summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-mil.c
blob: 34505b8e6546c6dab3dff21f1e17c8278d04d7ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
/*
 * Freescale GPMI NFC NAND Flash Driver
 *
 * Copyright (C) 2010 Freescale Semiconductor, Inc.
 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#include "gpmi-nfc.h"

/*
 * Indicates the driver should register the MTD that represents the entire
 * medium, thus making it visible.
 */

static int register_main_mtd;
module_param(register_main_mtd, int, 0400);

/*
 * Indicates the driver should attempt to perform DMA directly to/from buffers
 * passed into this driver. This is true by default. If false, the driver will
 * *always* copy incoming/outgoing data to/from its own DMA buffers.
 */

static int map_io_buffers = true;
module_param(map_io_buffers, int, 0600);

/**
 * mil_outgoing_buffer_dma_begin() - Begins DMA on an outgoing buffer.
 *
 * @this:      Per-device data.
 * @source:    The source buffer.
 * @length:    The length of the data in the source buffer.
 * @alt_virt:  The virtual address of an alternate buffer which is ready to be
 *             used for DMA.
 * @alt_phys:  The physical address of an alternate buffer which is ready to be
 *             used for DMA.
 * @alt_size:  The size of the alternate buffer.
 * @use_virt:  A pointer to a variable that will receive the virtual address to
 *             use.
 * @use_phys:  A pointer to a variable that will receive the physical address to
 *             use.
 */
static int mil_outgoing_buffer_dma_begin(struct gpmi_nfc_data *this,
			const void *source, unsigned length,
			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
			const void **use_virt, dma_addr_t *use_phys)
{
	struct device  *dev = this->dev;
	dma_addr_t     source_phys = ~0;

	/*
	 * If we can, we want to use the caller's buffer directly for DMA. Check
	 * if the system will let us map them.
	 */

	if (map_io_buffers && virt_addr_valid(source))
		source_phys =
			dma_map_single(dev,
				(void *) source, length, DMA_TO_DEVICE);

	if (dma_mapping_error(dev, source_phys)) {

		/*
		 * If control arrives here, we're not mapping the source buffer.
		 * Make sure the alternate is large enough.
		 */

		if (alt_size < length) {
			dev_err(dev, "Alternate buffer is too small "
							"for outgoing I/O\n");
			return -ENOMEM;
		}

		/*
		 * Copy the contents of the source buffer into the alternate
		 * buffer and set up the return values accordingly.
		 */

		memcpy(alt_virt, source, length);

		*use_virt = alt_virt;
		*use_phys = alt_phys;

	} else {

		/*
		 * If control arrives here, we're mapping the source buffer. Set
		 * up the return values accordingly.
		 */

		*use_virt = source;
		*use_phys = source_phys;

	}

	/* If control arrives here, all is well. */

	return 0;

}

/**
 * mil_outgoing_buffer_dma_end() - Ends DMA on an outgoing buffer.
 *
 * @this:       Per-device data.
 * @source:     The source buffer.
 * @length:     The length of the data in the source buffer.
 * @alt_virt:   The virtual address of an alternate buffer which was ready to be
 *              used for DMA.
 * @alt_phys:   The physical address of an alternate buffer which was ready to
 *              be used for DMA.
 * @alt_size:   The size of the alternate buffer.
 * @used_virt:  The virtual address that was used.
 * @used_phys:  The physical address that was used.
 */
static void mil_outgoing_buffer_dma_end(struct gpmi_nfc_data *this,
		const void *source, unsigned length,
		void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
		const void *used_virt, dma_addr_t used_phys)
{
	struct device  *dev = this->dev;

	/*
	 * Check if we used the source buffer, and it's not one of our own DMA
	 * buffers. If so, we need to unmap it.
	 */

	if (used_virt == source)
		dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);

}

/**
 * mil_incoming_buffer_dma_begin() - Begins DMA on an incoming buffer.
 *
 * @this:         Per-device data.
 * @destination:  The destination buffer.
 * @length:       The length of the data that will arrive.
 * @alt_virt:     The virtual address of an alternate buffer which is ready
 *                to be used for DMA.
 * @alt_phys:     The physical address of an alternate buffer which is ready
 *                to be used for DMA.
 * @alt_size:     The size of the alternate buffer.
 * @use_virt:     A pointer to a variable that will receive the virtual address
 *                to use.
 * @use_phys:     A pointer to a variable that will receive the physical address
 *                to use.
 */
static int mil_incoming_buffer_dma_begin(struct gpmi_nfc_data *this,
			void *destination, unsigned length,
			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
			void **use_virt, dma_addr_t *use_phys)
{
	struct device  *dev = this->dev;
	dma_addr_t     destination_phys = ~0;

	/*
	 * If we can, we want to use the caller's buffer directly for DMA. Check
	 * if the system will let us map them.
	 */

	if (map_io_buffers && virt_addr_valid(destination))
		destination_phys =
			dma_map_single(dev,
				(void *) destination, length, DMA_FROM_DEVICE);

	if (dma_mapping_error(dev, destination_phys)) {

		/*
		 * If control arrives here, we're not mapping the destination
		 * buffer. Make sure the alternate is large enough.
		 */

		if (alt_size < length) {
			dev_err(dev, "Alternate buffer is too small "
							"for incoming I/O\n");
			return -ENOMEM;
		}

		/* Set up the return values to use the alternate. */

		*use_virt = alt_virt;
		*use_phys = alt_phys;

	} else {

		/*
		 * If control arrives here, we're mapping the destination
		 * buffer. Set up the return values accordingly.
		 */

		*use_virt = destination;
		*use_phys = destination_phys;

	}

	/* If control arrives here, all is well. */

	return 0;

}

/**
 * mil_incoming_buffer_dma_end() - Ends DMA on an incoming buffer.
 *
 * @this:         Per-device data.
 * @destination:  The destination buffer.
 * @length:       The length of the data that arrived.
 * @alt_virt:     The virtual address of an alternate buffer which was ready to
 *                be used for DMA.
 * @alt_phys:     The physical address of an alternate buffer which was ready to
 *                be used for DMA.
 * @alt_size:     The size of the alternate buffer.
 * @used_virt:    The virtual address that was used.
 * @used_phys:    The physical address that was used.
 */
static void mil_incoming_buffer_dma_end(struct gpmi_nfc_data *this,
			void *destination, unsigned length,
			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
			void *used_virt, dma_addr_t used_phys)
{
	struct device  *dev = this->dev;

	/*
	 * Check if we used the destination buffer, and it's not one of our own
	 * DMA buffers. If so, we need to unmap it.
	 */

	if (used_virt == destination)
		dma_unmap_single(dev, used_phys, length, DMA_FROM_DEVICE);
	else
		memcpy(destination, alt_virt, length);

}

/**
 * mil_cmd_ctrl - MTD Interface cmd_ctrl()
 *
 * This is the function that we install in the cmd_ctrl function pointer of the
 * owning struct nand_chip. The only functions in the reference implementation
 * that use these functions pointers are cmdfunc and select_chip.
 *
 * In this driver, we implement our own select_chip, so this function will only
 * be called by the reference implementation's cmdfunc. For this reason, we can
 * ignore the chip enable bit and concentrate only on sending bytes to the
 * NAND Flash.
 *
 * @mtd:   The owning MTD.
 * @data:  The value to push onto the data signals.
 * @ctrl:  The values to push onto the control signals.
 */
static void mil_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
{
	struct nand_chip      *nand = mtd->priv;
	struct gpmi_nfc_data  *this = nand->priv;
	struct device         *dev  =  this->dev;
	struct mil            *mil  = &this->mil;
	struct nfc_hal        *nfc  =  this->nfc;
	int                   error;
#if defined(CONFIG_MTD_DEBUG)
	unsigned int          i;
	char                  display[MIL_COMMAND_BUFFER_SIZE * 5];
#endif

	/*
	 * Every operation begins with a command byte and a series of zero or
	 * more address bytes. These are distinguished by either the Address
	 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
	 * asserted. When MTD is ready to execute the command, it will deassert
	 * both latch enables.
	 *
	 * Rather than run a separate DMA operation for every single byte, we
	 * queue them up and run a single DMA operation for the entire series
	 * of command and data bytes.
	 */

	if ((ctrl & (NAND_ALE | NAND_CLE))) {
		if (data != NAND_CMD_NONE)
			mil->cmd_virt[mil->command_length++] = data;
		return;
	}

	/*
	 * If control arrives here, MTD has deasserted both the ALE and CLE,
	 * which means it's ready to run an operation. Check if we have any
	 * bytes to send.
	 */

	if (!mil->command_length)
		return;

	/* Hand the command over to the NFC. */

	gpmi_nfc_add_event("mil_cmd_ctrl sending command...", 1);

#if defined(CONFIG_MTD_DEBUG)
	display[0] = 0;
	for (i = 0; i < mil->command_length; i++)
		sprintf(display + strlen(display), " 0x%02x",
						mil->cmd_virt[i] & 0xff);
	DEBUG(MTD_DEBUG_LEVEL2, "[gpmi_nfc cmd_ctrl] command: %s\n", display);
#endif

	error = nfc->send_command(this,
			mil->current_chip, mil->cmd_phys, mil->command_length);

	if (error) {
		dev_err(dev, "[%s] Chip: %u, Error %d\n",
					__func__, mil->current_chip, error);
		print_hex_dump(KERN_ERR,
			"    Command Bytes: ", DUMP_PREFIX_NONE, 16, 1,
					mil->cmd_virt, mil->command_length, 0);
	}

	gpmi_nfc_add_event("...Finished", -1);

	/* Reset. */

	mil->command_length = 0;

}

/**
 * mil_dev_ready() - MTD Interface dev_ready()
 *
 * @mtd:   A pointer to the owning MTD.
 */
static int mil_dev_ready(struct mtd_info *mtd)
{
	struct nand_chip      *nand = mtd->priv;
	struct gpmi_nfc_data  *this = nand->priv;
	struct nfc_hal        *nfc  = this->nfc;
	struct mil            *mil  = &this->mil;

	DEBUG(MTD_DEBUG_LEVEL2, "[gpmi_nfc dev_ready]\n");

	gpmi_nfc_add_event("> mil_dev_ready", 1);

	if (nfc->is_ready(this, mil->current_chip)) {
		gpmi_nfc_add_event("< mil_dev_ready - Returning ready", -1);
		return !0;
	} else {
		gpmi_nfc_add_event("< mil_dev_ready - Returning busy", -1);
		return 0;
	}

}

/**
 * mil_select_chip() - MTD Interface select_chip()
 *
 * @mtd:   A pointer to the owning MTD.
 * @chip:  The chip number to select, or -1 to select no chip.
 */
static void mil_select_chip(struct mtd_info *mtd, int chip)
{
	struct nand_chip      *nand  = mtd->priv;
	struct gpmi_nfc_data  *this  = nand->priv;
	struct mil            *mil   = &this->mil;
	struct nfc_hal        *nfc   =  this->nfc;
	struct clk            *clock =  this->resources.clock;

	DEBUG(MTD_DEBUG_LEVEL2, "[gpmi_nfc select_chip] chip: %d\n", chip);

	/* Figure out what kind of transition this is. */

	if ((mil->current_chip < 0) && (chip >= 0)) {
		gpmi_nfc_start_event_trace("> mil_select_chip");
		clk_enable(clock);
		nfc->begin(this);
		gpmi_nfc_add_event("< mil_select_chip", -1);
	} else if ((mil->current_chip >= 0) && (chip < 0)) {
		gpmi_nfc_add_event("> mil_select_chip", 1);
		clk_disable(clock);
		nfc->end(this);
		gpmi_nfc_stop_event_trace("< mil_select_chip");
	} else {
		gpmi_nfc_add_event("> mil_select_chip", 1);
		gpmi_nfc_add_event("< mil_select_chip", -1);
	}

	mil->current_chip = chip;

}

/**
 * mil_read_buf() - MTD Interface read_buf().
 *
 * @mtd:  A pointer to the owning MTD.
 * @buf:  The destination buffer.
 * @len:  The number of bytes to read.
 */
static void mil_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
	struct nand_chip      *nand     = mtd->priv;
	struct gpmi_nfc_data  *this     = nand->priv;
	struct device         *dev      =  this->dev;
	struct nfc_hal        *nfc      =  this->nfc;
	struct nfc_geometry   *nfc_geo  = &this->nfc_geometry;
	struct mil            *mil      = &this->mil;
	void                  *use_virt =  0;
	dma_addr_t            use_phys  = ~0;
	int                   error;

	DEBUG(MTD_DEBUG_LEVEL2, "[gpmi_nfc readbuf] len: %d\n", len);

	gpmi_nfc_add_event("> mil_read_buf", 1);

	/* Set up DMA. */

	error = mil_incoming_buffer_dma_begin(this, buf, len,
					mil->payload_virt, mil->payload_phys,
					nfc_geo->payload_size_in_bytes,
					&use_virt, &use_phys);

	if (error) {
		dev_err(dev, "[%s] Inadequate DMA buffer\n", __func__);
		goto exit;
	}

	/* Ask the NFC. */

	nfc->read_data(this, mil->current_chip, use_phys, len);

	/* Finish with DMA. */

	mil_incoming_buffer_dma_end(this, buf, len,
					mil->payload_virt, mil->payload_phys,
					nfc_geo->payload_size_in_bytes,
					use_virt, use_phys);

	/* Return. */

exit:

	gpmi_nfc_add_event("< mil_read_buf", -1);

}

/**
 * mil_write_buf() - MTD Interface write_buf().
 *
 * @mtd:  A pointer to the owning MTD.
 * @buf:  The source buffer.
 * @len:  The number of bytes to read.
 */
static void mil_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
	struct nand_chip      *nand     = mtd->priv;
	struct gpmi_nfc_data  *this     = nand->priv;
	struct device         *dev      =  this->dev;
	struct nfc_hal        *nfc      =  this->nfc;
	struct nfc_geometry   *nfc_geo  = &this->nfc_geometry;
	struct mil            *mil      = &this->mil;
	const void            *use_virt =  0;
	dma_addr_t            use_phys  = ~0;
	int                   error;

	DEBUG(MTD_DEBUG_LEVEL2, "[gpmi_nfc writebuf] len: %d\n", len);

	gpmi_nfc_add_event("> mil_write_buf", 1);

	/* Set up DMA. */

	error = mil_outgoing_buffer_dma_begin(this, buf, len,
					mil->payload_virt, mil->payload_phys,
					nfc_geo->payload_size_in_bytes,
					&use_virt, &use_phys);

	if (error) {
		dev_err(dev, "[%s] Inadequate DMA buffer\n", __func__);
		goto exit;
	}

	/* Ask the NFC. */

	nfc->send_data(this, mil->current_chip, use_phys, len);

	/* Finish with DMA. */

	mil_outgoing_buffer_dma_end(this, buf, len,
					mil->payload_virt, mil->payload_phys,
					nfc_geo->payload_size_in_bytes,
					use_virt, use_phys);

	/* Return. */

exit:

	gpmi_nfc_add_event("< mil_write_buf", -1);

}

/**
 * mil_read_byte() - MTD Interface read_byte().
 *
 * @mtd:  A pointer to the owning MTD.
 */
static uint8_t mil_read_byte(struct mtd_info *mtd)
{
	uint8_t  byte;

	DEBUG(MTD_DEBUG_LEVEL2, "[gpmi_nfc read_byte]\n");

	gpmi_nfc_add_event("> mil_read_byte", 1);

	mil_read_buf(mtd, (uint8_t *) &byte, 1);

	gpmi_nfc_add_event("< mil_read_byte", -1);

	DEBUG(MTD_DEBUG_LEVEL2, "[gpmi_nfc read_byte]: 0x%02x\n", byte);

	return byte;

}

/**
 * mil_handle_block_mark_swapping() - Handles block mark swapping.
 *
 * Note that, when this function is called, it doesn't know whether it's
 * swapping the block mark, or swapping it *back* -- but it doesn't matter
 * because the the operation is the same.
 *
 * @this:       Per-device data.
 * @payload:    A pointer to the payload buffer.
 * @auxiliary:  A pointer to the auxiliary buffer.
 */
static void mil_handle_block_mark_swapping(struct gpmi_nfc_data *this,
						void *payload, void *auxiliary)
{
	struct nfc_geometry     *nfc_geo = &this->nfc_geometry;
	struct boot_rom_helper  *rom     =  this->rom;
	unsigned char           *p;
	unsigned char           *a;
	unsigned int            bit;
	unsigned char           mask;
	unsigned char           from_data;
	unsigned char           from_oob;

	/* Check if we're doing block mark swapping. */

	if (!rom->swap_block_mark)
		return;

	/*
	 * If control arrives here, we're swapping. Make some convenience
	 * variables.
	 */

	bit = nfc_geo->block_mark_bit_offset;
	p   = ((unsigned char *) payload) + nfc_geo->block_mark_byte_offset;
	a   = auxiliary;

	/*
	 * Get the byte from the data area that overlays the block mark. Since
	 * the ECC engine applies its own view to the bits in the page, the
	 * physical block mark won't (in general) appear on a byte boundary in
	 * the data.
	 */

	from_data = (p[0] >> bit) | (p[1] << (8 - bit));

	/* Get the byte from the OOB. */

	from_oob = a[0];

	/* Swap them. */

	a[0] = from_data;

	mask = (0x1 << bit) - 1;
	p[0] = (p[0] & mask) | (from_oob << bit);

	mask = ~0 << bit;
	p[1] = (p[1] & mask) | (from_oob >> (8 - bit));

}

/**
 * mil_ecc_read_page() - MTD Interface ecc.read_page().
 *
 * @mtd:   A pointer to the owning MTD.
 * @nand:  A pointer to the owning NAND Flash MTD.
 * @buf:   A pointer to the destination buffer.
 */
static int mil_ecc_read_page(struct mtd_info *mtd,
					struct nand_chip *nand, uint8_t *buf)
{
	struct gpmi_nfc_data    *this    = nand->priv;
	struct device           *dev     =  this->dev;
	struct nfc_hal          *nfc     =  this->nfc;
	struct nfc_geometry     *nfc_geo = &this->nfc_geometry;
	struct mil              *mil     = &this->mil;
	void                    *payload_virt   =  0;
	dma_addr_t              payload_phys    = ~0;
	void                    *auxiliary_virt =  0;
	dma_addr_t              auxiliary_phys  = ~0;
	unsigned int            i;
	unsigned char           *status;
	unsigned int            failed;
	unsigned int            corrected;
	int                     error = 0;

	DEBUG(MTD_DEBUG_LEVEL2, "[gpmi_nfc ecc_read_page]\n");

	gpmi_nfc_add_event("> mil_ecc_read_page", 1);

	/*
	 * Set up DMA.
	 *
	 * Notice that we don't try to use the caller's buffer as the auxiliary.
	 * We need to do a lot of fiddling to deliver the OOB, so there's no
	 * point.
	 */

	error = mil_incoming_buffer_dma_begin(this, buf, mtd->writesize,
					mil->payload_virt, mil->payload_phys,
					nfc_geo->payload_size_in_bytes,
					&payload_virt, &payload_phys);

	if (error) {
		dev_err(dev, "[%s] Inadequate DMA buffer\n", __func__);
		error = -ENOMEM;
		goto exit_payload;
	}

	auxiliary_virt = mil->auxiliary_virt;
	auxiliary_phys = mil->auxiliary_phys;

	/* Ask the NFC. */

	error = nfc->read_page(this, mil->current_chip,
						payload_phys, auxiliary_phys);

	if (error) {
		dev_err(dev, "[%s] Error in ECC-based read: %d\n",
							__func__, error);
		goto exit_nfc;
	}

	/* Handle block mark swapping. */

	mil_handle_block_mark_swapping(this, payload_virt, auxiliary_virt);

	/* Loop over status bytes, accumulating ECC status. */

	failed    = 0;
	corrected = 0;

	status = ((unsigned char *) auxiliary_virt) +
					nfc_geo->auxiliary_status_offset;

	for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {

		if ((*status == 0x00) || (*status == 0xff))
			continue;

		if (*status == 0xfe) {
			failed++;
			continue;
		}

		corrected += *status;

	}

	/* Propagate ECC status to the owning MTD. */

	mtd->ecc_stats.failed    += failed;
	mtd->ecc_stats.corrected += corrected;

	/*
	 * It's time to deliver the OOB bytes. See mil_ecc_read_oob() for
	 * details about our policy for delivering the OOB.
	 *
	 * We fill the caller's buffer with set bits, and then copy the block
	 * mark to th caller's buffer. Note that, if block mark swapping was
	 * necessary, it has already been done, so we can rely on the first
	 * byte of the auxiliary buffer to contain the block mark.
	 */

	memset(nand->oob_poi, ~0, mtd->oobsize);

	nand->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];

	/* Return. */

exit_nfc:
	mil_incoming_buffer_dma_end(this, buf, mtd->writesize,
					mil->payload_virt, mil->payload_phys,
					nfc_geo->payload_size_in_bytes,
					payload_virt, payload_phys);
exit_payload:

	gpmi_nfc_add_event("< mil_ecc_read_page", -1);

	return error;

}

/**
 * mil_ecc_write_page() - MTD Interface ecc.write_page().
 *
 * @mtd:   A pointer to the owning MTD.
 * @nand:  A pointer to the owning NAND Flash MTD.
 * @buf:   A pointer to the source buffer.
 */
static void mil_ecc_write_page(struct mtd_info *mtd,
				struct nand_chip *nand, const uint8_t *buf)
{
	struct gpmi_nfc_data    *this    = nand->priv;
	struct device           *dev     =  this->dev;
	struct nfc_hal          *nfc     =  this->nfc;
	struct nfc_geometry     *nfc_geo = &this->nfc_geometry;
	struct boot_rom_helper  *rom     =  this->rom;
	struct mil              *mil     = &this->mil;
	const void              *payload_virt   =  0;
	dma_addr_t              payload_phys    = ~0;
	const void              *auxiliary_virt =  0;
	dma_addr_t              auxiliary_phys  = ~0;
	int                     error;

	DEBUG(MTD_DEBUG_LEVEL2, "[gpmi_nfc ecc_write_page]\n");

	gpmi_nfc_add_event("> mil_ecc_write_page", 1);

	/* Set up DMA. */

	if (rom->swap_block_mark) {

		/*
		 * If control arrives here, we're doing block mark swapping.
		 * Since we can't modify the caller's buffers, we must copy them
		 * into our own.
		 */

		memcpy(mil->payload_virt, buf, mtd->writesize);
		payload_virt = mil->payload_virt;
		payload_phys = mil->payload_phys;

		memcpy(mil->auxiliary_virt, nand->oob_poi, mtd->oobsize);
		auxiliary_virt = mil->auxiliary_virt;
		auxiliary_phys = mil->auxiliary_phys;

		/* Handle block mark swapping. */

		mil_handle_block_mark_swapping(this,
				(void *) payload_virt, (void *) auxiliary_virt);

	} else {

		/*
		 * If control arrives here, we're not doing block mark swapping,
		 * so we can to try and use the caller's buffers.
		 */

		error = mil_outgoing_buffer_dma_begin(this,
				buf, mtd->writesize,
				mil->payload_virt, mil->payload_phys,
				nfc_geo->payload_size_in_bytes,
				&payload_virt, &payload_phys);

		if (error) {
			dev_err(dev, "[%s] Inadequate payload DMA buffer\n",
								__func__);
			goto exit_payload;
		}

		error = mil_outgoing_buffer_dma_begin(this,
				nand->oob_poi, mtd->oobsize,
				mil->auxiliary_virt, mil->auxiliary_phys,
				nfc_geo->auxiliary_size_in_bytes,
				&auxiliary_virt, &auxiliary_phys);

		if (error) {
			dev_err(dev, "[%s] Inadequate auxiliary DMA buffer\n",
								__func__);
			goto exit_auxiliary;
		}

	}

	/* Ask the NFC. */

	error = nfc->send_page(this, mil->current_chip,
						payload_phys, auxiliary_phys);

	if (error)
		dev_err(dev, "[%s] Error in ECC-based write: %d\n",
							__func__, error);

	/* Return. */

	if (!rom->swap_block_mark)
		mil_outgoing_buffer_dma_end(this, nand->oob_poi, mtd->oobsize,
				mil->auxiliary_virt, mil->auxiliary_phys,
				nfc_geo->auxiliary_size_in_bytes,
				auxiliary_virt, auxiliary_phys);
exit_auxiliary:
	if (!rom->swap_block_mark)
		mil_outgoing_buffer_dma_end(this, buf, mtd->writesize,
				mil->payload_virt, mil->payload_phys,
				nfc_geo->payload_size_in_bytes,
				payload_virt, payload_phys);
exit_payload:

	gpmi_nfc_add_event("< mil_ecc_write_page", -1);

}

/**
 * mil_hook_read_oob() - Hooked MTD Interface read_oob().
 *
 * This function is a veneer that replaces the function originally installed by
 * the NAND Flash MTD code. See the description of the raw_oob_mode field in
 * struct mil for more information about this.
 *
 * @mtd:   A pointer to the MTD.
 * @from:  The starting address to read.
 * @ops:   Describes the operation.
 */
static int mil_hook_read_oob(struct mtd_info *mtd,
					loff_t from, struct mtd_oob_ops *ops)
{
	register struct nand_chip  *chip = mtd->priv;
	struct gpmi_nfc_data       *this = chip->priv;
	struct mil                 *mil  = &this->mil;
	int                        ret;

	mil->raw_oob_mode = ops->mode == MTD_OOB_RAW;
	ret = mil->hooked_read_oob(mtd, from, ops);
	mil->raw_oob_mode = false;
	return ret;
}

/**
 * mil_hook_write_oob() - Hooked MTD Interface write_oob().
 *
 * This function is a veneer that replaces the function originally installed by
 * the NAND Flash MTD code. See the description of the raw_oob_mode field in
 * struct mil for more information about this.
 *
 * @mtd:   A pointer to the MTD.
 * @to:    The starting address to write.
 * @ops:   Describes the operation.
 */
static int mil_hook_write_oob(struct mtd_info *mtd,
					loff_t to, struct mtd_oob_ops *ops)
{
	register struct nand_chip  *chip = mtd->priv;
	struct gpmi_nfc_data       *this = chip->priv;
	struct mil                 *mil  = &this->mil;
	int                        ret;

	mil->raw_oob_mode = ops->mode == MTD_OOB_RAW;
	ret = mil->hooked_write_oob(mtd, to, ops);
	mil->raw_oob_mode = false;
	return ret;
}

/**
 * mil_hook_block_markbad() - Hooked MTD Interface block_markbad().
 *
 * This function is a veneer that replaces the function originally installed by
 * the NAND Flash MTD code. See the description of the marking_a_bad_block field
 * in struct mil for more information about this.
 *
 * @mtd:  A pointer to the MTD.
 * @ofs:  Byte address of the block to mark.
 */
static int mil_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
	register struct nand_chip  *chip = mtd->priv;
	struct gpmi_nfc_data       *this = chip->priv;
	struct mil                 *mil  = &this->mil;
	int                        ret;

	mil->marking_a_bad_block = true;
	ret = mil->hooked_block_markbad(mtd, ofs);
	mil->marking_a_bad_block = false;
	return ret;
}

/**
 * mil_ecc_read_oob() - MTD Interface ecc.read_oob().
 *
 * There are several places in this driver where we have to handle the OOB and
 * block marks. This is the function where things are the most complicated, so
 * this is where we try to explain it all. All the other places refer back to
 * here.
 *
 * These are the rules, in order of decreasing importance:
 *
 * 1) Nothing the caller does can be allowed to imperil the block mark, so all
 *    write operations take measures to protect it.
 *
 * 2) In read operations, the first byte of the OOB we return must reflect the
 *    true state of the block mark, no matter where that block mark appears in
 *    the physical page.
 *
 * 3) ECC-based read operations return an OOB full of set bits (since we never
 *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
 *    return).
 *
 * 4) "Raw" read operations return a direct view of the physical bytes in the
 *    page, using the conventional definition of which bytes are data and which
 *    are OOB. This gives the caller a way to see the actual, physical bytes
 *    in the page, without the distortions applied by our ECC engine.
 *
 *
 * What we do for this specific read operation depends on two questions:
 *
 * 1) Are we doing a "raw" read, or an ECC-based read?
 *
 * 2) Are we using block mark swapping or transcription?
 *
 * There are four cases, illustrated by the following Karnaugh map:
 *
 *                    |           Raw           |         ECC-based       |
 *       -------------+-------------------------+-------------------------+
 *                    | Read the conventional   |                         |
 *                    | OOB at the end of the   |                         |
 *       Swapping     | page and return it. It  |                         |
 *                    | contains exactly what   |                         |
 *                    | we want.                | Read the block mark and |
 *       -------------+-------------------------+ return it in a buffer   |
 *                    | Read the conventional   | full of set bits.       |
 *                    | OOB at the end of the   |                         |
 *                    | page and also the block |                         |
 *       Transcribing | mark in the metadata.   |                         |
 *                    | Copy the block mark     |                         |
 *                    | into the first byte of  |                         |
 *                    | the OOB.                |                         |
 *       -------------+-------------------------+-------------------------+
 *
 * Note that we break rule #4 in the Transcribing/Raw case because we're not
 * giving an accurate view of the actual, physical bytes in the page (we're
 * overwriting the block mark). That's OK because it's more important to follow
 * rule #2.
 *
 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
 * easy. When reading a page, for example, the NAND Flash MTD code calls our
 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
 * ECC-based or raw view of the page is implicit in which function it calls
 * (there is a similar pair of ECC-based/raw functions for writing).
 *
 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
 * caller wants an ECC-based or raw view of the page is not propagated down to
 * this driver.
 *
 * Since our OOB *is* covered by ECC, we need this information. So, we hook the
 * ecc.read_oob and ecc.write_oob function pointers in the owning
 * struct mtd_info with our own functions. These hook functions set the
 * raw_oob_mode field so that, when control finally arrives here, we'll know
 * what to do.
 *
 * @mtd:     A pointer to the owning MTD.
 * @nand:    A pointer to the owning NAND Flash MTD.
 * @page:    The page number to read.
 * @sndcmd:  Indicates this function should send a command to the chip before
 *           reading the out-of-band bytes. This is only false for small page
 *           chips that support auto-increment.
 */
static int mil_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
							int page, int sndcmd)
{
	struct gpmi_nfc_data      *this     = nand->priv;
	struct physical_geometry  *physical = &this->physical_geometry;
	struct mil                *mil      = &this->mil;
	struct boot_rom_helper    *rom      =  this->rom;
	int                       block_mark_column;

	DEBUG(MTD_DEBUG_LEVEL2, "[gpmi_nfc ecc_read_oob] "
		"page: 0x%06x, sndcmd: %s\n", page, sndcmd ? "Yes" : "No");

	gpmi_nfc_add_event("> mil_ecc_read_oob", 1);

	/*
	 * First, fill in the OOB buffer. If we're doing a raw read, we need to
	 * get the bytes from the physical page. If we're not doing a raw read,
	 * we need to fill the buffer with set bits.
	 */

	if (mil->raw_oob_mode) {

		/*
		 * If control arrives here, we're doing a "raw" read. Send the
		 * command to read the conventional OOB.
		 */

		nand->cmdfunc(mtd, NAND_CMD_READ0,
				physical->page_data_size_in_bytes, page);

		/* Read out the conventional OOB. */

		nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);

	} else {

		/*
		 * If control arrives here, we're not doing a "raw" read. Fill
		 * the OOB buffer with set bits.
		 */

		memset(nand->oob_poi, ~0, mtd->oobsize);

	}

	/*
	 * Now, we want to make sure the block mark is correct. In the
	 * Swapping/Raw case, we already have it. Otherwise, we need to
	 * explicitly read it.
	 */

	if (!(rom->swap_block_mark && mil->raw_oob_mode)) {

		/* First, figure out where the block mark is. */

		if (rom->swap_block_mark)
			block_mark_column = physical->page_data_size_in_bytes;
		else
			block_mark_column = 0;

		/* Send the command to read the block mark. */

		nand->cmdfunc(mtd, NAND_CMD_READ0, block_mark_column, page);

		/* Read the block mark into the first byte of the OOB buffer. */

		nand->oob_poi[0] = nand->read_byte(mtd);

	}

	/*
	 * Return true, indicating that the next call to this function must send
	 * a command.
	 */

	gpmi_nfc_add_event("< mil_ecc_read_oob", -1);

	return true;

}

/**
 * mil_ecc_write_oob() - MTD Interface ecc.write_oob().
 *
 * @mtd:   A pointer to the owning MTD.
 * @nand:  A pointer to the owning NAND Flash MTD.
 * @page:  The page number to write.
 */
static int mil_ecc_write_oob(struct mtd_info *mtd,
					struct nand_chip *nand, int page)
{
	struct gpmi_nfc_data      *this     = nand->priv;
	struct device             *dev      =  this->dev;
	struct physical_geometry  *physical = &this->physical_geometry;
	struct mil                *mil      = &this->mil;
	struct boot_rom_helper    *rom      =  this->rom;
	uint8_t                   block_mark = 0;
	int                       block_mark_column;
	int                       status;
	int                       error = 0;

	DEBUG(MTD_DEBUG_LEVEL2,
			"[gpmi_nfc ecc_write_oob] page: 0x%06x\n", page);

	gpmi_nfc_add_event("> mil_ecc_write_oob", -1);

	/*
	 * There are fundamental incompatibilities between the i.MX GPMI NFC and
	 * the NAND Flash MTD model that make it essentially impossible to write
	 * the out-of-band bytes.
	 *
	 * We permit *ONE* exception. If the *intent* of writing the OOB is to
	 * mark a block bad, we can do that.
	 */

	if (!mil->marking_a_bad_block) {
		dev_emerg(dev, "This driver doesn't support writing the OOB\n");
		WARN_ON(1);
		error = -EIO;
		goto exit;
	}

	/*
	 * If control arrives here, we're marking a block bad. First, figure out
	 * where the block mark is.
	 *
	 * If we're using swapping, the block mark is in the conventional
	 * location. Otherwise, we're using transcription, and the block mark
	 * appears in the first byte of the page.
	 */

	if (rom->swap_block_mark)
		block_mark_column = physical->page_data_size_in_bytes;
	else
		block_mark_column = 0;

	/* Write the block mark. */

	nand->cmdfunc(mtd, NAND_CMD_SEQIN, block_mark_column, page);
	nand->write_buf(mtd, &block_mark, 1);
	nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);

	status = nand->waitfunc(mtd, nand);

	/* Check if it worked. */

	if (status & NAND_STATUS_FAIL)
		error = -EIO;

	/* Return. */

exit:

	gpmi_nfc_add_event("< mil_ecc_write_oob", -1);

	return error;

}

/**
 * mil_block_bad - Claims all blocks are good.
 *
 * In principle, this function is *only* called when the NAND Flash MTD system
 * isn't allowed to keep an in-memory bad block table, so it is forced to ask
 * the driver for bad block information.
 *
 * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
 * this function is *only* called when we take it away.
 *
 * We take away the in-memory BBT when the user sets the "ignorebad" parameter,
 * which indicates that all blocks should be reported good.
 *
 * Thus, this function is only called when we want *all* blocks to look good,
 * so it *always* return success.
 *
 * @mtd:      Ignored.
 * @ofs:      Ignored.
 * @getchip:  Ignored.
 */
static int mil_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
{
	return 0;
}

/**
 * mil_set_physical_geometry() - Set up the physical medium geometry.
 *
 * This function retrieves the physical geometry information discovered by
 * nand_scan(), corrects it, and records it in the per-device data structure.
 *
 * @this:  Per-device data.
 */
static int mil_set_physical_geometry(struct gpmi_nfc_data  *this)
{
	struct mil                *mil      = &this->mil;
	struct physical_geometry  *physical = &this->physical_geometry;
	struct nand_chip          *nand     = &mil->nand;
	struct nand_device_info   *info     = &this->device_info;
	unsigned int              block_size_in_pages;
	unsigned int              chip_size_in_blocks;
	unsigned int              chip_size_in_pages;
	uint64_t                  medium_size_in_bytes;

	/*
	 * Record the number of physical chips that MTD found.
	 */

	physical->chip_count = nand->numchips;

	/*
	 * We know the total size of a page. We need to break that down into the
	 * data size and OOB size. The data size is the largest power of two
	 * that will fit in the given page size. The OOB size is what's left
	 * over.
	 */

	physical->page_data_size_in_bytes =
				1 << (fls(info->page_total_size_in_bytes) - 1);

	physical->page_oob_size_in_bytes =
				info->page_total_size_in_bytes -
					physical->page_data_size_in_bytes;

	/*
	 * Now that we know the page data size, we can multiply this by the
	 * number of pages in a block to compute the block size.
	 */

	physical->block_size_in_bytes =
		physical->page_data_size_in_bytes * info->block_size_in_pages;

	/* Get the chip size. */

	physical->chip_size_in_bytes = info->chip_size_in_bytes;

	/* Compute some interesting facts. */

	block_size_in_pages  =
			physical->block_size_in_bytes >>
				(fls(physical->page_data_size_in_bytes) - 1);
	chip_size_in_pages   =
			physical->chip_size_in_bytes >>
				(fls(physical->page_data_size_in_bytes) - 1);
	chip_size_in_blocks  =
			physical->chip_size_in_bytes >>
				(fls(physical->block_size_in_bytes) - 1);
	medium_size_in_bytes =
			physical->chip_size_in_bytes * physical->chip_count;

	/* Report. */

	#if defined(DETAILED_INFO)

	pr_info("-----------------\n");
	pr_info("Physical Geometry\n");
	pr_info("-----------------\n");
	pr_info("Chip Count             : %d\n", physical->chip_count);
	pr_info("Page Data Size in Bytes: %u (0x%x)\n",
			physical->page_data_size_in_bytes,
			physical->page_data_size_in_bytes);
	pr_info("Page OOB Size in Bytes : %u\n",
			physical->page_oob_size_in_bytes);
	pr_info("Block Size in Bytes    : %u (0x%x)\n",
			physical->block_size_in_bytes,
			physical->block_size_in_bytes);
	pr_info("Block Size in Pages    : %u (0x%x)\n",
			block_size_in_pages,
			block_size_in_pages);
	pr_info("Chip Size in Bytes     : %llu (0x%llx)\n",
			physical->chip_size_in_bytes,
			physical->chip_size_in_bytes);
	pr_info("Chip Size in Pages     : %u (0x%x)\n",
			chip_size_in_pages, chip_size_in_pages);
	pr_info("Chip Size in Blocks    : %u (0x%x)\n",
			chip_size_in_blocks, chip_size_in_blocks);
	pr_info("Medium Size in Bytes   : %llu (0x%llx)\n",
			medium_size_in_bytes, medium_size_in_bytes);

	#endif

	/* Return success. */

	return 0;

}

/**
 * mil_set_nfc_geometry() - Set up the NFC geometry.
 *
 * This function calls the NFC HAL to select an NFC geometry that is compatible
 * with the medium's physical geometry.
 *
 * @this:  Per-device data.
 */
static int mil_set_nfc_geometry(struct gpmi_nfc_data  *this)
{
	struct nfc_hal       *nfc =  this->nfc;
#if defined(DETAILED_INFO)
	struct nfc_geometry  *geo = &this->nfc_geometry;
#endif
	/* Set the NFC geometry. */

	if (nfc->set_geometry(this))
		return !0;

	/* Report. */

	#if defined(DETAILED_INFO)

	pr_info("------------\n");
	pr_info("NFC Geometry\n");
	pr_info("------------\n");
	pr_info("ECC Algorithm          : %s\n", geo->ecc_algorithm);
	pr_info("ECC Strength           : %u\n", geo->ecc_strength);
	pr_info("Page Size in Bytes     : %u\n", geo->page_size_in_bytes);
	pr_info("Metadata Size in Bytes : %u\n", geo->metadata_size_in_bytes);
	pr_info("ECC Chunk Size in Bytes: %u\n", geo->ecc_chunk_size_in_bytes);
	pr_info("ECC Chunk Count        : %u\n", geo->ecc_chunk_count);
	pr_info("Payload Size in Bytes  : %u\n", geo->payload_size_in_bytes);
	pr_info("Auxiliary Size in Bytes: %u\n", geo->auxiliary_size_in_bytes);
	pr_info("Auxiliary Status Offset: %u\n", geo->auxiliary_status_offset);
	pr_info("Block Mark Byte Offset : %u\n", geo->block_mark_byte_offset);
	pr_info("Block Mark Bit Offset  : %u\n", geo->block_mark_bit_offset);

	#endif

	/* Return success. */

	return 0;

}

/**
 * mil_set_boot_rom_helper_geometry() - Set up the Boot ROM Helper geometry.
 *
 * @this:  Per-device data.
 */
static int mil_set_boot_rom_helper_geometry(struct gpmi_nfc_data  *this)
{
	struct boot_rom_helper    *rom =  this->rom;
#if defined(DETAILED_INFO)
	struct boot_rom_geometry  *geo = &this->rom_geometry;
#endif

	/* Set the Boot ROM Helper geometry. */

	if (rom->set_geometry(this))
		return !0;

	/* Report. */

	#if defined(DETAILED_INFO)

	pr_info("-----------------\n");
	pr_info("Boot ROM Geometry\n");
	pr_info("-----------------\n");
	pr_info("Boot Area Count            : %u\n", geo->boot_area_count);
	pr_info("Boot Area Size in Bytes    : %u (0x%x)\n",
		geo->boot_area_size_in_bytes, geo->boot_area_size_in_bytes);
	pr_info("Stride Size in Pages       : %u\n", geo->stride_size_in_pages);
	pr_info("Search Area Stride Exponent: %u\n",
					geo->search_area_stride_exponent);

	#endif

	/* Return success. */

	return 0;

}

/**
 * mil_set_mtd_geometry() - Set up the MTD geometry.
 *
 * This function adjusts the owning MTD data structures to match the logical
 * geometry we've chosen.
 *
 * @this:  Per-device data.
 */
static int mil_set_mtd_geometry(struct gpmi_nfc_data *this)
{
	struct physical_geometry  *physical = &this->physical_geometry;
	struct mil                *mil      = &this->mil;
	struct nand_ecclayout     *layout   = &mil->oob_layout;
	struct nand_chip          *nand     = &mil->nand;
	struct mtd_info           *mtd      = &mil->mtd;

	/* Configure the struct nand_ecclayout. */

	layout->eccbytes          = 0;
	layout->oobavail          = physical->page_oob_size_in_bytes;
	layout->oobfree[0].offset = 0;
	layout->oobfree[0].length = physical->page_oob_size_in_bytes;

	/* Configure the struct mtd_info. */

	mtd->size        = nand->numchips * physical->chip_size_in_bytes;
	mtd->erasesize   = physical->block_size_in_bytes;
	mtd->writesize   = physical->page_data_size_in_bytes;
	mtd->ecclayout   = layout;
	mtd->oobavail    = mtd->ecclayout->oobavail;
	mtd->oobsize     = mtd->ecclayout->oobavail + mtd->ecclayout->eccbytes;
	mtd->subpage_sft = 0; /* We don't support sub-page writing. */

	/* Configure the struct nand_chip. */

	nand->chipsize         = physical->chip_size_in_bytes;
	nand->page_shift       = ffs(mtd->writesize) - 1;
	nand->pagemask         = (nand->chipsize >> nand->page_shift) - 1;
	nand->subpagesize      = mtd->writesize >> mtd->subpage_sft;
	nand->phys_erase_shift = ffs(mtd->erasesize) - 1;
	nand->bbt_erase_shift  = nand->phys_erase_shift;
	nand->oob_poi          = nand->buffers->databuf + mtd->writesize;
	nand->ecc.layout       = layout;
	if (nand->chipsize & 0xffffffff)
		nand->chip_shift = ffs((unsigned) nand->chipsize) - 1;
	else
		nand->chip_shift =
				ffs((unsigned) (nand->chipsize >> 32)) + 32 - 1;

	/* Return success. */

	return 0;

}

/**
 * mil_set_geometry() - Set up the medium geometry.
 *
 * @this:  Per-device data.
 */
static int mil_set_geometry(struct gpmi_nfc_data  *this)
{
	struct device        *dev      =  this->dev;
	struct nfc_geometry  *nfc_geo  = &this->nfc_geometry;
	struct mil           *mil      = &this->mil;

	/* Set up the various layers of geometry, in this specific order. */

	if (mil_set_physical_geometry(this))
		return -ENXIO;

	if (mil_set_nfc_geometry(this))
		return -ENXIO;

	if (mil_set_boot_rom_helper_geometry(this))
		return -ENXIO;

	if (mil_set_mtd_geometry(this))
		return -ENXIO;

	/*
	 * Allocate the page buffer.
	 *
	 * Both the payload buffer and the auxiliary buffer must appear on
	 * 32-bit boundaries. We presume the size of the payload buffer is a
	 * power of two and is much larger than four, which guarantees the
	 * auxiliary buffer will appear on a 32-bit boundary.
	 */

	mil->page_buffer_size = nfc_geo->payload_size_in_bytes +
					nfc_geo->auxiliary_size_in_bytes;

	mil->page_buffer_virt =
		dma_alloc_coherent(dev, mil->page_buffer_size,
					&mil->page_buffer_phys, GFP_DMA);

	if (!mil->page_buffer_virt)
		return -ENOMEM;

	/* Slice up the page buffer. */

	mil->payload_virt = mil->page_buffer_virt;
	mil->payload_phys = mil->page_buffer_phys;

	mil->auxiliary_virt = ((char *) mil->payload_virt) +
						nfc_geo->payload_size_in_bytes;
	mil->auxiliary_phys = mil->payload_phys +
						nfc_geo->payload_size_in_bytes;

	/* Return success. */

	return 0;

}

/**
 * mil_pre_bbt_scan() - Prepare for the BBT scan.
 *
 * @this:  Per-device data.
 */
static int mil_pre_bbt_scan(struct gpmi_nfc_data  *this)
{
	struct device             *dev      =  this->dev;
	struct physical_geometry  *physical = &this->physical_geometry;
	struct boot_rom_helper    *rom      =  this->rom;
	struct mil                *mil      = &this->mil;
	struct nand_chip          *nand     = &mil->nand;
	struct mtd_info           *mtd      = &mil->mtd;
	unsigned int              block_count;
	unsigned int              block;
	int                       chip;
	int                       page;
	loff_t                    byte;
	uint8_t                   block_mark;
	int                       error;

	/*
	 * Check if we can use block mark swapping, which enables us to leave
	 * the block marks where they are. If so, we don't need to do anything
	 * at all.
	 */

	if (rom->swap_block_mark)
		return 0;

	/*
	 * If control arrives here, we can't use block mark swapping, which
	 * means we're forced to use transcription. First, scan for the
	 * transcription stamp. If we find it, then we don't have to do
	 * anything -- the block marks are already transcribed.
	 */

	if (rom->check_transcription_stamp(this))
		return 0;

	/*
	 * If control arrives here, we couldn't find a transcription stamp, so
	 * so we presume the block marks are in the conventional location.
	 */

	pr_info("Transcribing bad block marks...\n");

	/* Compute the number of blocks in the entire medium. */

	block_count =
		physical->chip_size_in_bytes >> nand->phys_erase_shift;

	/*
	 * Loop over all the blocks in the medium, transcribing block marks as
	 * we go.
	 */

	for (block = 0; block < block_count; block++) {

		/*
		 * Compute the chip, page and byte addresses for this block's
		 * conventional mark.
		 */

		chip = block >> (nand->chip_shift - nand->phys_erase_shift);
		page = block << (nand->phys_erase_shift - nand->page_shift);
		byte = block <<  nand->phys_erase_shift;

		/* Select the chip. */

		nand->select_chip(mtd, chip);

		/* Send the command to read the conventional block mark. */

		nand->cmdfunc(mtd, NAND_CMD_READ0,
				physical->page_data_size_in_bytes, page);

		/* Read the conventional block mark. */

		block_mark = nand->read_byte(mtd);

		/*
		 * Check if the block is marked bad. If so, we need to mark it
		 * again, but this time the result will be a mark in the
		 * location where we transcribe block marks.
		 *
		 * Notice that we have to explicitly set the marking_a_bad_block
		 * member before we call through the block_markbad function
		 * pointer in the owning struct nand_chip. If we could call
		 * though the block_markbad function pointer in the owning
		 * struct mtd_info, which we have hooked, then this would be
		 * taken care of for us. Unfortunately, we can't because that
		 * higher-level code path will do things like consulting the
		 * in-memory bad block table -- which doesn't even exist yet!
		 * So, we have to call at a lower level and handle some details
		 * ourselves.
		 */

		if (block_mark != 0xff) {
			pr_info("Transcribing mark in block %u\n", block);
			mil->marking_a_bad_block = true;
			error = nand->block_markbad(mtd, byte);
			mil->marking_a_bad_block = false;
			if (error)
				dev_err(dev, "Failed to mark block bad with "
							"error %d\n", error);
		}

		/* Deselect the chip. */

		nand->select_chip(mtd, -1);

	}

	/* Write the stamp that indicates we've transcribed the block marks. */

	rom->write_transcription_stamp(this);

	/* Return success. */

	return 0;

}

/**
 * mil_scan_bbt() - MTD Interface scan_bbt().
 *
 * The HIL calls this function once, when it initializes the NAND Flash MTD.
 *
 * Nominally, the purpose of this function is to look for or create the bad
 * block table. In fact, since the HIL calls this function at the very end of
 * the initialization process started by nand_scan(), and the HIL doesn't have a
 * more formal mechanism, everyone "hooks" this function to continue the
 * initialization process.
 *
 * At this point, the physical NAND Flash chips have been identified and
 * counted, so we know the physical geometry. This enables us to make some
 * important configuration decisions.
 *
 * The return value of this function propogates directly back to this driver's
 * call to nand_scan(). Anything other than zero will cause this driver to
 * tear everything down and declare failure.
 *
 * @mtd:  A pointer to the owning MTD.
 */
static int mil_scan_bbt(struct mtd_info *mtd)
{
	struct nand_chip         *nand = mtd->priv;
	struct gpmi_nfc_data     *this = nand->priv;
	struct nfc_hal           *nfc  =  this->nfc;
	struct mil               *mil  = &this->mil;
	int                      saved_chip_number;
	uint8_t                  id_bytes[NAND_DEVICE_ID_BYTE_COUNT];
	struct nand_device_info  *info;
	struct gpmi_nfc_timing   timing;
	int                      error;

	DEBUG(MTD_DEBUG_LEVEL2, "[gpmi_nfc scan_bbt] \n");

	/*
	 * Tell MTD users that the out-of-band area can't be written.
	 *
	 * This flag is not part of the standard kernel source tree. It comes
	 * from a patch that touches both MTD and JFFS2.
	 *
	 * The problem is that, without this patch, JFFS2 believes it can write
	 * the data area and the out-of-band area separately. This is wrong for
	 * two reasons:
	 *
	 *     1)  Our NFC distributes out-of-band bytes throughout the page,
	 *         intermingled with the data, and covered by the same ECC.
	 *         Thus, it's not possible to write the out-of-band bytes and
	 *         data bytes separately.
	 *
	 *     2)  Large page (MLC) Flash chips don't support partial page
	 *         writes. You must write the entire page at a time. Thus, even
	 *         if our NFC didn't force you to write out-of-band and data
	 *         bytes together, it would *still* be a bad idea to do
	 *         otherwise.
	 */

	mtd->flags &= ~MTD_OOB_WRITEABLE;

	/*
	 * MTD identified the attached NAND Flash devices, but we have a much
	 * better database that we want to consult. First, we need to gather all
	 * the ID bytes from the first chip (MTD only read the first two).
	 */

	saved_chip_number = mil->current_chip;
	nand->select_chip(mtd, 0);

	nand->cmdfunc(mtd, NAND_CMD_READID, 0, -1);
	nand->read_buf(mtd, id_bytes, NAND_DEVICE_ID_BYTE_COUNT);

	nand->select_chip(mtd, saved_chip_number);

	/* Look up this device in our database. */

	info = nand_device_get_info(id_bytes);

	/* Check if we understand this device. */

	if (!info) {
		pr_err("Unrecognized NAND Flash device.\n");
		return !0;
	}

	/* Display the information we discovered. */

	#if defined(DETAILED_INFO)
	pr_info("-----------------------------\n");
	pr_info("NAND Flash Device Information\n");
	pr_info("-----------------------------\n");
	nand_device_print_info(info);
	#endif

	/*
	 * Copy the device info into the per-device data. We can't just keep
	 * the pointer because that storage is reclaimed after initialization.
	 */

	this->device_info = *info;
	this->device_info.description = kstrdup(info->description, GFP_KERNEL);

	/* Set up geometry. */

	error = mil_set_geometry(this);

	if (error)
		return error;

	/* Set up timing. */

	timing.data_setup_in_ns        = info->data_setup_in_ns;
	timing.data_hold_in_ns         = info->data_hold_in_ns;
	timing.address_setup_in_ns     = info->address_setup_in_ns;
	timing.gpmi_sample_delay_in_ns = info->gpmi_sample_delay_in_ns;
	timing.tREA_in_ns              = info->tREA_in_ns;
	timing.tRLOH_in_ns             = info->tRLOH_in_ns;
	timing.tRHOH_in_ns             = info->tRHOH_in_ns;

	error = nfc->set_timing(this, &timing);

	if (error)
		return error;

	/* Prepare for the BBT scan. */

	error = mil_pre_bbt_scan(this);

	if (error)
		return error;

	/* We use the reference implementation for bad block management. */

	error = nand_default_bbt(mtd);

	if (error)
		return error;

	/* Return success. */

	return 0;

}

/**
 * mil_boot_areas_init() - Initializes boot areas.
 *
 * @this:  Per-device data.
 */
static int mil_boot_areas_init(struct gpmi_nfc_data *this)
{
	struct device                  *dev      =  this->dev;
	struct physical_geometry       *physical = &this->physical_geometry;
	struct boot_rom_geometry       *rom      = &this->rom_geometry;
	struct mil                     *mil      = &this->mil;
	struct mtd_info                *mtd      = &mil->mtd;
	struct nand_chip               *nand     = &mil->nand;
	int                            mtd_support_is_adequate;
	unsigned int                   i;
	struct mtd_partition           partitions[4];
	struct mtd_info                *search_mtd;
	struct mtd_info                *chip_0_remainder_mtd = 0;
	struct mtd_info                *medium_remainder_mtd = 0;
	struct mtd_info                *concatenate[2];

	/*
	 * Here we declare the static strings we use to name partitions. We use
	 * static strings because, as of 2.6.31, the partitioning code *always*
	 * registers the partition MTDs it creates and leaves behind *no* other
	 * trace of its work. So, once we've created a partition, we must search
	 * the master MTD table to find the MTDs we created. Since we're using
	 * static strings, we can simply search the master table for an MTD with
	 * a name field pointing to a known address.
	 */

	static char  *chip_0_boot_name      = "gpmi-nfc-0-boot";
	static char  *chip_0_remainder_name = "gpmi-nfc-0-remainder";
	static char  *chip_1_boot_name      = "gpmi-nfc-1-boot";
	static char  *medium_remainder_name = "gpmi-nfc-remainder";
	static char  *general_use_name      = "gpmi-nfc-general-use";

	/* Check if we're protecting the boot areas.*/

	if (!rom->boot_area_count) {

		/*
		 * If control arrives here, we're not protecting the boot areas.
		 * In this case, there are not boot area partitons, and the main
		 * MTD is the general use MTD.
		 */

		mil->general_use_mtd = &mil->mtd;

		return 0;

	}

	/*
	 * If control arrives here, we're protecting the boot areas. Check if we
	 * have the MTD support we need.
	 */

	pr_info("Boot area protection is enabled.\n");

	if (rom->boot_area_count > 1) {

		/*
		 * If the Boot ROM wants more than one boot area, then we'll
		 * need to create partitions *and* concatenate them.
		 */

		#if defined(CONFIG_MTD_PARTITIONS) && defined(CONFIG_MTD_CONCAT)
			mtd_support_is_adequate = true;
		#else
			mtd_support_is_adequate = false;
		#endif

	} else if (rom->boot_area_count == 1) {

		/*
		 * If the Boot ROM wants only one boot area, then we only need
		 * to create partitions -- we don't need to concatenate them.
		 */

		#if defined(CONFIG_MTD_PARTITIONS)
			mtd_support_is_adequate = true;
		#else
			mtd_support_is_adequate = false;
		#endif

	} else {

		/*
		 * If control arrives here, we're protecting the boot area, but
		 * somehow the boot area count was set to zero. This doesn't
		 * make any sense.
		 */

		dev_err(dev, "Internal error: boot area count is "
						"incorrectly set to zero.");
		return -ENXIO;

	}

	if (!mtd_support_is_adequate) {
		dev_err(dev, "Configured MTD support is inadequate to "
						"protect the boot area(s).");
		return -ENXIO;
	}

	/*
	 * If control arrives here, we're protecting boot areas and we have
	 * everything we need to do so.
	 *
	 * We have special code to handle the case for one boot area.
	 *
	 * The code that handles "more than one" boot area actually only handles
	 * two. We *could* write the general case, but that would take a lot of
	 * time to both write and test -- and, right now, we don't have a chip
	 * that cares.
	 */

	/* Check if a boot area is larger than a single chip. */

	if (rom->boot_area_size_in_bytes > physical->chip_size_in_bytes) {
		dev_emerg(dev, "Boot area size is larger than a chip");
		return -ENXIO;
	}

	if (rom->boot_area_count == 1) {

#if defined(CONFIG_MTD_PARTITIONS)

		/*
		 * We partition the medium like so:
		 *
		 * +------+----------------------------------------------------+
		 * | Boot |                    General Use                     |
		 * +------+----------------------------------------------------+
		 */

		/* Chip 0 Boot */

		partitions[0].name       = chip_0_boot_name;
		partitions[0].offset     = 0;
		partitions[0].size       = rom->boot_area_size_in_bytes;
		partitions[0].mask_flags = 0;

		/* General Use */

		partitions[1].name       = general_use_name;
		partitions[1].offset     = rom->boot_area_size_in_bytes;
		partitions[1].size       = MTDPART_SIZ_FULL;
		partitions[1].mask_flags = 0;

		/* Construct and register the partitions. */

		add_mtd_partitions(mtd, partitions, 2);

		/* Find the general use MTD. */

		for (i = 0; i < MAX_MTD_DEVICES; i++) {

			/* Get the current MTD so we can examine it. */

			search_mtd = get_mtd_device(0, i);

			/* Check if we got nonsense. */

			if ((!search_mtd) || (search_mtd == ERR_PTR(-ENODEV)))
				continue;

			/* Check if the current MTD is one of our remainders. */

			if (search_mtd->name == general_use_name)
				mil->general_use_mtd = search_mtd;

			/* Put the MTD back. We only wanted a quick look. */

			put_mtd_device(search_mtd);

		}

		if (!mil->general_use_mtd) {
			dev_emerg(dev, "Can't find general use MTD");
			BUG();
		}

#endif

	} else if (rom->boot_area_count == 2) {

#if defined(CONFIG_MTD_PARTITIONS) && defined(CONFIG_MTD_CONCAT)

		/*
		 * If control arrives here, there is more than one boot area.
		 * We partition the medium and concatenate the remainders like
		 * so:
		 *
		 *  --- Chip 0 ---   --- Chip 1 --- ... ------- Chip N -------
		 * /              \ /                                         \
		 * +----+----------+----+--------------- ... ------------------+
		 * |Boot|Remainder |Boot|              Remainder               |
		 * +----+----------+----+--------------- ... ------------------+
		 *      |          |   /                                      /
		 *      |          |  /                                      /
		 *      |          | /                                      /
		 *      |          |/                                      /
		 *      +----------+----------- ... ----------------------+
		 *      |                   General Use                   |
		 *      +---------------------- ... ----------------------+
		 *
		 * Notice that the results we leave in the master MTD table
		 * look like this:
		 *
		 *    * Chip 0 Boot Area
		 *    * Chip 1 Boot Area
		 *    * General Use
		 *
		 * Some user space programs expect the boot partitions to
		 * appear first. This is naive, but let's try not to cause
		 * any trouble, where we can avoid it.
		 */

		/* Chip 0 Boot */

		partitions[0].name       = chip_0_boot_name;
		partitions[0].offset     = 0;
		partitions[0].size       = rom->boot_area_size_in_bytes;
		partitions[0].mask_flags = 0;

		/* Chip 1 Boot */

		partitions[1].name       = chip_1_boot_name;
		partitions[1].offset     = nand->chipsize;
		partitions[1].size       = rom->boot_area_size_in_bytes;
		partitions[1].mask_flags = 0;

		/* Chip 0 Remainder */

		partitions[2].name       = chip_0_remainder_name;
		partitions[2].offset     = rom->boot_area_size_in_bytes;
		partitions[2].size       = nand->chipsize -
						rom->boot_area_size_in_bytes;
		partitions[2].mask_flags = 0;

		/* Medium Remainder */

		partitions[3].name       = medium_remainder_name;
		partitions[3].offset     = nand->chipsize +
						rom->boot_area_size_in_bytes;
		partitions[3].size       = MTDPART_SIZ_FULL;
		partitions[3].mask_flags = 0;

		/* Construct and register the partitions. */

		add_mtd_partitions(mtd, partitions, 4);

		/* Find the remainder partitions. */

		for (i = 0; i < MAX_MTD_DEVICES; i++) {

			/* Get the current MTD so we can examine it. */

			search_mtd = get_mtd_device(0, i);

			/* Check if we got nonsense. */

			if ((!search_mtd) || (search_mtd == ERR_PTR(-ENODEV)))
				continue;

			/* Check if the current MTD is one of our remainders. */

			if (search_mtd->name == chip_0_remainder_name)
				chip_0_remainder_mtd = search_mtd;

			if (search_mtd->name == medium_remainder_name)
				medium_remainder_mtd = search_mtd;

			/* Put the MTD back. We only wanted a quick look. */

			put_mtd_device(search_mtd);

		}

		if (!chip_0_remainder_mtd || !medium_remainder_mtd) {
			dev_emerg(dev, "Can't find remainder partitions");
			BUG();
		}

		/*
		 * Unregister the remainder MTDs. Note that we are *not*
		 * destroying these MTDs -- we're just removing from the
		 * globally-visible list. There's no need for anyone to see
		 * these.
		 */

		del_mtd_device(chip_0_remainder_mtd);
		del_mtd_device(medium_remainder_mtd);

		/* Concatenate the remainders and register the result. */

		concatenate[0] = chip_0_remainder_mtd;
		concatenate[1] = medium_remainder_mtd;

		mil->general_use_mtd = mtd_concat_create(concatenate,
							2, general_use_name);

		add_mtd_device(mil->general_use_mtd);

#endif

	} else {
		dev_err(dev, "Boot area count greater than two is "
							"unimplemented.\n");
		return -ENXIO;
	}

	/* Return success. */

	return 0;

}

/**
 * mil_boot_areas_exit() - Shuts down boot areas.
 *
 * @this:  Per-device data.
 */
static void mil_boot_areas_exit(struct gpmi_nfc_data *this)
{
	struct boot_rom_geometry  *rom = &this->rom_geometry;
	struct mil                *mil = &this->mil;
	struct mtd_info           *mtd = &mil->mtd;

	/* Check if we're protecting the boot areas.*/

	if (!rom->boot_area_count) {

		/*
		 * If control arrives here, we're not protecting the boot areas.
		 * That means we never created any boot area partitions, and the
		 * general use MTD is just the main MTD.
		 */

		mil->general_use_mtd = 0;

		return;

	}

	/*
	 * If control arrives here, we're protecting the boot areas.
	 *
	 * Start by checking if there is more than one boot area. If so, then
	 * we both partitioned the medium and then concatenated some of the
	 * partitions to form the general use MTD. The first step is to get rid
	 * of the concatenation.
	 */

	#if defined(CONFIG_MTD_PARTITIONS) && defined(CONFIG_MTD_CONCAT)
		if (rom->boot_area_count > 1) {
				del_mtd_device(mil->general_use_mtd);
				mtd_concat_destroy(mil->general_use_mtd);
		}
	#endif

	/*
	 * At this point, we're left only with the partitions of the main MTD.
	 * Delete them.
	 */

	#if defined(CONFIG_MTD_PARTITIONS)
		del_mtd_partitions(mtd);
	#endif

	/* The general use MTD no longer exists. */

	mil->general_use_mtd = 0;

}

/**
 * mil_construct_ubi_partitions() - Constructs partitions for UBI.
 *
 * MTD uses a 64-bit value to express the size of MTDs, but UBI is still using
 * a 32-bit value. For this reason, UBI can't work on top of an MTD with size
 * greater than 2GiB. In this function, we examine the general use MTD and, if
 * it's larger than 2GiB, we construct a set of partitions for that MTD such
 * that none are too large for UBI to comprehend.
 *
 * @this:  Per-device data.
 */
static void mil_construct_ubi_partitions(struct gpmi_nfc_data *this)
{
#if defined(CONFIG_MTD_PARTITIONS)
	struct device                  *dev   =  this->dev;
	struct mil                     *mil   = &this->mil;
	unsigned int                   partition_count;
	struct mtd_partition           *partitions;
	unsigned int                   name_size;
	char                           *names;
	unsigned int                   memory_block_size;
	unsigned int                   i;

	static const char              *name_prefix = "gpmi-nfc-ubi-";

	/*
	 * If the general use MTD isn't larger than 2GiB, we have nothing to do.
	 */

	if (mil->general_use_mtd->size <= SZ_2G)
		return;

	/*
	 * If control arrives here, the general use MTD is larger than 2GiB. We
	 * need to split it up into some number of partitions. Find out how many
	 * 2GiB partitions we'll be creating.
	 */

	partition_count = mil->general_use_mtd->size >> 31;

	/*
	 * If the MTD size doesn't evenly divide by 2GiB, we'll need another
	 * partition to hold the extra.
	 */

	if (mil->general_use_mtd->size & ((1 << 30) - 1))
		partition_count++;

	/*
	 * We're going to allocate a single memory block to contain all the
	 * partition structures and their names. Calculate how large it must be.
	 */

	name_size = strlen(name_prefix) + 4;

	memory_block_size = (sizeof(*partitions) + name_size) * partition_count;

	/*
	 * Attempt to allocate the block.
	 */

	partitions = kzalloc(memory_block_size, GFP_KERNEL);

	if (!partitions) {
		dev_err(dev, "Could not allocate memory for UBI partitions.\n");
		return;
	}

	names = (char *)(partitions + partition_count);

	/* Loop over partitions, filling in the details. */

	for (i = 0; i < partition_count; i++) {

		partitions[i].name   = names;
		partitions[i].size   = SZ_2G;
		partitions[i].offset = MTDPART_OFS_NXTBLK;

		sprintf(names, "%s%u", name_prefix, i);
		names += name_size;

	}

	/* Adjust the last partition to take up the remainder. */

	partitions[i - 1].size = MTDPART_SIZ_FULL;

	/* Record everything in the device data structure.  */

	mil->partitions           = partitions;
	mil->partition_count      = partition_count;
	mil->ubi_partition_memory = partitions;

#endif
}

/**
 * mil_partitions_init() - Initializes partitions.
 *
 * @this:  Per-device data.
 */
static int mil_partitions_init(struct gpmi_nfc_data *this)
{
	struct gpmi_nfc_platform_data  *pdata =  this->pdata;
	struct mil                     *mil   = &this->mil;
	struct mtd_info                *mtd   = &mil->mtd;
	int                            error;

	/*
	 * Set up the boot areas. When this function returns, if there has been
	 * no error, the boot area partitions (if any) will have been created
	 * and registered. Also, the general_use_mtd field will point to an MTD
	 * we can use.
	 */

	error = mil_boot_areas_init(this);

	if (error)
		return error;

	/*
	 * If we've been told to, register the MTD that represents the entire
	 * medium. Normally, we don't register the main MTD because we only want
	 * to expose the medium through the boot area partitions and the general
	 * use partition.
	 *
	 * We do this *after* setting up the boot areas because, for historical
	 * reasons, we like the lowest-numbered MTDs to be the boot areas.
	 */

	if (register_main_mtd) {
		pr_info("Registering the main MTD.\n");
		add_mtd_device(mtd);
	}

#if defined(CONFIG_MTD_PARTITIONS)

	/*
	 * If control arrives here, partitioning is available.
	 *
	 * There are three possible sets of partitions we might apply, in order
	 * of decreasing priority:
	 *
	 * 1) Partitions dynamically discovered from sources defined by the
	 *    platform. These can come from, for example, the command line or
	 *    a partition table.
	 *
	 * 2) Partitions attached to the platform data.
	 *
	 * 3) Partitions we generate to deal with limitations in UBI.
	 *
	 * Recall that the pointer to the general use MTD *may* just point to
	 * the main MTD.
	 */

	/*
	 * First, try to get partition information from the sources defined by
	 * the platform.
	 */

	if (pdata->partition_source_types)
		mil->partition_count =
			parse_mtd_partitions(mil->general_use_mtd,
						pdata->partition_source_types,
						&mil->partitions, 0);

	/*
	 * Check if we got anything. If not, then accept whatever partitions are
	 * attached to the platform data.
	 */

	if ((mil->partition_count <= 0) && (pdata->partitions)) {
		mil->partition_count = mil->partition_count;
		mil->partitions      = mil->partitions;
	}

	/*
	 * If we still don't have any partitions to apply, then we might want to
	 * apply some of our own, to account for UBI's limitations.
	 */

	if (!mil->partition_count)
		mil_construct_ubi_partitions(this);

	/* If we came up with any partitions, apply them. */

	if (mil->partition_count)
		add_mtd_partitions(mil->general_use_mtd,
					mil->partitions,
					mil->partition_count);

#endif

	/* Return success. */

	return 0;

}

/**
 * mil_partitions_exit() - Shuts down partitions.
 *
 * @this:  Per-device data.
 */
static void mil_partitions_exit(struct gpmi_nfc_data *this)
{
	struct mil       *mil   = &this->mil;
	struct mtd_info  *mtd   = &mil->mtd;

	/* Check if we applied any partitions to the general use MTD. */

	#if defined(CONFIG_MTD_PARTITIONS)

		if (mil->partition_count)
			del_mtd_partitions(mil->general_use_mtd);

		kfree(mil->ubi_partition_memory);

	#endif

	/*
	 * If we were told to register the MTD that represents the entire
	 * medium, unregister it now. Note that this does *not* "destroy" the
	 * MTD - it merely unregisters it. That's important because all our
	 * other MTDs depend on this one.
	 */

	if (register_main_mtd)
		del_mtd_device(mtd);

	/* Tear down the boot areas. */

	mil_boot_areas_exit(this);

}

/**
 * gpmi_nfc_mil_init() - Initializes the MTD Interface Layer.
 *
 * @this:  Per-device data.
 */
int gpmi_nfc_mil_init(struct gpmi_nfc_data *this)
{
	struct device                  *dev   =  this->dev;
	struct gpmi_nfc_platform_data  *pdata =  this->pdata;
	struct mil                     *mil   = &this->mil;
	struct mtd_info                *mtd   = &mil->mtd;
	struct nand_chip               *nand  = &mil->nand;
	static struct nand_ecclayout   fake_ecc_layout;
	int                            error = 0;

	/* Initialize MIL data. */

	mil->current_chip   = -1;
	mil->command_length =  0;

	mil->page_buffer_virt =  0;
	mil->page_buffer_phys = ~0;
	mil->page_buffer_size =  0;

	/* Initialize the MTD data structures. */

	mtd->priv  = nand;
	mtd->name  = "gpmi-nfc-main";
	mtd->owner = THIS_MODULE;
	nand->priv = this;

	/*
	 * Signal Control
	 */

	nand->cmd_ctrl = mil_cmd_ctrl;

	/*
	 * Chip Control
	 *
	 * We rely on the reference implementations of:
	 *     - cmdfunc
	 *     - waitfunc
	 */

	nand->dev_ready   = mil_dev_ready;
	nand->select_chip = mil_select_chip;

	/*
	 * Low-level I/O
	 *
	 * We don't support a 16-bit NAND Flash bus, so we don't implement
	 * read_word.
	 *
	 * We rely on the reference implentation of verify_buf.
	 */

	nand->read_byte = mil_read_byte;
	nand->read_buf  = mil_read_buf;
	nand->write_buf = mil_write_buf;

	/*
	 * ECC Control
	 *
	 * None of these functions are necessary for us:
	 *     - ecc.hwctl
	 *     - ecc.calculate
	 *     - ecc.correct
	 */

	/*
	 * ECC-aware I/O
	 *
	 * We rely on the reference implementations of:
	 *     - ecc.read_page_raw
	 *     - ecc.write_page_raw
	 */

	nand->ecc.read_page  = mil_ecc_read_page;
	nand->ecc.write_page = mil_ecc_write_page;

	/*
	 * High-level I/O
	 *
	 * We rely on the reference implementations of:
	 *     - write_page
	 *     - erase_cmd
	 */

	nand->ecc.read_oob  = mil_ecc_read_oob;
	nand->ecc.write_oob = mil_ecc_write_oob;

	/*
	 * Bad Block Management
	 *
	 * We rely on the reference implementations of:
	 *     - block_bad
	 *     - block_markbad
	 */

	nand->block_bad = mil_block_bad;
	nand->scan_bbt  = mil_scan_bbt;

	/*
	 * Error Recovery Functions
	 *
	 * We don't fill in the errstat function pointer because it's optional
	 * and we don't have a need for it.
	 */

	/*
	 * Set up NAND Flash options. Specifically:
	 *
	 *     - Disallow partial page writes.
	 */

	nand->options |= NAND_NO_SUBPAGE_WRITE;

	/*
	 * Tell the NAND Flash MTD system that we'll be handling ECC with our
	 * own hardware. It turns out that we still have to fill in the ECC size
	 * because the MTD code will divide by it -- even though it doesn't
	 * actually care.
	 */

	nand->ecc.mode = NAND_ECC_HW;
	nand->ecc.size = 1;

	/*
	 * Install a "fake" ECC layout.
	 *
	 * We'll be calling nand_scan() to do the final MTD setup. If we haven't
	 * already chosen an ECC layout, then nand_scan() will choose one based
	 * on the part geometry it discovers. Unfortunately, it doesn't make
	 * good choices. It would be best if we could install the correct ECC
	 * layout now, before we call nand_scan(). We can't do that because we
	 * don't know the medium geometry yet. Here, we install a "fake" ECC
	 * layout just to stop nand_scan() from trying to pick one for itself.
	 * Later, when we know the medium geometry, we'll install the correct
	 * one.
	 *
	 * Of course, this tactic depends critically on the MTD code not doing
	 * an I/O operation that depends on the ECC layout being sensible. This
	 * is in fact the case.
	 */

	memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));

	nand->ecc.layout = &fake_ecc_layout;

	/* Allocate a command buffer. */

	mil->cmd_virt =
		dma_alloc_coherent(dev,
			MIL_COMMAND_BUFFER_SIZE, &mil->cmd_phys, GFP_DMA);

	if (!mil->cmd_virt)
		goto exit_cmd_allocation;

	/*
	 * Ask the NAND Flash system to scan for chips.
	 *
	 * This will fill in reference implementations for all the members of
	 * the MTD structures that we didn't set, and will make the medium fully
	 * usable.
	 */

	pr_info("Scanning for NAND Flash chips...\n");

	error = nand_scan(mtd, pdata->max_chip_count);

	if (error) {
		dev_err(dev, "Chip scan failed\n");
		goto exit_nand_scan;
	}

	/*
	 * Hook some operations at the MTD level. See the descriptions of the
	 * saved function pointer fields for details about why we hook these.
	 */

	mil->hooked_read_oob      = mtd->read_oob;
	mtd->read_oob             = mil_hook_read_oob;

	mil->hooked_write_oob     = mtd->write_oob;
	mtd->write_oob            = mil_hook_write_oob;

	mil->hooked_block_markbad = mtd->block_markbad;
	mtd->block_markbad        = mil_hook_block_markbad;

	/* Construct partitions as necessary. */

	error = mil_partitions_init(this);

	if (error)
		goto exit_partitions;

	/* Return success. */

	return 0;

	/* Control arrives here if something went wrong. */

exit_partitions:
	nand_release(&mil->mtd);
exit_nand_scan:
	dma_free_coherent(dev, MIL_COMMAND_BUFFER_SIZE,
						mil->cmd_virt, mil->cmd_phys);
	mil->cmd_virt =  0;
	mil->cmd_phys = ~0;
exit_cmd_allocation:

	return error;

}

/**
 * gpmi_nfc_mil_exit() - Shuts down the MTD Interface Layer.
 *
 * @this:  Per-device data.
 */
void gpmi_nfc_mil_exit(struct gpmi_nfc_data *this)
{
	struct device  *dev = this->dev;
	struct mil     *mil = &this->mil;

	/* Shut down partitions as necessary. */

	mil_partitions_exit(this);

	/* Get MTD to let go of our MTD. */

	nand_release(&mil->mtd);

	/* Free the page buffer, if it's been allocated. */

	if (mil->page_buffer_virt)
		dma_free_coherent(dev, mil->page_buffer_size,
				mil->page_buffer_virt, mil->page_buffer_phys);

	mil->page_buffer_size =  0;
	mil->page_buffer_virt =  0;
	mil->page_buffer_phys = ~0;

	/* Free the command buffer, if it's been allocated. */

	if (mil->cmd_virt)
		dma_free_coherent(dev, MIL_COMMAND_BUFFER_SIZE,
						mil->cmd_virt, mil->cmd_phys);

	mil->cmd_virt =  0;
	mil->cmd_phys = ~0;

}