1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
|
/*
* Freescale GPMI NFC NAND Flash Driver
*
* Copyright (C) 2010 Freescale Semiconductor, Inc.
* Copyright (C) 2008 Embedded Alley Solutions, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "gpmi-nfc.h"
/**
* gpmi_nfc_bch_isr - BCH interrupt service routine.
*
* @interrupt_number: The interrupt number.
* @cookie: A cookie that contains a pointer to the owning device
* data structure.
*/
irqreturn_t gpmi_nfc_bch_isr(int irq, void *cookie)
{
struct gpmi_nfc_data *this = cookie;
struct nfc_hal *nfc = this->nfc;
gpmi_nfc_add_event("> gpmi_nfc_bch_isr", 1);
/* Clear the interrupt. */
nfc->clear_bch(this);
/* Release the base level. */
complete(&(nfc->bch_done));
/* Return success. */
gpmi_nfc_add_event("< gpmi_nfc_bch_isr", -1);
return IRQ_HANDLED;
}
/**
* gpmi_nfc_dma_isr - DMA interrupt service routine.
*
* @interrupt_number: The interrupt number.
* @cookie: A cookie that contains a pointer to the owning device
* data structure.
*/
irqreturn_t gpmi_nfc_dma_isr(int irq, void *cookie)
{
struct gpmi_nfc_data *this = cookie;
struct nfc_hal *nfc = this->nfc;
gpmi_nfc_add_event("> gpmi_nfc_dma_isr", 1);
/* Acknowledge the DMA channel's interrupt. */
mxs_dma_ack_irq(nfc->isr_dma_channel);
/* Release the base level. */
complete(&(nfc->dma_done));
/* Return success. */
gpmi_nfc_add_event("< gpmi_nfc_dma_isr", -1);
return IRQ_HANDLED;
}
/**
* gpmi_nfc_dma_init() - Initializes DMA.
*
* @this: Per-device data.
*/
int gpmi_nfc_dma_init(struct gpmi_nfc_data *this)
{
struct device *dev = this->dev;
struct nfc_hal *nfc = this->nfc;
int i;
int error;
/* Allocate the DMA descriptors. */
for (i = 0; i < NFC_DMA_DESCRIPTOR_COUNT; i++) {
nfc->dma_descriptors[i] = mxs_dma_alloc_desc();
if (!nfc->dma_descriptors[i]) {
dev_err(dev, "Cannot allocate all DMA descriptors.\n");
error = -ENOMEM;
goto exit_descriptor_allocation;
}
}
/* If control arrives here, all is well. */
return 0;
/* Control arrives here when something has gone wrong. */
exit_descriptor_allocation:
while (--i >= 0)
mxs_dma_free_desc(this->nfc->dma_descriptors[i]);
return error;
}
/**
* gpmi_nfc_dma_exit() - Shuts down DMA.
*
* @this: Per-device data.
*/
void gpmi_nfc_dma_exit(struct gpmi_nfc_data *this)
{
struct nfc_hal *nfc = this->nfc;
int i;
/* Free the DMA descriptors. */
for (i = 0; i < NFC_DMA_DESCRIPTOR_COUNT; i++)
mxs_dma_free_desc(nfc->dma_descriptors[i]);
}
/**
* gpmi_nfc_set_geometry() - Shared NFC geometry configuration.
*
* In principle, computing the NFC geometry is version-specific. However, at
* this writing all, versions share the same page model, so this code can also
* be shared.
*
* @this: Per-device data.
*/
int gpmi_nfc_set_geometry(struct gpmi_nfc_data *this)
{
struct device *dev = this->dev;
struct physical_geometry *physical = &this->physical_geometry;
struct nfc_geometry *geometry = &this->nfc_geometry;
struct boot_rom_helper *rom = this->rom;
unsigned int metadata_size;
unsigned int status_size;
unsigned int chunk_data_size_in_bits;
unsigned int chunk_ecc_size_in_bits;
unsigned int chunk_total_size_in_bits;
unsigned int block_mark_chunk_number;
unsigned int block_mark_chunk_bit_offset;
unsigned int block_mark_bit_offset;
/* At this writing, we support only BCH. */
geometry->ecc_algorithm = "BCH";
/*
* We always choose a metadata size of 10. Don't try to make sense of
* it -- this is really only for historical compatibility.
*/
geometry->metadata_size_in_bytes = 10;
/*
* At this writing, we always use 512-byte ECC chunks. Later hardware
* will be able to support larger chunks, which will cause this
* decision to move into version-specific code.
*/
geometry->ecc_chunk_size_in_bytes = 512;
/* Compute the page size based on the physical geometry. */
geometry->page_size_in_bytes =
physical->page_data_size_in_bytes +
physical->page_oob_size_in_bytes ;
/*
* Compute the total number of ECC chunks in a page. This includes the
* slightly larger chunk at the beginning of the page, which contains
* both data and metadata.
*/
geometry->ecc_chunk_count =
physical->page_data_size_in_bytes /
/*---------------------------------*/
geometry->ecc_chunk_size_in_bytes;
/*
* We use the same ECC strength for all chunks, including the first one.
* At this writing, we base our ECC strength choice entirely on the
* the physical page geometry. In the future, this should be changed to
* pay attention to the detailed device information we gathered earlier.
*/
geometry->ecc_strength = 0;
switch (physical->page_data_size_in_bytes) {
case 2048:
geometry->ecc_strength = 8;
break;
case 4096:
switch (physical->page_oob_size_in_bytes) {
case 128:
geometry->ecc_strength = 8;
break;
case 218:
geometry->ecc_strength = 16;
break;
}
break;
}
/* Check if we were able to figure out the ECC strength. */
if (!geometry->ecc_strength) {
dev_err(dev, "Unsupported page geometry: %u:%u\n",
physical->page_data_size_in_bytes,
physical->page_oob_size_in_bytes);
return !0;
}
/*
* The payload buffer contains the data area of a page. The ECC engine
* only needs what's required to hold the data.
*/
geometry->payload_size_in_bytes = physical->page_data_size_in_bytes;
/*
* In principle, computing the auxiliary buffer geometry is NFC
* version-specific. However, at this writing, all versions share the
* same model, so this code can also be shared.
*
* The auxiliary buffer contains the metadata and the ECC status. The
* metadata is padded to the nearest 32-bit boundary. The ECC status
* contains one byte for every ECC chunk, and is also padded to the
* nearest 32-bit boundary.
*/
metadata_size = (geometry->metadata_size_in_bytes + 0x3) & ~0x3;
status_size = (geometry->ecc_chunk_count + 0x3) & ~0x3;
geometry->auxiliary_size_in_bytes = metadata_size + status_size;
geometry->auxiliary_status_offset = metadata_size;
/* Check if we're going to do block mark swapping. */
if (!rom->swap_block_mark)
return 0;
/*
* If control arrives here, we're doing block mark swapping, so we need
* to compute the byte and bit offsets of the physical block mark within
* the ECC-based view of the page data. In principle, this isn't a
* difficult computation -- but it's very important and it's easy to get
* it wrong, so we do it carefully.
*
* Note that this calculation is simpler because we use the same ECC
* strength for all chunks, including the zero'th one, which contains
* the metadata. The calculation would be slightly more complicated
* otherwise.
*
* We start by computing the physical bit offset of the block mark. We
* then subtract the number of metadata and ECC bits appearing before
* the mark to arrive at its bit offset within the data alone.
*/
/* Compute some important facts about chunk geometry. */
chunk_data_size_in_bits = geometry->ecc_chunk_size_in_bytes * 8;
chunk_ecc_size_in_bits = geometry->ecc_strength * 13;
chunk_total_size_in_bits =
chunk_data_size_in_bits + chunk_ecc_size_in_bits;
/* Compute the bit offset of the block mark within the physical page. */
block_mark_bit_offset = physical->page_data_size_in_bytes * 8;
/* Subtract the metadata bits. */
block_mark_bit_offset -= geometry->metadata_size_in_bytes * 8;
/*
* Compute the chunk number (starting at zero) in which the block mark
* appears.
*/
block_mark_chunk_number =
block_mark_bit_offset / chunk_total_size_in_bits;
/*
* Compute the bit offset of the block mark within its chunk, and
* validate it.
*/
block_mark_chunk_bit_offset =
block_mark_bit_offset -
(block_mark_chunk_number * chunk_total_size_in_bits);
if (block_mark_chunk_bit_offset > chunk_data_size_in_bits) {
/*
* If control arrives here, the block mark actually appears in
* the ECC bits of this chunk. This wont' work.
*/
dev_err(dev, "Unsupported page geometry "
"(block mark in ECC): %u:%u\n",
physical->page_data_size_in_bytes,
physical->page_oob_size_in_bytes);
return !0;
}
/*
* Now that we know the chunk number in which the block mark appears,
* we can subtract all the ECC bits that appear before it.
*/
block_mark_bit_offset -=
block_mark_chunk_number * chunk_ecc_size_in_bits;
/*
* We now know the absolute bit offset of the block mark within the
* ECC-based data. We can now compute the byte offset and the bit
* offset within the byte.
*/
geometry->block_mark_byte_offset = block_mark_bit_offset / 8;
geometry->block_mark_bit_offset = block_mark_bit_offset % 8;
/* Return success. */
return 0;
}
/*
* This code is useful for debugging.
*/
/*#define DUMP_DMA_CONTEXT*/
#if (defined DUMP_DMA_CONTEXT)
int dump_dma_context_flag;
void dump_dma_context(struct gpmi_nfc_data *this, char *title)
{
struct resources *resources = &this->resources;
struct nfc_hal *nfc = this->nfc;
struct mxs_dma_desc **d = nfc->dma_descriptors;
void *q;
uint32_t *p;
unsigned int i;
unsigned int j;
if (!dump_dma_context_flag)
return;
pr_info("%s\n", title);
pr_info("======\n");
pr_info("\n");
/*--------------------------------------------------------------------*/
pr_info(" Descriptors\n");
pr_info(" -----------\n");
{
for (i = 0; i < NFC_DMA_DESCRIPTOR_COUNT; i++, d++) {
pr_info(" #%u\n", i);
pr_info(" --\n");
pr_info(" Physical Address: 0x%08x\n" , (*d)->address);
pr_info(" Next : 0x%08lx\n", (*d)->cmd.next);
pr_info(" Command : 0x%08lx\n", (*d)->cmd.cmd.data);
pr_info(" Buffer : 0x%08x\n" , (*d)->cmd.address);
for (j = 0; j < 6; j++)
pr_info(" PIO[%u] : 0x%08lx\n",
j, (*d)->cmd.pio_words[j]);
}
}
pr_info("\n");
/*--------------------------------------------------------------------*/
pr_info(" DMA\n");
pr_info(" ---\n");
{
void *DMA = IO_ADDRESS(APBH_DMA_PHYS_ADDR);
p = q = DMA + 0x200;
for (i = 0; i < 7; i++) {
pr_info(" [0x%03x] 0x%08x\n", q - DMA, *p);
q += 0x10;
p = q;
}
}
pr_info("\n");
/*--------------------------------------------------------------------*/
pr_info(" GPMI\n");
pr_info(" ----\n");
{
void *GPMI = resources->gpmi_regs;
p = q = GPMI;
for (i = 0; i < 33; i++) {
pr_info(" [0x%03x] 0x%08x\n", q - GPMI, *p);
q += 0x10;
p = q;
}
}
pr_info("\n");
/*--------------------------------------------------------------------*/
pr_info(" BCH\n");
pr_info(" ---\n");
{
void *BCH = resources->bch_regs;
p = q = BCH;
for (i = 0; i < 22; i++) {
pr_info(" [0x%03x] 0x%08x\n", q - BCH, *p);
q += 0x10;
p = q;
}
}
pr_info("\n");
}
#endif
/**
* gpmi_nfc_dma_go - Run a DMA channel.
*
* @this: Per-device data structure.
* @dma_channel: The DMA channel we're going to use.
*/
int gpmi_nfc_dma_go(struct gpmi_nfc_data *this, int dma_channel)
{
struct device *dev = this->dev;
struct resources *resources = &this->resources;
struct nfc_hal *nfc = this->nfc;
unsigned long timeout;
int error;
LIST_HEAD(tmp_desc_list);
gpmi_nfc_add_event("> gpmi_nfc_dma_go", 1);
/* Get ready... */
nfc->isr_dma_channel = dma_channel;
init_completion(&nfc->dma_done);
mxs_dma_enable_irq(dma_channel, 1);
/* Go! */
#if defined(DUMP_DMA_CONTEXT)
dump_dma_context(this, "BEFORE");
#endif
mxs_dma_enable(dma_channel);
/* Wait for it to finish. */
timeout = wait_for_completion_timeout(&nfc->dma_done,
msecs_to_jiffies(1000));
#if defined(DUMP_DMA_CONTEXT)
dump_dma_context(this, "AFTER");
#endif
error = (!timeout) ? -ETIMEDOUT : 0;
if (error) {
dev_err(dev, "[%s] Chip: %u, DMA Channel: %d, Error %d\n",
__func__, dma_channel - resources->dma_low_channel,
dma_channel, error);
gpmi_nfc_add_event("...DMA timed out", 0);
} else
gpmi_nfc_add_event("...Finished DMA successfully", 0);
/* Clear out the descriptors we just ran. */
mxs_dma_cooked(dma_channel, &tmp_desc_list);
/* Shut the DMA channel down. */
mxs_dma_reset(dma_channel);
mxs_dma_enable_irq(dma_channel, 0);
mxs_dma_disable(dma_channel);
/* Return. */
gpmi_nfc_add_event("< gpmi_nfc_dma_go", -1);
return error;
}
/**
* ns_to_cycles - Converts time in nanoseconds to cycles.
*
* @ntime: The time, in nanoseconds.
* @period: The cycle period, in nanoseconds.
* @min: The minimum allowable number of cycles.
*/
static unsigned int ns_to_cycles(unsigned int time,
unsigned int period, unsigned int min)
{
unsigned int k;
/*
* Compute the minimum number of cycles that entirely contain the
* given time.
*/
k = (time + period - 1) / period;
return max(k, min);
}
/**
* gpmi_compute_hardware_timing - Apply timing to current hardware conditions.
*
* @this: Per-device data.
* @hardware_timing: A pointer to a hardware timing structure that will receive
* the results of our calculations.
*/
int gpmi_nfc_compute_hardware_timing(struct gpmi_nfc_data *this,
struct gpmi_nfc_hardware_timing *hw)
{
struct gpmi_nfc_platform_data *pdata = this->pdata;
struct physical_geometry *physical = &this->physical_geometry;
struct nfc_hal *nfc = this->nfc;
struct gpmi_nfc_timing target = nfc->timing;
bool improved_timing_is_available;
unsigned long clock_frequency_in_hz;
unsigned int clock_period_in_ns;
bool dll_use_half_periods;
unsigned int dll_delay_shift;
unsigned int max_sample_delay_in_ns;
unsigned int address_setup_in_cycles;
unsigned int data_setup_in_ns;
unsigned int data_setup_in_cycles;
unsigned int data_hold_in_cycles;
int ideal_sample_delay_in_ns;
unsigned int sample_delay_factor;
int tEYE;
unsigned int min_prop_delay_in_ns = pdata->min_prop_delay_in_ns;
unsigned int max_prop_delay_in_ns = pdata->max_prop_delay_in_ns;
/*
* If there are multiple chips, we need to relax the timings to allow
* for signal distortion due to higher capacitance.
*/
if (physical->chip_count > 2) {
target.data_setup_in_ns += 10;
target.data_hold_in_ns += 10;
target.address_setup_in_ns += 10;
} else if (physical->chip_count > 1) {
target.data_setup_in_ns += 5;
target.data_hold_in_ns += 5;
target.address_setup_in_ns += 5;
}
/* Check if improved timing information is available. */
improved_timing_is_available =
(target.tREA_in_ns >= 0) &&
(target.tRLOH_in_ns >= 0) &&
(target.tRHOH_in_ns >= 0) ;
/* Inspect the clock. */
clock_frequency_in_hz = nfc->clock_frequency_in_hz;
clock_period_in_ns = 1000000000 / clock_frequency_in_hz;
/*
* The NFC quantizes setup and hold parameters in terms of clock cycles.
* Here, we quantize the setup and hold timing parameters to the
* next-highest clock period to make sure we apply at least the
* specified times.
*
* For data setup and data hold, the hardware interprets a value of zero
* as the largest possible delay. This is not what's intended by a zero
* in the input parameter, so we impose a minimum of one cycle.
*/
data_setup_in_cycles = ns_to_cycles(target.data_setup_in_ns,
clock_period_in_ns, 1);
data_hold_in_cycles = ns_to_cycles(target.data_hold_in_ns,
clock_period_in_ns, 1);
address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns,
clock_period_in_ns, 0);
/*
* The clock's period affects the sample delay in a number of ways:
*
* (1) The NFC HAL tells us the maximum clock period the sample delay
* DLL can tolerate. If the clock period is greater than half that
* maximum, we must configure the DLL to be driven by half periods.
*
* (2) We need to convert from an ideal sample delay, in ns, to a
* "sample delay factor," which the NFC uses. This factor depends on
* whether we're driving the DLL with full or half periods.
* Paraphrasing the reference manual:
*
* AD = SDF x 0.125 x RP
*
* where:
*
* AD is the applied delay, in ns.
* SDF is the sample delay factor, which is dimensionless.
* RP is the reference period, in ns, which is a full clock period
* if the DLL is being driven by full periods, or half that if
* the DLL is being driven by half periods.
*
* Let's re-arrange this in a way that's more useful to us:
*
* 8
* SDF = AD x ----
* RP
*
* The reference period is either the clock period or half that, so this
* is:
*
* 8 AD x DDF
* SDF = AD x ----- = --------
* f x P P
*
* where:
*
* f is 1 or 1/2, depending on how we're driving the DLL.
* P is the clock period.
* DDF is the DLL Delay Factor, a dimensionless value that
* incorporates all the constants in the conversion.
*
* DDF will be either 8 or 16, both of which are powers of two. We can
* reduce the cost of this conversion by using bit shifts instead of
* multiplication or division. Thus:
*
* AD << DDS
* SDF = ---------
* P
*
* or
*
* AD = (SDF >> DDS) x P
*
* where:
*
* DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF.
*/
if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) {
dll_use_half_periods = true;
dll_delay_shift = 3 + 1;
} else {
dll_use_half_periods = false;
dll_delay_shift = 3;
}
/*
* Compute the maximum sample delay the NFC allows, under current
* conditions. If the clock is running too slowly, no sample delay is
* possible.
*/
if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns)
max_sample_delay_in_ns = 0;
else {
/*
* Compute the delay implied by the largest sample delay factor
* the NFC allows.
*/
max_sample_delay_in_ns =
(nfc->max_sample_delay_factor * clock_period_in_ns) >>
dll_delay_shift;
/*
* Check if the implied sample delay larger than the NFC
* actually allows.
*/
if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns)
max_sample_delay_in_ns = nfc->max_dll_delay_in_ns;
}
/*
* Check if improved timing information is available. If not, we have to
* use a less-sophisticated algorithm.
*/
if (!improved_timing_is_available) {
/*
* Fold the read setup time required by the NFC into the ideal
* sample delay.
*/
ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns +
nfc->internal_data_setup_in_ns;
/*
* The ideal sample delay may be greater than the maximum
* allowed by the NFC. If so, we can trade off sample delay time
* for more data setup time.
*
* In each iteration of the following loop, we add a cycle to
* the data setup time and subtract a corresponding amount from
* the sample delay until we've satisified the constraints or
* can't do any better.
*/
while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
data_setup_in_cycles++;
ideal_sample_delay_in_ns -= clock_period_in_ns;
if (ideal_sample_delay_in_ns < 0)
ideal_sample_delay_in_ns = 0;
}
/*
* Compute the sample delay factor that corresponds most closely
* to the ideal sample delay. If the result is too large for the
* NFC, use the maximum value.
*
* Notice that we use the ns_to_cycles function to compute the
* sample delay factor. We do this because the form of the
* computation is the same as that for calculating cycles.
*/
sample_delay_factor =
ns_to_cycles(
ideal_sample_delay_in_ns << dll_delay_shift,
clock_period_in_ns, 0);
if (sample_delay_factor > nfc->max_sample_delay_factor)
sample_delay_factor = nfc->max_sample_delay_factor;
/* Skip to the part where we return our results. */
goto return_results;
}
/*
* If control arrives here, we have more detailed timing information,
* so we can use a better algorithm.
*/
/*
* Fold the read setup time required by the NFC into the maximum
* propagation delay.
*/
max_prop_delay_in_ns += nfc->internal_data_setup_in_ns;
/*
* Earlier, we computed the number of clock cycles required to satisfy
* the data setup time. Now, we need to know the actual nanoseconds.
*/
data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles;
/*
* Compute tEYE, the width of the data eye when reading from the NAND
* Flash. The eye width is fundamentally determined by the data setup
* time, perturbed by propagation delays and some characteristics of the
* NAND Flash device.
*
* start of the eye = max_prop_delay + tREA
* end of the eye = min_prop_delay + tRHOH + data_setup
*/
tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns +
(int)data_setup_in_ns;
tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns;
/*
* The eye must be open. If it's not, we can try to open it by
* increasing its main forcer, the data setup time.
*
* In each iteration of the following loop, we increase the data setup
* time by a single clock cycle. We do this until either the eye is
* open or we run into NFC limits.
*/
while ((tEYE <= 0) &&
(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
/* Give a cycle to data setup. */
data_setup_in_cycles++;
/* Synchronize the data setup time with the cycles. */
data_setup_in_ns += clock_period_in_ns;
/* Adjust tEYE accordingly. */
tEYE += clock_period_in_ns;
}
/*
* When control arrives here, the eye is open. The ideal time to sample
* the data is in the center of the eye:
*
* end of the eye + start of the eye
* --------------------------------- - data_setup
* 2
*
* After some algebra, this simplifies to the code immediately below.
*/
ideal_sample_delay_in_ns =
((int)max_prop_delay_in_ns +
(int)target.tREA_in_ns +
(int)min_prop_delay_in_ns +
(int)target.tRHOH_in_ns -
(int)data_setup_in_ns) >> 1;
/*
* The following figure illustrates some aspects of a NAND Flash read:
*
*
* __ _____________________________________
* RDN \_________________/
*
* <---- tEYE ----->
* /-----------------\
* Read Data ----------------------------< >---------
* \-----------------/
* ^ ^ ^ ^
* | | | |
* |<--Data Setup -->|<--Delay Time -->| |
* | | | |
* | | |
* | |<-- Quantized Delay Time -->|
* | | |
*
*
* We have some issues we must now address:
*
* (1) The *ideal* sample delay time must not be negative. If it is, we
* jam it to zero.
*
* (2) The *ideal* sample delay time must not be greater than that
* allowed by the NFC. If it is, we can increase the data setup
* time, which will reduce the delay between the end of the data
* setup and the center of the eye. It will also make the eye
* larger, which might help with the next issue...
*
* (3) The *quantized* sample delay time must not fall either before the
* eye opens or after it closes (the latter is the problem
* illustrated in the above figure).
*/
/* Jam a negative ideal sample delay to zero. */
if (ideal_sample_delay_in_ns < 0)
ideal_sample_delay_in_ns = 0;
/*
* Extend the data setup as needed to reduce the ideal sample delay
* below the maximum permitted by the NFC.
*/
while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
/* Give a cycle to data setup. */
data_setup_in_cycles++;
/* Synchronize the data setup time with the cycles. */
data_setup_in_ns += clock_period_in_ns;
/* Adjust tEYE accordingly. */
tEYE += clock_period_in_ns;
/*
* Decrease the ideal sample delay by one half cycle, to keep it
* in the middle of the eye.
*/
ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
/* Jam a negative ideal sample delay to zero. */
if (ideal_sample_delay_in_ns < 0)
ideal_sample_delay_in_ns = 0;
}
/*
* Compute the sample delay factor that corresponds to the ideal sample
* delay. If the result is too large, then use the maximum allowed
* value.
*
* Notice that we use the ns_to_cycles function to compute the sample
* delay factor. We do this because the form of the computation is the
* same as that for calculating cycles.
*/
sample_delay_factor =
ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift,
clock_period_in_ns, 0);
if (sample_delay_factor > nfc->max_sample_delay_factor)
sample_delay_factor = nfc->max_sample_delay_factor;
/*
* These macros conveniently encapsulate a computation we'll use to
* continuously evaluate whether or not the data sample delay is inside
* the eye.
*/
#define IDEAL_DELAY ((int) ideal_sample_delay_in_ns)
#define QUANTIZED_DELAY \
((int) ((sample_delay_factor * clock_period_in_ns) >> \
dll_delay_shift))
#define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY))
#define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1))
/*
* While the quantized sample time falls outside the eye, reduce the
* sample delay or extend the data setup to move the sampling point back
* toward the eye. Do not allow the number of data setup cycles to
* exceed the maximum allowed by the NFC.
*/
while (SAMPLE_IS_NOT_WITHIN_THE_EYE &&
(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
/*
* If control arrives here, the quantized sample delay falls
* outside the eye. Check if it's before the eye opens, or after
* the eye closes.
*/
if (QUANTIZED_DELAY > IDEAL_DELAY) {
/*
* If control arrives here, the quantized sample delay
* falls after the eye closes. Decrease the quantized
* delay time and then go back to re-evaluate.
*/
if (sample_delay_factor != 0)
sample_delay_factor--;
continue;
}
/*
* If control arrives here, the quantized sample delay falls
* before the eye opens. Shift the sample point by increasing
* data setup time. This will also make the eye larger.
*/
/* Give a cycle to data setup. */
data_setup_in_cycles++;
/* Synchronize the data setup time with the cycles. */
data_setup_in_ns += clock_period_in_ns;
/* Adjust tEYE accordingly. */
tEYE += clock_period_in_ns;
/*
* Decrease the ideal sample delay by one half cycle, to keep it
* in the middle of the eye.
*/
ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
/* ...and one less period for the delay time. */
ideal_sample_delay_in_ns -= clock_period_in_ns;
/* Jam a negative ideal sample delay to zero. */
if (ideal_sample_delay_in_ns < 0)
ideal_sample_delay_in_ns = 0;
/*
* We have a new ideal sample delay, so re-compute the quantized
* delay.
*/
sample_delay_factor =
ns_to_cycles(
ideal_sample_delay_in_ns << dll_delay_shift,
clock_period_in_ns, 0);
if (sample_delay_factor > nfc->max_sample_delay_factor)
sample_delay_factor = nfc->max_sample_delay_factor;
}
/* Control arrives here when we're ready to return our results. */
return_results:
hw->data_setup_in_cycles = data_setup_in_cycles;
hw->data_hold_in_cycles = data_hold_in_cycles;
hw->address_setup_in_cycles = address_setup_in_cycles;
hw->use_half_periods = dll_use_half_periods;
hw->sample_delay_factor = sample_delay_factor;
/* Return success. */
return 0;
}
|