS_MODULE);
	return mtd;
}



static inline int read_one_chip(struct map_info *map, struct flchip *chip,
			       loff_t adr, size_t len, u_char *buf)
{
	DECLARE_WAITQUEUE(wait, current);
	unsigned long timeo = jiffies + HZ;

retry:
	spin_lock_bh(chip->mutex);

	if (chip->state != FL_READY){
		printk(KERN_INFO "%s: waiting for chip to read, state = %d\n",
		       map->name, chip->state);
		set_current_state(TASK_UNINTERRUPTIBLE);
		add_wait_queue(&chip->wq, &wait);

		spin_unlock_bh(chip->mutex);

		schedule();
		remove_wait_queue(&chip->wq, &wait);

		if(signal_pending(current)) {
			return -EINTR;
		}

		timeo = jiffies + HZ;

		goto retry;
	}

	adr += chip->start;

	chip->state = FL_READY;

	map_copy_from(map, buf, adr, len);

	wake_up(&chip->wq);
	spin_unlock_bh(chip->mutex);

	return 0;
}



static int amd_flash_read(struct mtd_info *mtd, loff_t from, size_t len,
			  size_t *retlen, u_char *buf)
{
	struct map_info *map = mtd->priv;
	struct amd_flash_private *private = map->fldrv_priv;
	unsigned long ofs;
	int chipnum;
	int ret = 0;

	if ((from + len) > mtd->size) {
		printk(KERN_WARNING "%s: read request past end of device "
		       "(0x%lx)\n", map->name, (unsigned long)from + len);

		return -EINVAL;
	}

	/* Offset within the first chip that the first read should start. */
	chipnum = (from >> private->chipshift);
	ofs = from - (chipnum <<  private->chipshift);

	*retlen = 0;

	while (len) {
		unsigned long this_len;

		if (chipnum >= private->numchips) {
			break;
		}

		if ((len + ofs - 1) >> private->chipshift) {
			this_len = (1 << private->chipshift) - ofs;
		} else {
			this_len = len;
		}

		ret = read_one_chip(map, &private->chips[chipnum], ofs,
				    this_len, buf);
		if (ret) {
			break;
		}

		*retlen += this_len;
		len -= this_len;
		buf += this_len;

		ofs = 0;
		chipnum++;
	}

	return ret;
}



static int write_one_word(struct map_info *map, struct flchip *chip,
			  unsigned long adr, __u32 datum)
{
	unsigned long timeo = jiffies + HZ;
	struct amd_flash_private *private = map->fldrv_priv;
	DECLARE_WAITQUEUE(wait, current);
	int ret = 0;
	int times_left;

retry:
	spin_lock_bh(chip->mutex);

	if (chip->state != FL_READY){
		printk("%s: waiting for chip to write, state = %d\n",
		       map->name, chip->state);
		set_current_state(TASK_UNINTERRUPTIBLE);
		add_wait_queue(&chip->wq, &wait);

		spin_unlock_bh(chip->mutex);

		schedule();
		remove_wait_queue(&chip->wq, &wait);
		printk(KERN_INFO "%s: woke up to write\n", map->name);
		if(signal_pending(current))
			return -EINTR;

		timeo = jiffies + HZ;

		goto retry;
	}

	chip->state = FL_WRITING;

	adr += chip->start;
	ENABLE_VPP(map);
	send_cmd(map, chip->start, CMD_PROGRAM_UNLOCK_DATA);
	wide_write(map, datum, adr);

	times_left = 500000;
	while (times_left-- && flash_is_busy(map, adr, private->interleave)) {
		if (need_resched()) {
			spin_unlock_bh(chip->mutex);
			schedule();
			spin_lock_bh(chip->mutex);
		}
	}

	if (!times_left) {
		printk(KERN_WARNING "%s: write to 0x%lx timed out!\n",
		       map->name, adr);
		ret = -EIO;
	} else {
		__u32 verify;
		if ((verify = wide_read(map, adr)) != datum) {
			printk(KERN_WARNING "%s: write to 0x%lx failed. "
			       "datum = %x, verify = %x\n",
			       map->name, adr, datum, verify);
			ret = -EIO;
		}
	}

	DISABLE_VPP(map);
	chip->state = FL_READY;
	wake_up(&chip->wq);
	spin_unlock_bh(chip->mutex);

	return ret;
}



static int amd_flash_write(struct mtd_info *mtd, loff_t to , size_t len,
			   size_t *retlen, const u_char *buf)
{
	struct map_info *map = mtd->priv;
	struct amd_flash_private *private = map->fldrv_priv;
	int ret = 0;
	int chipnum;
	unsigned long ofs;
	unsigned long chipstart;

	*retlen = 0;
	if (!len) {
		return 0;
	}

	chipnum = to >> private->chipshift;
	ofs = to  - (chipnum << private->chipshift);
	chipstart = private->chips[chipnum].start;

	/* If it's not bus-aligned, do the first byte write. */
	if (ofs & (map->buswidth - 1)) {
		unsigned long bus_ofs = ofs & ~(map->buswidth - 1);
		int i = ofs - bus_ofs;
		int n = 0;
		u_char tmp_buf[4];
		__u32 datum;

		map_copy_from(map, tmp_buf,
			       bus_ofs + private->chips[chipnum].start,
			       map->buswidth);
		while (len && i < map->buswidth)
			tmp_buf[i++] = buf[n++], len--;

		if (map->buswidth == 2) {
			datum = *(__u16*)tmp_buf;
		} else if (map->buswidth == 4) {
			datum = *(__u32*)tmp_buf;
		} else {
			return -EINVAL;  /* should never happen, but be safe */
		}

		ret = write_one_word(map, &private->chips[chipnum], bus_ofs,
				     datum);
		if (ret) {
			return ret;
		}

		ofs += n;
		buf += n;
		(*retlen) += n;

		if (ofs >> private->chipshift) {
			chipnum++;
			ofs = 0;
			if (chipnum == private->numchips) {
				return 0;
			}
		}
	}

	/* We are now aligned, write as much as possible. */
	while(len >= map->buswidth) {
		__u32 datum;

		if (map->buswidth == 1) {
			datum = *(__u8*)buf;
		} else if (map->buswidth == 2) {
			datum = *(__u16*)buf;
		} else if (map->buswidth == 4) {
			datum = *(__u32*)buf;
		} else {
			return -EINVAL;
		}

		ret = write_one_word(map, &private->chips[chipnum], ofs, datum);

		if (ret) {
			return ret;
		}

		ofs += map->buswidth;
		buf += map->buswidth;
		(*retlen) += map->buswidth;
		len -= map->buswidth;

		if (ofs >> private->chipshift) {
			chipnum++;
			ofs = 0;
			if (chipnum == private->numchips) {
				return 0;
			}
			chipstart = private->chips[chipnum].start;
		}
	}

	if (len & (map->buswidth - 1)) {
		int i = 0, n = 0;
		u_char tmp_buf[2];
		__u32 datum;

		map_copy_from(map, tmp_buf,
			       ofs + private->chips[chipnum].start,
			       map->buswidth);
		while (len--) {
			tmp_buf[i++] = buf[n++];
		}

		if (map->buswidth == 2) {
			datum = *(__u16*)tmp_buf;
		} else if (map->buswidth == 4) {
			datum = *(__u32*)tmp_buf;
		} else {
			return -EINVAL;  /* should never happen, but be safe */
		}

		ret = write_one_word(map, &private->chips[chipnum], ofs, datum);

		if (ret) {
			return ret;
		}

		(*retlen) += n;
	}

	return 0;
}



static inline int erase_one_block(struct map_info *map, struct flchip *chip,
				  unsigned long adr, u_long size)
{
	unsigned long timeo = jiffies + HZ;
	struct amd_flash_private *private = map->fldrv_priv;
	DECLARE_WAITQUEUE(wait, current);

retry:
	spin_lock_bh(chip->mutex);

	if (chip->state != FL_READY){
		set_current_state(TASK_UNINTERRUPTIBLE);
		add_wait_queue(&chip->wq, &wait);

		spin_unlock_bh(chip->mutex);

		schedule();
		remove_wait_queue(&chip->wq, &wait);

		if (signal_pending(current)) {
			return -EINTR;
		}

		timeo = jiffies + HZ;

		goto retry;
	}

	chip->state = FL_ERASING;

	adr += chip->start;
	ENABLE_VPP(map);
	send_cmd(map, chip->start, CMD_SECTOR_ERASE_UNLOCK_DATA);
	send_cmd_to_addr(map, chip->start, CMD_SECTOR_ERASE_UNLOCK_DATA_2, adr);

	timeo = jiffies + (HZ * 20);

	spin_unlock_bh(chip->mutex);
	msleep(1000);
	spin_lock_bh(chip->mutex);

	while (flash_is_busy(map, adr, private->interleave)) {

		if (chip->state != FL_ERASING) {
			/* Someone's suspended the erase. Sleep */
			set_current_state(TASK_UNINTERRUPTIBLE);
			add_wait_queue(&chip->wq, &wait);

			spin_unlock_bh(chip->mutex);
			printk(KERN_INFO "%s: erase suspended. Sleeping\n",
			       map->name);
			schedule();
			remove_wait_queue(&chip->wq, &wait);

			if (signal_pending(current)) {
				return -EINTR;
			}

			timeo = jiffies + (HZ*2); /* FIXME */
			spin_lock_bh(chip->mutex);
			continue;
		}

		/* OK Still waiting */
		if (time_after(jiffies, timeo)) {
			chip->state = FL_READY;
			spin_unlock_bh(chip->mutex);
			printk(KERN_WARNING "%s: waiting for erase to complete "
			       "timed out.\n", map->name);
			DISABLE_VPP(map);

			return -EIO;
		}

		/* Latency issues. Drop the lock, wait a while and retry */
		spin_unlock_bh(chip->mutex);

		if (need_resched())
			schedule();
		else
			udelay(1);

		spin_lock_bh(chip->mutex);
	}

	/* Verify every single word */
	{
		int address;
		int error = 0;
		__u8 verify;

		for (address = adr; address < (adr + size); address++) {
			if ((verify = map_read8(map, address)) != 0xFF) {
				error = 1;
				break;
			}
		}
		if (error) {
			chip->state = FL_READY;
			spin_unlock_bh(chip->mutex);
			printk(KERN_WARNING
			       "%s: verify error at 0x%x, size %ld.\n",
			       map->name, address, size);
			DISABLE_VPP(map);

			return -EIO;
		}
	}

	DISABLE_VPP(map);
	chip->state = FL_READY;
	wake_up(&chip->wq);
	spin_unlock_bh(chip->mutex);

	return 0;
}



static int amd_flash_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct map_info *map = mtd->priv;
	struct amd_flash_private *private = map->fldrv_priv;
	unsigned long adr, len;
	int chipnum;
	int ret = 0;
	int i;
	int first;
	struct mtd_erase_region_info *regions = mtd->eraseregions;

	if (instr->addr > mtd->size) {
		return -EINVAL;
	}

	if ((instr->len + instr->addr) > mtd->size) {
		return -EINVAL;
	}

	/* Check that both start and end of the requested erase are
	 * aligned with the erasesize at the appropriate addresses.
	 */

	i = 0;

        /* Skip all erase regions which are ended before the start of
           the requested erase. Actually, to save on the calculations,
           we skip to the first erase region which starts after the
           start of the requested erase, and then go back one.
        */

        while ((i < mtd->numeraseregions) &&
	       (instr->addr >= regions[i].offset)) {
               i++;
	}
        i--;

	/* OK, now i is pointing at the erase region in which this
	 * erase request starts. Check the start of the requested
	 * erase range is aligned with the erase size which is in
	 * effect here.
	 */

	if (instr->addr & (regions[i].erasesize-1)) {
		return -EINVAL;
	}

	/* Remember the erase region we start on. */

	first = i;

	/* Next, check that the end of the requested erase is aligned
	 * with the erase region at that address.
	 */

	while ((i < mtd->numeraseregions) &&
	       ((instr->addr + instr->len) >= regions[i].offset)) {
                i++;
	}

	/* As before, drop back one to point at the region in which
	 * the address actually falls.
	 */

	i--;

	if ((instr->addr + instr->len) & (regions[i].erasesize-1)) {
                return -EINVAL;
	}

	chipnum = instr->addr >> private->chipshift;
	adr = instr->addr - (chipnum << private->chipshift);
	len = instr->len;

	i = first;

	while (len) {
		ret = erase_one_block(map, &private->chips[chipnum], adr,
				      regions[i].erasesize);

		if (ret) {
			return ret;
		}

		adr += regions[i].erasesize;
		len -= regions[i].erasesize;

		if ((adr % (1 << private->chipshift)) ==
		    ((regions[i].offset + (regions[i].erasesize *
		    			   regions[i].numblocks))
		     % (1 << private->chipshift))) {
			i++;
		}

		if (adr >> private->chipshift) {
			adr = 0;
			chipnum++;
			if (chipnum >= private->numchips) {
				break;
			}
		}
	}

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return 0;
}



static void amd_flash_sync(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct amd_flash_private *private = map->fldrv_priv;
	int i;
	struct flchip *chip;
	int ret = 0;
	DECLARE_WAITQUEUE(wait, current);

	for (i = 0; !ret && (i < private->numchips); i++) {
		chip = &private->chips[i];

	retry:
		spin_lock_bh(chip->mutex);

		switch(chip->state) {
		case FL_READY:
		case FL_STATUS:
		case FL_CFI_QUERY:
		case FL_JEDEC_QUERY:
			chip->oldstate = chip->state;
			chip->state = FL_SYNCING;
			/* No need to wake_up() on this state change -
			 * as the whole point is that nobody can do anything
			 * with the chip now anyway.
			 */
		case FL_SYNCING:
			spin_unlock_bh(chip->mutex);
			break;

		default:
			/* Not an idle state */
			add_wait_queue(&chip->wq, &wait);

			spin_unlock_bh(chip->mutex);

			schedule();

		        remove_wait_queue(&chip->wq, &wait);

			goto retry;
		}
	}

	/* Unlock the chips again */
	for (i--; i >= 0; i--) {
		chip = &private->chips[i];

		spin_lock_bh(chip->mutex);

		if (chip->state == FL_SYNCING) {
			chip->state = chip->oldstate;
			wake_up(&chip->wq);
		}
		spin_unlock_bh(chip->mutex);
	}
}



static int amd_flash_suspend(struct mtd_info *mtd)
{
printk("amd_flash_suspend(): not implemented!\n");
	return -EINVAL;
}



static void amd_flash_resume(struct mtd_info *mtd)
{
printk("amd_flash_resume(): not implemented!\n");
}



static void amd_flash_destroy(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct amd_flash_private *private = map->fldrv_priv;
	kfree(private);
}

int __init amd_flash_init(void)
{
	register_mtd_chip_driver(&amd_flash_chipdrv);
	return 0;
}

void __exit amd_flash_exit(void)
{
	unregister_mtd_chip_driver(&amd_flash_chipdrv);
}

module_init(amd_flash_init);
module_exit(amd_flash_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Jonas Holmberg <jonas.holmberg@axis.com>");
MODULE_DESCRIPTION("Old MTD chip driver for AMD flash chips");