1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
|
/*
* Copyright 2009-2012 Freescale Semiconductor, Inc.
*
*
* Description:
* MPC5125 Nand driver.
* Jason ported to M54418TWR and MVFA5.
*
* Based on original driver mpc5121_nfc.c.
*
* This is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <asm/fsl_nfc.h>
#include <mach/hardware.h>
#ifdef CONFIG_COLDFIRE
#include <asm/mcfsim.h>
#define DRV_NAME "fsl_nfc"
#else
#define DRV_NAME "mxc_nand"
#endif
#define DRV_VERSION "1.0"
/* Timeouts */
#define NFC_RESET_TIMEOUT 1000 /* 1 ms */
#define NFC_TIMEOUT (HZ)
#define ECC_SRAM_ADDR (0x840 >> 3)
#define ECC_STATUS_MASK 0x80
#define ECC_ERR_COUNT 0x3F
#define MIN(x, y) ((x < y) ? x : y)
#ifdef CONFIG_MTD_NAND_FSL_NFC_SWECC
static int hardware_ecc;
#else
static int hardware_ecc = 1;
#endif
struct fsl_nfc_prv {
struct mtd_info mtd;
struct nand_chip chip;
int irq;
void __iomem *regs;
struct clk *clk;
wait_queue_head_t irq_waitq;
uint column;
int spareonly;
int page;
};
static int get_status;
static int get_id;
static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 11,
.len = 4,
.veroffs = 15,
.maxblocks = 4,
.pattern = bbt_pattern,
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 11,
.len = 4,
.veroffs = 15,
.maxblocks = 4,
.pattern = mirror_pattern,
};
static const char *fsl_nfc_pprobes[] = { "cmdlinepart", NULL };
#if 0
static struct nand_ecclayout nand_hw_eccoob_512 = {
.eccbytes = 8,
.eccpos = {
8, 9, 10, 11, 12, 13, 14, 15,
},
.oobfree = {
{0, 5} /* byte 5 is factory bad block marker */
},
};
#endif
static struct nand_ecclayout fsl_nfc_ecc45 = {
.eccbytes = 45,
.eccpos = {19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63},
.oobfree = {
{.offset = 8,
.length = 11} }
};
#if 0
static struct nand_ecclayout nand_hw_eccoob_2k = {
.eccbytes = 32,
.eccpos = {
/* 8 bytes of ecc for each 512 bytes of data */
8, 9, 10, 11, 12, 13, 14, 15,
24, 25, 26, 27, 28, 29, 30, 31,
40, 41, 42, 43, 44, 45, 46, 47,
56, 57, 58, 59, 60, 61, 62, 63,
},
.oobfree = {
{2, 5}, /* bytes 0 and 1 are factory bad block markers */
{16, 7},
{32, 7},
{48, 7},
},
};
/* ecc struct for nand 5125 */
static struct nand_ecclayout nand5125_hw_eccoob_2k = {
.eccbytes = 60,
.eccpos = {
/* 60 bytes of ecc for one page bytes of data */
4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63,
},
.oobfree = {
{2, 2}, /* bytes 0 and 1 are factory bad block markers */
},
};
#endif
static inline u32 nfc_read(struct mtd_info *mtd, uint reg)
{
struct nand_chip *chip = mtd->priv;
struct fsl_nfc_prv *prv = chip->priv;
return readl(prv->regs + reg);
}
/* Write NFC register */
static inline void nfc_write(struct mtd_info *mtd, uint reg, u32 val)
{
struct nand_chip *chip = mtd->priv;
struct fsl_nfc_prv *prv = chip->priv;
writel(val, prv->regs + reg);
}
/* Set bits in NFC register */
static inline void nfc_set(struct mtd_info *mtd, uint reg, u32 bits)
{
nfc_write(mtd, reg, nfc_read(mtd, reg) | bits);
}
/* Clear bits in NFC register */
static inline void nfc_clear(struct mtd_info *mtd, uint reg, u32 bits)
{
nfc_write(mtd, reg, nfc_read(mtd, reg) & ~bits);
}
static inline void
nfc_set_field(struct mtd_info *mtd, u32 reg, u32 mask, u32 shift, u32 val)
{
struct nand_chip *chip = mtd->priv;
struct fsl_nfc_prv *prv = chip->priv;
writel((readl(prv->regs + reg) & (~mask)) | val << shift,
prv->regs + reg);
}
static inline int
nfc_get_field(struct mtd_info *mtd, u32 reg, u32 field_mask)
{
struct nand_chip *chip = mtd->priv;
struct fsl_nfc_prv *prv = chip->priv;
return readl(prv->regs + reg) & field_mask;
}
static inline u8 nfc_check_status(struct mtd_info *mtd)
{
u8 fls_status = 0;
fls_status = nfc_get_field(mtd, NFC_FLASH_STATUS2, STATUS_BYTE1_MASK);
return fls_status;
}
/* clear cmd_done and cmd_idle falg for the coming command */
static void fsl_nfc_clear(struct mtd_info *mtd)
{
nfc_write(mtd, NFC_IRQ_STATUS, 1 << CMD_DONE_CLEAR_SHIFT);
nfc_write(mtd, NFC_IRQ_STATUS, 1 << IDLE_CLEAR_SHIFT);
}
/* Wait for operation complete */
static void fsl_nfc_done(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
struct fsl_nfc_prv *prv = chip->priv;
int rv;
nfc_set(mtd, NFC_IRQ_STATUS, IDLE_EN_MASK);
nfc_set_field(mtd, NFC_FLASH_CMD2, START_MASK,
START_SHIFT, 1);
if (!nfc_get_field(mtd, NFC_IRQ_STATUS, IDLE_IRQ_MASK)) {
rv = wait_event_timeout(prv->irq_waitq,
nfc_get_field(mtd, NFC_IRQ_STATUS,
IDLE_IRQ_MASK), NFC_TIMEOUT);
if (!rv)
printk(KERN_DEBUG DRV_NAME
": Timeout while waiting for BUSY.\n");
}
fsl_nfc_clear(mtd);
}
static inline u8 fsl_nfc_get_id(struct mtd_info *mtd, int col)
{
u32 flash_id1 = 0;
u8 *pid;
flash_id1 = nfc_read(mtd, NFC_FLASH_STATUS1);
pid = (u8 *)&flash_id1;
#ifdef __BIG_ENDIAN
return *(pid + col);
#else
return *(pid + 3 - col);
#endif
}
static inline u8 fsl_nfc_get_status(struct mtd_info *mtd)
{
u32 flash_status = 0;
u8 *pstatus;
flash_status = nfc_read(mtd, NFC_FLASH_STATUS2);
pstatus = (u8 *)&flash_status;
#ifdef __BIG_ENDIAN
return *(pstatus + 3);
#else
return *(pstatus);
#endif
}
/* Invoke command cycle */
static inline void
fsl_nfc_send_cmd(struct mtd_info *mtd, u32 cmd_byte1,
u32 cmd_byte2, u32 cmd_code)
{
fsl_nfc_clear(mtd);
nfc_set_field(mtd, NFC_FLASH_CMD2, CMD_BYTE1_MASK,
CMD_BYTE1_SHIFT, cmd_byte1);
nfc_set_field(mtd, NFC_FLASH_CMD1, CMD_BYTE2_MASK,
CMD_BYTE2_SHIFT, cmd_byte2);
nfc_set_field(mtd, NFC_FLASH_CMD2, BUFNO_MASK,
BUFNO_SHIFT, 0);
nfc_set_field(mtd, NFC_FLASH_CMD2, CMD_CODE_MASK,
CMD_CODE_SHIFT, cmd_code);
if (cmd_code == RANDOM_OUT_CMD_CODE)
nfc_set_field(mtd, NFC_FLASH_CMD2, BUFNO_MASK,
BUFNO_SHIFT, 1);
}
/* Receive ID and status from NAND flash */
static inline void
fsl_nfc_send_one_byte(struct mtd_info *mtd, u32 cmd_byte1, u32 cmd_code)
{
fsl_nfc_clear(mtd);
nfc_set_field(mtd, NFC_FLASH_CMD2, CMD_BYTE1_MASK,
CMD_BYTE1_SHIFT, cmd_byte1);
nfc_set_field(mtd, NFC_FLASH_CMD2, BUFNO_MASK,
BUFNO_SHIFT, 0);
nfc_set_field(mtd, NFC_FLASH_CMD2, CMD_CODE_MASK,
CMD_CODE_SHIFT, cmd_code);
}
/* NFC interrupt handler */
static irqreturn_t
fsl_nfc_irq(int irq, void *data)
{
struct mtd_info *mtd = data;
struct nand_chip *chip = mtd->priv;
struct fsl_nfc_prv *prv = chip->priv;
nfc_clear(mtd, NFC_IRQ_STATUS, IDLE_EN_MASK);
wake_up(&prv->irq_waitq);
return IRQ_HANDLED;
}
/* Do address cycle(s) */
static void
fsl_nfc_addr_cycle(struct mtd_info *mtd, int column, int page)
{
if (column != -1) {
nfc_set_field(mtd, NFC_COL_ADDR,
COL_ADDR_MASK,
COL_ADDR_SHIFT, column);
}
if (page != -1) {
nfc_set_field(mtd, NFC_ROW_ADDR,
ROW_ADDR_MASK,
ROW_ADDR_SHIFT, page);
}
/* DMA Disable */
nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_MASK);
/* PAGE_CNT = 1 */
nfc_set_field(mtd, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
CONFIG_PAGE_CNT_SHIFT, 0x1);
}
/* Control chips select signal on m54418twr board */
static void
nfc_select_chip(struct mtd_info *mtd, int chip)
{
#ifdef CONFIG_COLDFIRE
if (chip < 0) {
MCF_GPIO_PAR_FBCTL &= (MCF_GPIO_PAR_FBCTL_ALE_MASK &
MCF_GPIO_PAR_FBCTL_TA_MASK);
MCF_GPIO_PAR_FBCTL |= MCF_GPIO_PAR_FBCTL_ALE_FB_TS |
MCF_GPIO_PAR_FBCTL_TA_TA;
MCF_GPIO_PAR_BE =
MCF_GPIO_PAR_BE_BE3_BE3 | MCF_GPIO_PAR_BE_BE2_BE2 |
MCF_GPIO_PAR_BE_BE1_BE1 | MCF_GPIO_PAR_BE_BE0_BE0;
MCF_GPIO_PAR_CS &= ~MCF_GPIO_PAR_CS_CS1_NFC_CE;
MCF_GPIO_PAR_CS |= MCF_GPIO_PAR_CS_CS0_CS0;
return;
}
MCF_GPIO_PAR_FBCTL &= (MCF_GPIO_PAR_FBCTL_ALE_MASK &
MCF_GPIO_PAR_FBCTL_TA_MASK);
MCF_GPIO_PAR_FBCTL |= MCF_GPIO_PAR_FBCTL_ALE_FB_ALE |
MCF_GPIO_PAR_FBCTL_TA_NFC_RB;
MCF_GPIO_PAR_BE = MCF_GPIO_PAR_BE_BE3_FB_A1 |
MCF_GPIO_PAR_BE_BE2_FB_A0 |
MCF_GPIO_PAR_BE_BE1_BE1 | MCF_GPIO_PAR_BE_BE0_BE0;
MCF_GPIO_PAR_CS &= (MCF_GPIO_PAR_BE_BE3_MASK &
MCF_GPIO_PAR_BE_BE2_MASK);
MCF_GPIO_PAR_CS |= MCF_GPIO_PAR_CS_CS1_NFC_CE;
return;
#endif
}
/* Read NAND Ready/Busy signal */
static int
fsl_nfc_dev_ready(struct mtd_info *mtd)
{
/*
* NFC handles ready/busy signal internally. Therefore, this function
* always returns status as ready.
*/
return 1;
}
/* Write command to NAND flash */
static void
fsl_nfc_command(struct mtd_info *mtd, unsigned command,
int column, int page)
{
struct nand_chip *chip = mtd->priv;
struct fsl_nfc_prv *prv = chip->priv;
prv->column = (column >= 0) ? column : 0;
prv->spareonly = 0;
get_id = 0;
get_status = 0;
if (page != -1)
prv->page = page;
if (hardware_ecc)
nfc_set_field(mtd, NFC_FLASH_CONFIG,
CONFIG_ECC_MODE_MASK,
CONFIG_ECC_MODE_SHIFT, ECC_45_BYTE);
else
/* set ECC BY_PASS */
nfc_set_field(mtd, NFC_FLASH_CONFIG,
CONFIG_ECC_MODE_MASK,
CONFIG_ECC_MODE_SHIFT, ECC_BYPASS);
if (!(page%0x40)) {
nfc_set_field(mtd, NFC_FLASH_CONFIG,
CONFIG_ECC_MODE_MASK,
CONFIG_ECC_MODE_SHIFT, ECC_BYPASS);
}
switch (command) {
case NAND_CMD_PAGEPROG:
if (!(prv->page%0x40))
nfc_set_field(mtd, NFC_FLASH_CONFIG,
CONFIG_ECC_MODE_MASK,
CONFIG_ECC_MODE_SHIFT, ECC_BYPASS);
fsl_nfc_send_cmd(mtd,
PROGRAM_PAGE_CMD_BYTE1,
PROGRAM_PAGE_CMD_BYTE2,
PROGRAM_PAGE_CMD_CODE);
break;
/*
* NFC does not support sub-page reads and writes,
* so emulate them using full page transfers.
*/
case NAND_CMD_READ0:
column = 0;
goto read0;
break;
case NAND_CMD_READ1:
prv->column += 256;
command = NAND_CMD_READ0;
column = 0;
goto read0;
break;
case NAND_CMD_READOOB:
prv->spareonly = 1;
command = NAND_CMD_READ0;
column = 0;
read0:
fsl_nfc_send_cmd(mtd,
PAGE_READ_CMD_BYTE1,
PAGE_READ_CMD_BYTE2,
READ_PAGE_CMD_CODE);
break;
case NAND_CMD_SEQIN:
fsl_nfc_command(mtd, NAND_CMD_READ0, column, page);
column = 0;
break;
case NAND_CMD_ERASE1:
fsl_nfc_send_cmd(mtd,
ERASE_CMD_BYTE1,
ERASE_CMD_BYTE2,
ERASE_CMD_CODE);
break;
case NAND_CMD_ERASE2:
return;
case NAND_CMD_READID:
get_id = 1;
fsl_nfc_send_one_byte(mtd, command, READ_ID_CMD_CODE);
break;
case NAND_CMD_STATUS:
get_status = 1;
fsl_nfc_send_one_byte(mtd, command, STATUS_READ_CMD_CODE);
break;
case NAND_CMD_RNDOUT:
fsl_nfc_send_cmd(mtd,
RANDOM_OUT_CMD_BYTE1,
RANDOM_OUT_CMD_BYTE2,
RANDOM_OUT_CMD_CODE);
break;
case NAND_CMD_RESET:
fsl_nfc_send_one_byte(mtd, command, RESET_CMD_CODE);
break;
default:
return;
}
fsl_nfc_addr_cycle(mtd, column, page);
fsl_nfc_done(mtd);
}
/* Copy data from/to NFC spare buffers. */
static void
fsl_nfc_copy_spare(struct mtd_info *mtd, uint offset,
u8 *buffer, uint size, int wr)
{
struct nand_chip *nand = mtd->priv;
struct fsl_nfc_prv *prv = nand->priv;
uint o, s, sbsize, blksize;
/*
* NAND spare area is available through NFC spare buffers.
* The NFC divides spare area into (page_size / 512) chunks.
* Each chunk is placed into separate spare memory area, using
* first (spare_size / num_of_chunks) bytes of the buffer.
*
* For NAND device in which the spare area is not divided fully
* by the number of chunks, number of used bytes in each spare
* buffer is rounded down to the nearest even number of bytes,
* and all remaining bytes are added to the last used spare area.
*
* For more information read section 26.6.10 of MPC5121e
* Microcontroller Reference Manual, Rev. 3.
*/
/* Calculate number of valid bytes in each spare buffer */
/* sbsize = (mtd->oobsize / (mtd->writesize / 512)) & ~1;*/
sbsize = (mtd->oobsize / (mtd->writesize / 2048)) & ~1;
while (size) {
/* Calculate spare buffer number */
s = offset / sbsize;
if (s > NFC_SPARE_BUFFERS - 1)
s = NFC_SPARE_BUFFERS - 1;
/*
* Calculate offset to requested data block in selected spare
* buffer and its size.
*/
o = offset - (s * sbsize);
blksize = min(sbsize - o, size);
if (wr)
memcpy_toio(prv->regs + NFC_SPARE_AREA(s) + o,
buffer, blksize);
else {
memcpy_fromio(buffer,
prv->regs + NFC_SPARE_AREA(s) + o, blksize);
}
buffer += blksize;
offset += blksize;
size -= blksize;
};
}
/* Copy data from/to NFC main and spare buffers */
static void
fsl_nfc_buf_copy(struct mtd_info *mtd, u_char *buf, int len, int wr)
{
struct nand_chip *chip = mtd->priv;
struct fsl_nfc_prv *prv = chip->priv;
uint c = prv->column;
uint l;
/* Handle spare area access */
if (prv->spareonly || c >= mtd->writesize) {
/* Calculate offset from beginning of spare area */
if (c >= mtd->writesize)
c -= mtd->writesize;
prv->column += len;
fsl_nfc_copy_spare(mtd, c, buf, len, wr);
return;
}
/*
* Handle main area access - limit copy length to prevent
* crossing main/spare boundary.
*/
l = min((uint)len, mtd->writesize - c);
prv->column += l;
if (wr)
memcpy_toio(prv->regs + NFC_MAIN_AREA(0) + c, buf, l);
else {
if (get_status) {
get_status = 0;
*buf = fsl_nfc_get_status(mtd);
} else if (l == 1 && c <= 3 && get_id) {
*buf = fsl_nfc_get_id(mtd, c);
} else
memcpy_fromio(buf, prv->regs + NFC_MAIN_AREA(0) + c, l);
}
/* Handle crossing main/spare boundary */
if (l != len) {
buf += l;
len -= l;
fsl_nfc_buf_copy(mtd, buf, len, wr);
}
}
/* Read data from NFC buffers */
static void
fsl_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
fsl_nfc_buf_copy(mtd, buf, len, 0);
}
/* Write data to NFC buffers */
static void
fsl_nfc_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
fsl_nfc_buf_copy(mtd, (u_char *)buf, len, 1);
}
/* Compare buffer with NAND flash */
static int
fsl_nfc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
u_char tmp[256];
uint bsize;
while (len) {
bsize = min(len, 256);
fsl_nfc_read_buf(mtd, tmp, bsize);
if (memcmp(buf, tmp, bsize))
return 1;
buf += bsize;
len -= bsize;
}
return 0;
}
/* Read byte from NFC buffers */
static u8
fsl_nfc_read_byte(struct mtd_info *mtd)
{
u8 tmp;
fsl_nfc_read_buf(mtd, &tmp, sizeof(tmp));
return tmp;
}
/* Read word from NFC buffers */
static u16
fsl_nfc_read_word(struct mtd_info *mtd)
{
u16 tmp;
fsl_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp));
return tmp;
}
#if 0
static void fsl_nfc_check_ecc_status(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
struct fsl_nfc_prv *prv = chip->priv;
u8 ecc_status, ecc_count;
ecc_status = *(u8 *)(prv->regs + ECC_SRAM_ADDR * 8 + 7);
ecc_count = ecc_status & ECC_ERR_COUNT;
if (ecc_status & ECC_STATUS_MASK) {
/*mtd->ecc_stats.failed++;*/
printk("ECC failed to correct all errors!\n");
} else if (ecc_count) {
/*mtd->ecc_stats.corrected += ecc_count;*/
printk(KERN_INFO"ECC corrected %d errors\n", ecc_count);
}
}
#endif
static void
copy_from_to_spare(struct mtd_info *mtd, void *pbuf, int len, int wr)
{
struct nand_chip *chip = mtd->priv;
struct fsl_nfc_prv *prv = chip->priv;
int i, copy_count, copy_size;
/* copy_count = mtd->writesize / 512;*/
copy_count = mtd->writesize / 2048;
/*
* Each spare area has 16 bytes for 512, 2K and normal 4K nand.
* For 4K nand with large 218 byte spare size, the size is 26 bytes for
* the first 7 buffers and 36 for the last.
*/
/* copy_size = mtd->oobsize == 218 ? 26 : 16;*/
copy_size = 64;
/*
* Each spare area has 16 bytes for 512, 2K and normal 4K nand.
* For 4K nand with large 218 byte spare size, the size is 26
* bytes for the first 7 buffers and 36 for the last.
*/
for (i = 0; i < copy_count - 1 && len > 0; i++) {
if (wr)
memcpy_toio(prv->regs + NFC_SPARE_AREA(i),
pbuf, MIN(len, copy_size));
else
memcpy_fromio(pbuf, prv->regs + NFC_SPARE_AREA(i),
MIN(len, copy_size));
pbuf += copy_size;
len -= copy_size;
}
if (len > 0) {
if (wr)
memcpy_toio(prv->regs + NFC_SPARE_AREA(i),
pbuf, len);
else
memcpy_fromio(pbuf,
prv->regs + NFC_SPARE_AREA(i), len);
}
}
static int fsl_nfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page, int sndcmd)
{
fsl_nfc_command(mtd, NAND_CMD_READ0, 0, page);
copy_from_to_spare(mtd, chip->oob_poi, mtd->oobsize, 0);
return 0;
}
static int fsl_nfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
fsl_nfc_command(mtd, NAND_CMD_READ0, 0, page);
/* copy the oob data */
copy_from_to_spare(mtd, chip->oob_poi, mtd->oobsize, 1);
fsl_nfc_command(mtd, NAND_CMD_PAGEPROG, 0, page);
return 0;
}
static int fsl_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int page)
{
struct fsl_nfc_prv *prv = chip->priv;
/*fsl_nfc_check_ecc_status(mtd);*/
memcpy_fromio((void *)buf, prv->regs + NFC_MAIN_AREA(0),
mtd->writesize);
copy_from_to_spare(mtd, chip->oob_poi, mtd->oobsize, 0);
return 0;
}
static void fsl_nfc_write_page(struct mtd_info *mtd,
struct nand_chip *chip, const uint8_t *buf)
{
struct fsl_nfc_prv *prv = chip->priv;
memcpy_toio(prv->regs + NFC_MAIN_AREA(0), buf, mtd->writesize);
copy_from_to_spare(mtd, chip->oob_poi, mtd->oobsize, 1);
}
static void fsl_nfc_enable_hwecc(struct mtd_info *mtd, int mode)
{
return;
}
/* Free driver resources */
static void
fsl_nfc_free(struct platform_device *dev, struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
struct fsl_nfc_prv *prv = chip->priv;
kfree(prv);
}
static int __devinit
fsl_nfc_probe(struct platform_device *pdev)
{
struct fsl_nfc_prv *prv;
struct resource *res;
struct mtd_info *mtd;
struct mtd_partition *parts;
struct nand_chip *chip;
unsigned long regs_paddr, regs_size;
int retval = 0;
prv = kzalloc(sizeof(*prv), GFP_KERNEL);
if (!prv) {
printk(KERN_ERR DRV_NAME ": Memory exhausted!\n");
return -ENOMEM;
}
mtd = &prv->mtd;
chip = &prv->chip;
mtd->priv = chip;
chip->priv = prv;
prv->irq = platform_get_irq(pdev, 0);
if (prv->irq <= 0) {
printk(KERN_ERR DRV_NAME ": Error mapping IRQ!\n");
return -EINVAL;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res == NULL) {
printk(KERN_ERR "%s platform_get_resource MEM failed %x\n",
__func__, (unsigned int)res);
retval = -ENOMEM;
goto error;
}
regs_paddr = res->start;
regs_size = res->end - res->start + 1;
if (!request_mem_region(regs_paddr, regs_size, DRV_NAME)) {
printk(KERN_ERR DRV_NAME ": Error requesting memory region!\n");
return -EBUSY;
}
prv->regs = ioremap(regs_paddr, regs_size);
if (!prv->regs) {
printk(KERN_ERR DRV_NAME ": Error mapping memory region!\n");
return -ENOMEM;
}
mtd->name = "NAND";
mtd->writesize = 2048;
mtd->oobsize = 64;
chip->dev_ready = fsl_nfc_dev_ready;
chip->cmdfunc = fsl_nfc_command;
chip->read_byte = fsl_nfc_read_byte;
chip->read_word = fsl_nfc_read_word;
chip->read_buf = fsl_nfc_read_buf;
chip->write_buf = fsl_nfc_write_buf;
chip->verify_buf = fsl_nfc_verify_buf;
chip->options = NAND_NO_AUTOINCR | NAND_USE_FLASH_BBT |
NAND_BUSWIDTH_16 | NAND_CACHEPRG;
chip->select_chip = nfc_select_chip;
if (hardware_ecc) {
chip->ecc.read_page = fsl_nfc_read_page;
chip->ecc.write_page = fsl_nfc_write_page;
chip->ecc.read_oob = fsl_nfc_read_oob;
chip->ecc.write_oob = fsl_nfc_write_oob;
chip->ecc.layout = &fsl_nfc_ecc45;
/* propagate ecc.layout to mtd_info */
mtd->ecclayout = chip->ecc.layout;
chip->ecc.calculate = NULL;
chip->ecc.hwctl = fsl_nfc_enable_hwecc;
chip->ecc.correct = NULL;
chip->ecc.mode = NAND_ECC_HW;
/* RS-ECC is applied for both MAIN+SPARE not MAIN alone */
chip->ecc.steps = 1;
chip->ecc.bytes = 45;
chip->ecc.size = 0x800;
/* set ECC mode = ECC_45_BYTE */
nfc_set_field(mtd, NFC_FLASH_CONFIG,
CONFIG_ECC_MODE_MASK,
CONFIG_ECC_MODE_SHIFT, ECC_45_BYTE);
/* set ECC_STATUS write position */
nfc_set_field(mtd, NFC_FLASH_CONFIG,
CONFIG_ECC_SRAM_ADDR_MASK,
CONFIG_ECC_SRAM_ADDR_SHIFT, ECC_SRAM_ADDR);
/* enable ECC_STATUS results write */
nfc_set_field(mtd, NFC_FLASH_CONFIG,
CONFIG_ECC_SRAM_REQ_MASK,
CONFIG_ECC_SRAM_REQ_SHIFT, 1);
} else {
chip->ecc.mode = NAND_ECC_SOFT;
/* set ECC BY_PASS */
nfc_set_field(mtd, NFC_FLASH_CONFIG,
CONFIG_ECC_MODE_MASK,
CONFIG_ECC_MODE_SHIFT, ECC_BYPASS);
}
chip->bbt_td = &bbt_main_descr;
chip->bbt_md = &bbt_mirror_descr;
bbt_main_descr.pattern = bbt_pattern;
bbt_mirror_descr.pattern = mirror_pattern;
init_waitqueue_head(&prv->irq_waitq);
retval = request_irq(prv->irq, fsl_nfc_irq, IRQF_DISABLED,
DRV_NAME, mtd);
if (retval) {
printk(KERN_ERR DRV_NAME ": Error requesting IRQ!\n");
goto error;
}
/* SET SECTOR SIZE */
nfc_write(mtd, NFC_SECTOR_SIZE, PAGE_2K | PAGE_64);
nfc_set_field(mtd, NFC_FLASH_CONFIG,
CONFIG_ADDR_AUTO_INCR_MASK,
CONFIG_ADDR_AUTO_INCR_SHIFT, 0);
nfc_set_field(mtd, NFC_FLASH_CONFIG,
CONFIG_BUFNO_AUTO_INCR_MASK,
CONFIG_BUFNO_AUTO_INCR_SHIFT, 0);
/* SET FAST_FLASH = 1 */
#if 0
nfc_set_field(mtd, NFC_FLASH_CONFIG,
CONFIG_FAST_FLASH_MASK,
CONFIG_FAST_FLASH_SHIFT, 1);
#endif
nfc_set_field(mtd, NFC_FLASH_CONFIG,
CONFIG_16BIT_MASK,
CONFIG_16BIT_SHIFT, 1);
/* Detect NAND chips */
if (nand_scan(mtd, 1)) {
printk(KERN_ERR DRV_NAME ": NAND Flash not found !\n");
free_irq(prv->irq, mtd);
retval = -ENXIO;
goto error;
}
platform_set_drvdata(pdev, mtd);
/* Register device in MTD */
retval = parse_mtd_partitions(mtd, fsl_nfc_pprobes, &parts, 0);
if (retval < 0) {
printk(KERN_ERR DRV_NAME ": Error parsing MTD partitions!\n");
free_irq(prv->irq, mtd);
retval = -EINVAL;
goto error;
}
printk(KERN_DEBUG "parse partition: partnr = %d\n", retval);
retval = mtd_device_register(mtd, parts, retval);
if (retval) {
printk(KERN_ERR DRV_NAME ": Error adding MTD device!\n");
free_irq(prv->irq, mtd);
goto error;
}
return 0;
error:
fsl_nfc_free(pdev, mtd);
return retval;
}
static int __exit
fsl_nfc_remove(struct platform_device *pdev)
{
struct mtd_info *mtd = platform_get_drvdata(pdev);
struct nand_chip *chip = mtd->priv;
struct fsl_nfc_prv *prv = chip->priv;
nand_release(mtd);
free_irq(prv->irq, mtd);
fsl_nfc_free(pdev, mtd);
return 0;
}
static struct platform_driver fsl_nfc_driver = {
.probe = fsl_nfc_probe,
.remove = __exit_p(fsl_nfc_remove),
.suspend = NULL,
.resume = NULL,
.driver = {
.name = DRV_NAME,
.owner = THIS_MODULE,
},
};
static int __init fsl_nfc_init(void)
{
pr_info("FSL NFC MTD nand Driver %s\n", DRV_VERSION);
if (platform_driver_register(&fsl_nfc_driver) != 0) {
printk(KERN_ERR DRV_NAME ": Driver register failed!\n");
return -ENODEV;
}
return 0;
}
static void __exit fsl_nfc_cleanup(void)
{
platform_driver_unregister(&fsl_nfc_driver);
}
module_init(fsl_nfc_init);
module_exit(fsl_nfc_cleanup);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("FSL NFC NAND MTD driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
|