1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
|
/*
* Freescale GPMI NFC NAND Flash Driver
*
* Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
* Copyright (C) 2008 Embedded Alley Solutions, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "gpmi-nfc.h"
#include "gpmi-regs-mx50.h"
#include "bch-regs-mx50.h"
#define FEATURE_SIZE 4 /* p1, p2, p3, p4 */
#define NAND_CMD_SET_FEATURE 0xef
/*
* How many clocks do we need in low power mode?
* We try to list them :
* GMPI : gpmi_apb_clk, gpmi_io_clk
* BCH : bch_clk, bch_apb_clk
* DMA(RAM) : apbh_dma_clk, ddr_clk(RAM), ahb_max_clk(RAM)
* (APBHDMA fetches DMA descriptors from DDR
* through AHB-MAX/PL301)
* NAND :
* ONFI NAND : pll1_main_clk
*/
static struct clk *ddr_clk;
static struct clk *ahb_max_clk;
static void setup_ddr_timing_onfi(struct gpmi_nfc_data *this)
{
uint32_t value;
struct resources *resources = &this->resources;
/* set timing 2 register */
value = BF_GPMI_TIMING2_DATA_PAUSE(0x6)
| BF_GPMI_TIMING2_CMDADD_PAUSE(0x4)
| BF_GPMI_TIMING2_POSTAMBLE_DELAY(0x2)
| BF_GPMI_TIMING2_PREAMBLE_DELAY(0x4)
| BF_GPMI_TIMING2_CE_DELAY(0x2)
| BF_GPMI_TIMING2_READ_LATENCY(0x2);
__raw_writel(value, resources->gpmi_regs + HW_GPMI_TIMING2);
/* set timing 1 register */
__raw_writel(BF_GPMI_TIMING1_DEVICE_BUSY_TIMEOUT(0x500),
resources->gpmi_regs + HW_GPMI_TIMING1);
/* Put GPMI in NAND mode, disable device reset, and make certain
IRQRDY polarity is active high. */
value = BV_GPMI_CTRL1_GPMI_MODE__NAND
| BM_GPMI_CTRL1_GANGED_RDYBUSY
| BF_GPMI_CTRL1_WRN_DLY_SEL(0x3)
| (BV_GPMI_CTRL1_DEV_RESET__DISABLED << 3)
| (BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVEHIGH << 2);
__raw_writel(value, resources->gpmi_regs + HW_GPMI_CTRL1_SET);
}
/* This must be called in the context of enabling necessary clocks */
static void common_ddr_init(struct resources *resources)
{
uint32_t value;
/* [6] enable both write & read DDR DLLs */
value = BM_GPMI_READ_DDR_DLL_CTRL_REFCLK_ON |
BM_GPMI_READ_DDR_DLL_CTRL_ENABLE |
BF_GPMI_READ_DDR_DLL_CTRL_SLV_UPDATE_INT(0x2) |
BF_GPMI_READ_DDR_DLL_CTRL_SLV_DLY_TARGET(0x7);
__raw_writel(value, resources->gpmi_regs + HW_GPMI_READ_DDR_DLL_CTRL);
/* [7] reset read */
__raw_writel(value | BM_GPMI_READ_DDR_DLL_CTRL_RESET,
resources->gpmi_regs + HW_GPMI_READ_DDR_DLL_CTRL);
value = value & ~BM_GPMI_READ_DDR_DLL_CTRL_RESET;
__raw_writel(value, resources->gpmi_regs + HW_GPMI_READ_DDR_DLL_CTRL);
value = BM_GPMI_WRITE_DDR_DLL_CTRL_REFCLK_ON |
BM_GPMI_WRITE_DDR_DLL_CTRL_ENABLE |
BF_GPMI_WRITE_DDR_DLL_CTRL_SLV_UPDATE_INT(0x2) |
BF_GPMI_WRITE_DDR_DLL_CTRL_SLV_DLY_TARGET(0x7) ,
__raw_writel(value, resources->gpmi_regs + HW_GPMI_WRITE_DDR_DLL_CTRL);
/* [8] reset write */
__raw_writel(value | BM_GPMI_WRITE_DDR_DLL_CTRL_RESET,
resources->gpmi_regs + HW_GPMI_WRITE_DDR_DLL_CTRL);
__raw_writel(value, resources->gpmi_regs + HW_GPMI_WRITE_DDR_DLL_CTRL);
/* [9] wait for locks for read and write */
do {
uint32_t read_status, write_status;
uint32_t r_mask, w_mask;
read_status = __raw_readl(resources->gpmi_regs
+ HW_GPMI_READ_DDR_DLL_STS);
write_status = __raw_readl(resources->gpmi_regs
+ HW_GPMI_WRITE_DDR_DLL_STS);
r_mask = (BM_GPMI_READ_DDR_DLL_STS_REF_LOCK |
BM_GPMI_READ_DDR_DLL_STS_SLV_LOCK);
w_mask = (BM_GPMI_WRITE_DDR_DLL_STS_REF_LOCK |
BM_GPMI_WRITE_DDR_DLL_STS_SLV_LOCK);
if (((read_status & r_mask) == r_mask)
&& ((write_status & w_mask) == w_mask))
break;
} while (1);
/* [10] force update of read/write */
value = __raw_readl(resources->gpmi_regs + HW_GPMI_READ_DDR_DLL_CTRL);
__raw_writel(value | BM_GPMI_READ_DDR_DLL_CTRL_SLV_FORCE_UPD,
resources->gpmi_regs + HW_GPMI_READ_DDR_DLL_CTRL);
__raw_writel(value, resources->gpmi_regs + HW_GPMI_READ_DDR_DLL_CTRL);
value = __raw_readl(resources->gpmi_regs + HW_GPMI_WRITE_DDR_DLL_CTRL);
__raw_writel(value | BM_GPMI_WRITE_DDR_DLL_CTRL_SLV_FORCE_UPD,
resources->gpmi_regs + HW_GPMI_WRITE_DDR_DLL_CTRL);
__raw_writel(value, resources->gpmi_regs + HW_GPMI_WRITE_DDR_DLL_CTRL);
/* [11] set gate update */
value = __raw_readl(resources->gpmi_regs + HW_GPMI_READ_DDR_DLL_CTRL);
value |= BM_GPMI_READ_DDR_DLL_CTRL_GATE_UPDATE;
__raw_writel(value, resources->gpmi_regs + HW_GPMI_READ_DDR_DLL_CTRL);
value = __raw_readl(resources->gpmi_regs + HW_GPMI_WRITE_DDR_DLL_CTRL);
value |= BM_GPMI_WRITE_DDR_DLL_CTRL_GATE_UPDATE;
__raw_writel(value, resources->gpmi_regs + HW_GPMI_WRITE_DDR_DLL_CTRL);
}
static int enable_ddr_onfi(struct gpmi_nfc_data *this)
{
struct resources *resources = &this->resources;
struct mil *mil = &this->mil;
struct nand_chip *nand = &this->mil.nand;
struct mtd_info *mtd = &mil->mtd;
int saved_chip_number = 0;
uint8_t device_feature[FEATURE_SIZE];
int mode = 0;/* there is 5 mode available, default is 0 */
saved_chip_number = mil->current_chip;
nand->select_chip(mtd, 0);
/* [0] set proper timing */
__raw_writel(BF_GPMI_TIMING0_ADDRESS_SETUP(0x1)
| BF_GPMI_TIMING0_DATA_HOLD(0x3)
| BF_GPMI_TIMING0_DATA_SETUP(0x3),
resources->gpmi_regs + HW_GPMI_TIMING0);
/* [1] send SET FEATURE commond to NAND */
memset(device_feature, 0, sizeof(device_feature));
device_feature[0] = (0x1 << 4) | (mode & 0x7);
nand->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
nand->cmdfunc(mtd, NAND_CMD_SET_FEATURE, 1, -1);
nand->write_buf(mtd, device_feature, FEATURE_SIZE);
/* [2] set clk divider */
__raw_writel(BM_GPMI_CTRL1_GPMI_CLK_DIV2_EN,
resources->gpmi_regs + HW_GPMI_CTRL1_SET);
/* [3] about the clock, pay attention! */
nand->select_chip(mtd, saved_chip_number);
{
struct clk *pll1;
pll1 = clk_get(NULL, "pll1_main_clk");
if (IS_ERR(pll1)) {
printk(KERN_INFO "No PLL1 clock\n");
return -EINVAL;
}
clk_set_parent(resources->clock, pll1);
clk_set_rate(resources->clock, 20000000);
}
nand->select_chip(mtd, 0);
/* [4] setup timing */
setup_ddr_timing_onfi(this);
/* [5] set to SYNC mode */
__raw_writel(BM_GPMI_CTRL1_TOGGLE_MODE,
resources->gpmi_regs + HW_GPMI_CTRL1_CLR);
__raw_writel(BM_GPMI_CTRL1_SSYNCMODE | BM_GPMI_CTRL1_GANGED_RDYBUSY,
resources->gpmi_regs + HW_GPMI_CTRL1_SET);
/* common DDR initialization */
common_ddr_init(resources);
nand->select_chip(mtd, saved_chip_number);
printk(KERN_INFO "Micron ONFI NAND enters synchronous mode %d\n", mode);
return 0;
}
static void setup_ddr_timing_toggle(struct gpmi_nfc_data *this)
{
uint32_t value;
struct resources *resources = &this->resources;
/* set timing 2 register */
value = BF_GPMI_TIMING2_DATA_PAUSE(0x6)
| BF_GPMI_TIMING2_CMDADD_PAUSE(0x4)
| BF_GPMI_TIMING2_POSTAMBLE_DELAY(0x3)
| BF_GPMI_TIMING2_PREAMBLE_DELAY(0x2)
| BF_GPMI_TIMING2_CE_DELAY(0x2)
| BF_GPMI_TIMING2_READ_LATENCY(0x2);
__raw_writel(value, resources->gpmi_regs + HW_GPMI_TIMING2);
/* set timing 1 register */
__raw_writel(BF_GPMI_TIMING1_DEVICE_BUSY_TIMEOUT(0x500),
resources->gpmi_regs + HW_GPMI_TIMING1);
/* Put GPMI in NAND mode, disable device reset, and make certain
IRQRDY polarity is active high. */
value = BV_GPMI_CTRL1_GPMI_MODE__NAND
| BM_GPMI_CTRL1_GANGED_RDYBUSY
| (BV_GPMI_CTRL1_DEV_RESET__DISABLED << 3)
| (BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVEHIGH << 2);
__raw_writel(value, resources->gpmi_regs + HW_GPMI_CTRL1_SET);
}
static int enable_ddr_toggle(struct gpmi_nfc_data *this)
{
struct resources *resources = &this->resources;
struct mil *mil = &this->mil;
struct nand_chip *nand = &this->mil.nand;
struct mtd_info *mtd = &mil->mtd;
int saved_chip_number = mil->current_chip;
nand->select_chip(mtd, 0);
/* [0] set proper timing */
__raw_writel(BF_GPMI_TIMING0_ADDRESS_SETUP(0x5)
| BF_GPMI_TIMING0_DATA_HOLD(0xa)
| BF_GPMI_TIMING0_DATA_SETUP(0xa),
resources->gpmi_regs + HW_GPMI_TIMING0);
/* [2] set clk divider */
__raw_writel(BM_GPMI_CTRL1_GPMI_CLK_DIV2_EN,
resources->gpmi_regs + HW_GPMI_CTRL1_SET);
/* [3] about the clock, pay attention! */
nand->select_chip(mtd, saved_chip_number);
{
struct clk *pll1;
unsigned long rate;
pll1 = clk_get(NULL, "pll1_main_clk");
if (IS_ERR(pll1)) {
printk(KERN_INFO "No PLL1 clock\n");
return -EINVAL;
}
/* toggle nand : 133/66 MHz */
rate = 33000000;
clk_set_parent(resources->clock, pll1);
clk_set_rate(resources->clock, rate);
}
nand->select_chip(mtd, 0);
/* [4] setup timing */
setup_ddr_timing_toggle(this);
/* [5] set to TOGGLE mode */
__raw_writel(BM_GPMI_CTRL1_SSYNCMODE,
resources->gpmi_regs + HW_GPMI_CTRL1_CLR);
__raw_writel(BM_GPMI_CTRL1_TOGGLE_MODE | BM_GPMI_CTRL1_GANGED_RDYBUSY,
resources->gpmi_regs + HW_GPMI_CTRL1_SET);
/* common DDR initialization */
common_ddr_init(resources);
nand->select_chip(mtd, saved_chip_number);
printk(KERN_INFO "-- Sumsung TOGGLE NAND is enabled now. --\n");
return 0;
}
static inline bool is_board_support_ddr(struct gpmi_nfc_data *this)
{
/* Only arm2 board supports the DDR, the rdp board does not. */
return false;
}
/* To check if we need to initialize something else*/
static int extra_init(struct gpmi_nfc_data *this)
{
/* mx6q do not need the extra clocks, while the mx50 needs. */
if (GPMI_IS_MX6Q(this))
return 0;
ddr_clk = clk_get(NULL, "ddr_clk");
if (IS_ERR(ddr_clk)) {
printk(KERN_ERR "The ddr clock is gone!");
ddr_clk = NULL;
return -ENOENT;
}
ahb_max_clk = clk_get(NULL, "ahb_max_clk");
if (IS_ERR(ahb_max_clk)) {
printk(KERN_ERR "The APBH_DMA clock is gone!");
ahb_max_clk = NULL;
return -ENOENT;
}
if (is_board_support_ddr(this)) {
if (0)
return enable_ddr_onfi(this);
if (0)
return enable_ddr_toggle(this);
}
return 0;
}
/**
* init() - Initializes the NFC hardware.
*
* @this: Per-device data.
*/
static int init(struct gpmi_nfc_data *this)
{
struct resources *resources = &this->resources;
/* Enable the clock. */
clk_enable(resources->clock);
/* Reset the GPMI block. */
mxs_reset_block(resources->gpmi_regs + HW_GPMI_CTRL0, true);
/* Choose NAND mode. */
__raw_writel(BM_GPMI_CTRL1_GPMI_MODE,
resources->gpmi_regs + HW_GPMI_CTRL1_CLR);
/* Set the IRQ polarity. */
__raw_writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
resources->gpmi_regs + HW_GPMI_CTRL1_SET);
/* Disable write protection. */
__raw_writel(BM_GPMI_CTRL1_DEV_RESET,
resources->gpmi_regs + HW_GPMI_CTRL1_SET);
/* Select BCH ECC. */
__raw_writel(BM_GPMI_CTRL1_BCH_MODE,
resources->gpmi_regs + HW_GPMI_CTRL1_SET);
/* Disable the clock. */
clk_disable(resources->clock);
return 0;
}
/**
* set_geometry() - Configures the NFC geometry.
*
* @this: Per-device data.
*/
static int set_geometry(struct gpmi_nfc_data *this)
{
struct resources *resources = &this->resources;
struct nfc_geometry *nfc = &this->nfc_geometry;
unsigned int block_count;
unsigned int block_size;
unsigned int metadata_size;
unsigned int ecc_strength;
unsigned int page_size;
uint32_t value;
/* We make the abstract choices in a common function. */
if (common_nfc_set_geometry(this))
return !0;
/* Translate the abstract choices into register fields. */
block_count = nfc->ecc_chunk_count - 1;
block_size = nfc->ecc_chunk_size_in_bytes >> 2;
metadata_size = nfc->metadata_size_in_bytes;
ecc_strength = nfc->ecc_strength >> 1;
page_size = nfc->page_size_in_bytes;
/* Enable the clock. */
clk_enable(resources->clock);
/*
* Reset the BCH block. Notice that we pass in true for the just_enable
* flag. This is because the soft reset for the version 0 BCH block
* doesn't work and the version 1 BCH block is similar enough that we
* suspect the same (though this has not been officially tested). If you
* try to soft reset a version 0 BCH block, it becomes unusable until
* the next hard reset.
*/
mxs_reset_block(resources->bch_regs, false);
/* Configure layout 0. */
value = BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count) |
BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size) |
BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength) |
BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size);
if (is_ddr_nand(this))
value |= BM_BCH_FLASH0LAYOUT0_GF13_0_GF14_1;
__raw_writel(value, resources->bch_regs + HW_BCH_FLASH0LAYOUT0);
value = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength) |
BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size);
if (is_ddr_nand(this))
value |= BM_BCH_FLASH0LAYOUT1_GF13_0_GF14_1;
__raw_writel(value, resources->bch_regs + HW_BCH_FLASH0LAYOUT1);
/* Set *all* chip selects to use layout 0. */
__raw_writel(0, resources->bch_regs + HW_BCH_LAYOUTSELECT);
/* Enable interrupts. */
__raw_writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
resources->bch_regs + HW_BCH_CTRL_SET);
/* Disable the clock. */
clk_disable(resources->clock);
return 0;
}
/**
* set_timing() - Configures the NFC timing.
*
* @this: Per-device data.
* @timing: The timing of interest.
*/
static int set_timing(struct gpmi_nfc_data *this,
const struct nand_timing *timing)
{
struct nfc_hal *nfc = this->nfc;
/* Accept the new timing. */
nfc->timing = *timing;
return 0;
}
/**
* get_timing() - Retrieves the NFC hardware timing.
*
* @this: Per-device data.
* @clock_frequency_in_hz: The clock frequency, in Hz, during the current
* I/O transaction. If no I/O transaction is in
* progress, this is the clock frequency during the
* most recent I/O transaction.
* @hardware_timing: The hardware timing configuration in effect during
* the current I/O transaction. If no I/O transaction
* is in progress, this is the hardware timing
* configuration during the most recent I/O
* transaction.
*/
static void get_timing(struct gpmi_nfc_data *this,
unsigned long *clock_frequency_in_hz,
struct gpmi_nfc_hardware_timing *hardware_timing)
{
struct resources *resources = &this->resources;
struct nfc_hal *nfc = this->nfc;
unsigned char *gpmi_regs = resources->gpmi_regs;
uint32_t register_image;
/* Return the clock frequency. */
*clock_frequency_in_hz = nfc->clock_frequency_in_hz;
/* We'll be reading the hardware, so let's enable the clock. */
clk_enable(resources->clock);
/* Retrieve the hardware timing. */
register_image = __raw_readl(gpmi_regs + HW_GPMI_TIMING0);
hardware_timing->data_setup_in_cycles =
(register_image & BM_GPMI_TIMING0_DATA_SETUP) >>
BP_GPMI_TIMING0_DATA_SETUP;
hardware_timing->data_hold_in_cycles =
(register_image & BM_GPMI_TIMING0_DATA_HOLD) >>
BP_GPMI_TIMING0_DATA_HOLD;
hardware_timing->address_setup_in_cycles =
(register_image & BM_GPMI_TIMING0_ADDRESS_SETUP) >>
BP_GPMI_TIMING0_ADDRESS_SETUP;
register_image = __raw_readl(gpmi_regs + HW_GPMI_CTRL1);
hardware_timing->use_half_periods =
(register_image & BM_GPMI_CTRL1_HALF_PERIOD) >>
BP_GPMI_CTRL1_HALF_PERIOD;
hardware_timing->sample_delay_factor =
(register_image & BM_GPMI_CTRL1_RDN_DELAY) >>
BP_GPMI_CTRL1_RDN_DELAY;
/* We're done reading the hardware, so disable the clock. */
clk_disable(resources->clock);
}
static void exit(struct gpmi_nfc_data *this)
{
}
static void begin(struct gpmi_nfc_data *this)
{
struct resources *resources = &this->resources;
struct nfc_hal *nfc = this->nfc;
struct gpmi_nfc_hardware_timing hw;
/* Enable the clock. */
if (ddr_clk)
clk_enable(ddr_clk);
if (ahb_max_clk)
clk_enable(ahb_max_clk);
clk_enable(resources->clock);
/* Get the timing information we need. */
nfc->clock_frequency_in_hz = clk_get_rate(resources->clock);
gpmi_nfc_compute_hardware_timing(this, &hw);
/* Apply the hardware timing. */
/* Coming soon - the clock handling code isn't ready yet. */
}
/**
* end() - End NFC I/O.
*
* @this: Per-device data.
*/
static void end(struct gpmi_nfc_data *this)
{
struct resources *resources = &this->resources;
clk_disable(resources->clock);
if (ahb_max_clk)
clk_disable(ahb_max_clk);
if (ddr_clk)
clk_disable(ddr_clk);
}
/**
* clear_bch() - Clears a BCH interrupt.
*
* @this: Per-device data.
*/
static void clear_bch(struct gpmi_nfc_data *this)
{
struct resources *resources = &this->resources;
__raw_writel(BM_BCH_CTRL_COMPLETE_IRQ,
resources->bch_regs + HW_BCH_CTRL_CLR);
}
/**
* is_ready() - Returns the ready/busy status of the given chip.
*
* @this: Per-device data.
* @chip: The chip of interest.
*/
static int is_ready(struct gpmi_nfc_data *this, unsigned chip)
{
struct resources *resources = &this->resources;
uint32_t mask;
uint32_t register_image;
/* Extract and return the status. */
mask = BF_GPMI_STAT_READY_BUSY(1 << 0);
register_image = __raw_readl(resources->gpmi_regs + HW_GPMI_STAT);
return !!(register_image & mask);
}
/* The DMA may need the NAND-LOCK bit set to work properly. */
static int send_command(struct gpmi_nfc_data *this)
{
struct dma_chan *channel = get_dma_chan(this);
struct mil *mil = &this->mil;
struct dma_async_tx_descriptor *desc;
struct scatterlist *sgl;
u32 pio[3];
/* [1] send out the PIO words */
pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
| BM_GPMI_CTRL0_WORD_LENGTH
| BF_GPMI_CTRL0_CS(mil->current_chip)
| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
| BM_GPMI_CTRL0_ADDRESS_INCREMENT
| BF_GPMI_CTRL0_XFER_COUNT(mil->command_length);
pio[1] = pio[2] = 0;
desc = channel->device->device_prep_slave_sg(channel,
(struct scatterlist *)pio,
ARRAY_SIZE(pio), DMA_NONE, 0);
if (!desc) {
pr_info("step 1 error");
return -1;
}
/* [2] send out the COMMAND + ADDRESS string stored in @buffer */
sgl = &mil->cmd_sgl;
sg_init_one(sgl, mil->cmd_buffer, mil->command_length);
dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
desc = channel->device->device_prep_slave_sg(channel,
sgl, 1, DMA_TO_DEVICE, 1);
if (!desc) {
pr_info("error");
return -1;
}
/* [3] submit the DMA */
this->dma_type = DMA_FOR_COMMAND;
start_dma_without_bch_irq(this, desc);
return 0;
}
static int send_data(struct gpmi_nfc_data *this)
{
struct dma_async_tx_descriptor *desc;
struct dma_chan *channel = get_dma_chan(this);
struct mil *mil = &this->mil;
uint32_t command_mode;
uint32_t address;
u32 pio[2];
/* [1] PIO */
command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
| BM_GPMI_CTRL0_WORD_LENGTH
| BF_GPMI_CTRL0_CS(mil->current_chip)
| BF_GPMI_CTRL0_ADDRESS(address)
| BF_GPMI_CTRL0_XFER_COUNT(mil->upper_len);
pio[1] = 0;
desc = channel->device->device_prep_slave_sg(channel,
(struct scatterlist *)pio,
ARRAY_SIZE(pio), DMA_NONE, 0);
if (!desc) {
pr_info("step 1 error");
return -1;
}
/* [2] send DMA request */
prepare_data_dma(this, DMA_TO_DEVICE);
desc = channel->device->device_prep_slave_sg(channel, &mil->data_sgl,
1, DMA_TO_DEVICE, 1);
if (!desc) {
pr_info("step 2 error");
return -1;
}
/* [3] submit the DMA */
this->dma_type = DMA_FOR_WRITE_DATA;
start_dma_without_bch_irq(this, desc);
return 0;
}
static int read_data(struct gpmi_nfc_data *this)
{
struct dma_async_tx_descriptor *desc;
struct dma_chan *channel = get_dma_chan(this);
struct mil *mil = &this->mil;
u32 pio[2];
/* [1] : send PIO */
pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
| BM_GPMI_CTRL0_WORD_LENGTH
| BF_GPMI_CTRL0_CS(mil->current_chip)
| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
| BF_GPMI_CTRL0_XFER_COUNT(mil->upper_len);
pio[1] = 0;
desc = channel->device->device_prep_slave_sg(channel,
(struct scatterlist *)pio,
ARRAY_SIZE(pio), DMA_NONE, 0);
if (!desc) {
pr_info("step 1 error");
return -1;
}
/* [2] : send DMA request */
prepare_data_dma(this, DMA_FROM_DEVICE);
desc = channel->device->device_prep_slave_sg(channel, &mil->data_sgl,
1, DMA_FROM_DEVICE, 1);
if (!desc) {
pr_info("step 2 error");
return -1;
}
/* [3] : submit the DMA */
this->dma_type = DMA_FOR_READ_DATA;
start_dma_without_bch_irq(this, desc);
return 0;
}
static int send_page(struct gpmi_nfc_data *this,
dma_addr_t payload, dma_addr_t auxiliary)
{
struct nfc_geometry *geo = &this->nfc_geometry;
uint32_t command_mode;
uint32_t address;
uint32_t ecc_command;
uint32_t buffer_mask;
uint32_t busw;
uint32_t page_size;
struct dma_async_tx_descriptor *desc;
struct dma_chan *channel = get_dma_chan(this);
struct mil *mil = &this->mil;
int chip = mil->current_chip;
u32 pio[6];
/* DDR use the 16-bit for DATA transmission! */
if (is_board_support_ddr(this) && is_ddr_nand(this)) {
busw = BV_GPMI_CTRL0_WORD_LENGTH__16_BIT;
page_size = geo->page_size_in_bytes >> 1;
} else {
busw = BM_GPMI_CTRL0_WORD_LENGTH;
page_size = geo->page_size_in_bytes;
}
/* A DMA descriptor that does an ECC page read. */
command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
| busw
| BF_GPMI_CTRL0_CS(chip)
| BF_GPMI_CTRL0_ADDRESS(address)
| BF_GPMI_CTRL0_XFER_COUNT(0);
pio[1] = 0;
pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
| BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
| BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
pio[3] = page_size;
pio[4] = payload;
pio[5] = auxiliary;
desc = channel->device->device_prep_slave_sg(channel,
(struct scatterlist *)pio,
ARRAY_SIZE(pio), DMA_NONE, 0);
if (!desc) {
pr_info("step 2 error");
return -1;
}
this->dma_type = DMA_FOR_WRITE_ECC_PAGE;
return start_dma_with_bch_irq(this, desc);
}
static int read_page(struct gpmi_nfc_data *this,
dma_addr_t payload, dma_addr_t auxiliary)
{
struct nfc_geometry *geo = &this->nfc_geometry;
uint32_t command_mode;
uint32_t address;
uint32_t ecc_command;
uint32_t buffer_mask;
uint32_t page_size;
uint32_t busw;
struct dma_async_tx_descriptor *desc;
struct dma_chan *channel = get_dma_chan(this);
struct mil *mil = &this->mil;
int chip = mil->current_chip;
u32 pio[6];
/* DDR use the 16-bit for DATA transmission! */
if (is_board_support_ddr(this) && is_ddr_nand(this)) {
busw = BV_GPMI_CTRL0_WORD_LENGTH__16_BIT;
page_size = geo->page_size_in_bytes >> 1;
} else {
busw = BM_GPMI_CTRL0_WORD_LENGTH;
page_size = geo->page_size_in_bytes;
}
/* [1] Wait for the chip to report ready. */
command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
| busw
| BF_GPMI_CTRL0_CS(chip)
| BF_GPMI_CTRL0_ADDRESS(address)
| BF_GPMI_CTRL0_XFER_COUNT(0);
pio[1] = 0;
desc = channel->device->device_prep_slave_sg(channel,
(struct scatterlist *)pio, 2, DMA_NONE, 0);
if (!desc) {
pr_info("step 1 error");
return -1;
}
/* [2] Enable the BCH block and read. */
command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
| BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
| busw
| BF_GPMI_CTRL0_CS(chip)
| BF_GPMI_CTRL0_ADDRESS(address)
| BF_GPMI_CTRL0_XFER_COUNT(page_size);
pio[1] = 0;
pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
| BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
| BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
pio[3] = page_size;
pio[4] = payload;
pio[5] = auxiliary;
desc = channel->device->device_prep_slave_sg(channel,
(struct scatterlist *)pio,
ARRAY_SIZE(pio), DMA_NONE, 1);
if (!desc) {
pr_info("step 2 error");
return -1;
}
/* [3] Disable the BCH block */
command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
| busw
| BF_GPMI_CTRL0_CS(chip)
| BF_GPMI_CTRL0_ADDRESS(address)
| BF_GPMI_CTRL0_XFER_COUNT(page_size);
pio[1] = 0;
desc = channel->device->device_prep_slave_sg(channel,
(struct scatterlist *)pio, 2, DMA_NONE, 1);
if (!desc) {
pr_info("step 3 error");
return -1;
}
/* [4] submit the DMA */
this->dma_type = DMA_FOR_READ_ECC_PAGE;
return start_dma_with_bch_irq(this, desc);
}
/* This structure represents the NFC HAL for this version of the hardware. */
struct nfc_hal gpmi_nfc_hal_mx50 = {
.description = "8-chip GPMI and BCH",
.max_chip_count = 8,
.max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >>
BP_GPMI_TIMING0_DATA_SETUP),
.internal_data_setup_in_ns = 0,
.max_sample_delay_factor = (BM_GPMI_CTRL1_RDN_DELAY >>
BP_GPMI_CTRL1_RDN_DELAY),
.max_dll_clock_period_in_ns = 32,
.max_dll_delay_in_ns = 16,
.init = init,
.extra_init = extra_init,
.set_geometry = set_geometry,
.set_timing = set_timing,
.get_timing = get_timing,
.exit = exit,
.begin = begin,
.end = end,
.clear_bch = clear_bch,
.is_ready = is_ready,
.send_command = send_command,
.send_data = send_data,
.read_data = read_data,
.send_page = send_page,
.read_page = read_page,
};
|