summaryrefslogtreecommitdiff
path: root/drivers/mtd/spi-nor/fsl-flexspi.c
blob: ccdb3c5a2189db322b6d3470be95a031fe507ca2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
/*
 * Freescale FlexSPI driver.
 *
 * Copyright 2017 NXP
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/timer.h>
#include <linux/jiffies.h>
#include <linux/completion.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/spi-nor.h>
#include <linux/mutex.h>
#include <linux/pm_qos.h>
#include <linux/pci.h>
#include <soc/imx8/sc/sci.h>
#include <linux/pm_runtime.h>

/* Board only enabled up to Quad mode, not Octal*/
#define FLEXSPI_QUIRK_QUAD_ONLY		(1 << 0)
/* Maximum clock limitation */
#define FLEXSPI_QUIRK_FREQ_LIMIT	(1 << 1)
/* Config DLL register */
#define FLEXSPI_QUIRK_CONFIG_DLL	(1 << 2)

/* runtime pm timeout */
#define FSL_FLEXSPI_RPM_TIMEOUT 50 /* 50ms */
#define FREQ_1MHz               1000000 /* 1MHz */

/* delay cell range */
#define FLEXSPI_DLL_MIN		75 /* 75ps */
#define FLEXSPI_DLL_MAX		225 /* 225ps */

/* The registers */
#define FLEXSPI_MCR0			0x00
#define FLEXSPI_MCR0_AHB_TIMEOUT_SHIFT	24
#define FLEXSPI_MCR0_AHB_TIMEOUT_MASK	(0xFF << FLEXSPI_MCR0_AHB_TIMEOUT_SHIFT)
#define FLEXSPI_MCR0_IP_TIMEOUT_SHIFT	16
#define FLEXSPI_MCR0_IP_TIMEOUT_MASK	(0xFF << FLEXSPI_MCR0_IP_TIMEOUT_SHIFT)
#define FLEXSPI_MCR0_LEARN_EN_SHIFT	15
#define FLEXSPI_MCR0_LEARN_EN_MASK	(1 << FLEXSPI_MCR0_LEARN_EN_SHIFT)
#define FLEXSPI_MCR0_SCRFRUN_EN_SHIFT	14
#define FLEXSPI_MCR0_SCRFRUN_EN_MASK	(1 << FLEXSPI_MCR0_SCRFRUN_EN_SHIFT)
#define FLEXSPI_MCR0_OCTCOMB_EN_SHIFT	13
#define FLEXSPI_MCR0_OCTCOMB_EN_MASK	(1 << FLEXSPI_MCR0_OCTCOMB_EN_SHIFT)
#define FLEXSPI_MCR0_DOZE_EN_SHIFT	12
#define FLEXSPI_MCR0_DOZE_EN_MASK	(1 << FLEXSPI_MCR0_DOZE_EN_SHIFT)
#define FLEXSPI_MCR0_HSEN_SHIFT		11
#define FLEXSPI_MCR0_HSEN_MASK		(1 << FLEXSPI_MCR0_HSEN_SHIFT)
#define FLEXSPI_MCR0_SERCLKDIV_SHIFT	8
#define FLEXSPI_MCR0_SERCLKDIV_MASK	(7 << FLEXSPI_MCR0_SERCLKDIV_SHIFT)
#define FLEXSPI_MCR0_ATDF_EN_SHIFT	7
#define FLEXSPI_MCR0_ATDF_EN_MASK	(1 << FLEXSPI_MCR0_ATDF_EN_SHIFT)
#define FLEXSPI_MCR0_ARDF_EN_SHIFT	6
#define FLEXSPI_MCR0_ARDF_EN_MASK	(1 << FLEXSPI_MCR0_ARDF_EN_SHIFT)
#define FLEXSPI_MCR0_RXCLKSRC_SHIFT	4
#define FLEXSPI_MCR0_RXCLKSRC_MASK	(3 << FLEXSPI_MCR0_RXCLKSRC_SHIFT)
#define FLEXSPI_MCR0_END_CFG_SHIFT	2
#define FLEXSPI_MCR0_END_CFG_MASK	(3 << FLEXSPI_MCR0_END_CFG_SHIFT)
#define FLEXSPI_MCR0_MDIS_SHIFT		1
#define FLEXSPI_MCR0_MDIS_MASK		(1 << FLEXSPI_MCR0_MDIS_SHIFT)
#define FLEXSPI_MCR0_SWRST_SHIFT	0
#define FLEXSPI_MCR0_SWRST_MASK		(1 << FLEXSPI_MCR0_SWRST_SHIFT)

#define FLEXSPI_MCR1			0x04
#define FLEXSPI_MCR1_SEQ_TIMEOUT_SHIFT	16
#define FLEXSPI_MCR1_SEQ_TIMEOUT_MASK	\
	(0xFFFF << FLEXSPI_MCR1_SEQ_TIMEOUT_SHIFT)
#define FLEXSPI_MCR1_AHB_TIMEOUT_SHIFT	0
#define FLEXSPI_MCR1_AHB_TIMEOUT_MASK	\
	(0xFFFF << FLEXSPI_MCR1_AHB_TIMEOUT_SHIFT)

#define FLEXSPI_MCR2			0x08
#define FLEXSPI_MCR2_IDLE_WAIT_SHIFT	24
#define FLEXSPI_MCR2_IDLE_WAIT_MASK	(0xFF << FLEXSPI_MCR2_IDLE_WAIT_SHIFT)
#define FLEXSPI_MCR2_SAMEFLASH_SHIFT	15
#define FLEXSPI_MCR2_SAMEFLASH_MASK	(1 << FLEXSPI_MCR2_SAMEFLASH_SHIFT)
#define FLEXSPI_MCR2_CLRLRPHS_SHIFT	14
#define FLEXSPI_MCR2_CLRLRPHS_MASK	(1 << FLEXSPI_MCR2_CLRLRPHS_SHIFT)
#define FLEXSPI_MCR2_ABRDATSZ_SHIFT	8
#define FLEXSPI_MCR2_ABRDATSZ_MASK	(1 << FLEXSPI_MCR2_ABRDATSZ_SHIFT)
#define FLEXSPI_MCR2_ABRLEARN_SHIFT	7
#define FLEXSPI_MCR2_ABRLEARN_MASK	(1 << FLEXSPI_MCR2_ABRLEARN_SHIFT)
#define FLEXSPI_MCR2_ABR_READ_SHIFT	6
#define FLEXSPI_MCR2_ABR_READ_MASK	(1 << FLEXSPI_MCR2_ABR_READ_SHIFT)
#define FLEXSPI_MCR2_ABRWRITE_SHIFT	5
#define FLEXSPI_MCR2_ABRWRITE_MASK	(1 << FLEXSPI_MCR2_ABRWRITE_SHIFT)
#define FLEXSPI_MCR2_ABRDUMMY_SHIFT	4
#define FLEXSPI_MCR2_ABRDUMMY_MASK	(1 << FLEXSPI_MCR2_ABRDUMMY_SHIFT)
#define FLEXSPI_MCR2_ABR_MODE_SHIFT	3
#define FLEXSPI_MCR2_ABR_MODE_MASK	(1 << FLEXSPI_MCR2_ABR_MODE_SHIFT)
#define FLEXSPI_MCR2_ABRCADDR_SHIFT	2
#define FLEXSPI_MCR2_ABRCADDR_MASK	(1 << FLEXSPI_MCR2_ABRCADDR_SHIFT)
#define FLEXSPI_MCR2_ABRRADDR_SHIFT	1
#define FLEXSPI_MCR2_ABRRADDR_MASK	(1 << FLEXSPI_MCR2_ABRRADDR_SHIFT)
#define FLEXSPI_MCR2_ABR_CMD_SHIFT	0
#define FLEXSPI_MCR2_ABR_CMD_MASK	(1 << FLEXSPI_MCR2_ABR_CMD_SHIFT)

#define FLEXSPI_AHBCR			0x0c
#define FLEXSPI_AHBCR_RDADDROPT_SHIFT	6
#define FLEXSPI_AHBCR_RDADDROPT_MASK	(1 << FLEXSPI_AHBCR_RDADDROPT_SHIFT)
#define FLEXSPI_AHBCR_PREF_EN_SHIFT	5
#define FLEXSPI_AHBCR_PREF_EN_MASK	(1 << FLEXSPI_AHBCR_PREF_EN_SHIFT)
#define FLEXSPI_AHBCR_BUFF_EN_SHIFT	4
#define FLEXSPI_AHBCR_BUFF_EN_MASK	(1 << FLEXSPI_AHBCR_BUFF_EN_SHIFT)
#define FLEXSPI_AHBCR_CACH_EN_SHIFT	3
#define FLEXSPI_AHBCR_CACH_EN_MASK	(1 << FLEXSPI_AHBCR_CACH_EN_SHIFT)
#define FLEXSPI_AHBCR_CLRTXBUF_SHIFT	2
#define FLEXSPI_AHBCR_CLRTXBUF_MASK	(1 << FLEXSPI_AHBCR_CLRTXBUF_SHIFT)
#define FLEXSPI_AHBCR_CLRRXBUF_SHIFT	1
#define FLEXSPI_AHBCR_CLRRXBUF_MASK	(1 << FLEXSPI_AHBCR_CLRRXBUF_SHIFT)
#define FLEXSPI_AHBCR_PAR_EN_SHIFT	0
#define FLEXSPI_AHBCR_PAR_EN_MASK	(1 << FLEXSPI_AHBCR_PAR_EN_SHIFT)

#define FLEXSPI_INTEN			0x10
#define FLEXSPI_INTEN_SCLKSBWR_SHIFT	9
#define FLEXSPI_INTEN_SCLKSBWR_MASK	(1 << FLEXSPI_INTEN_SCLKSBWR_SHIFT)
#define FLEXSPI_INTEN_SCLKSBRD_SHIFT	8
#define FLEXSPI_INTEN_SCLKSBRD_MASK	(1 << FLEXSPI_INTEN_SCLKSBRD_SHIFT)
#define FLEXSPI_INTEN_DATALRNFL_SHIFT	7
#define FLEXSPI_INTEN_DATALRNFL_MASK	(1 << FLEXSPI_INTEN_DATALRNFL_SHIFT)
#define FLEXSPI_INTEN_IPTXWE_SHIFT	6
#define FLEXSPI_INTEN_IPTXWE_MASK	(1 << FLEXSPI_INTEN_IPTXWE_SHIFT)
#define FLEXSPI_INTEN_IPRXWA_SHIFT	5
#define FLEXSPI_INTEN_IPRXWA_MASK	(1 << FLEXSPI_INTEN_IPRXWA_SHIFT)
#define FLEXSPI_INTEN_AHBCMDERR_SHIFT	4
#define FLEXSPI_INTEN_AHBCMDERR_MASK	(1 << FLEXSPI_INTEN_AHBCMDERR_SHIFT)
#define FLEXSPI_INTEN_IPCMDERR_SHIFT	3
#define FLEXSPI_INTEN_IPCMDERR_MASK	(1 << FLEXSPI_INTEN_IPCMDERR_SHIFT)
#define FLEXSPI_INTEN_AHBCMDGE_SHIFT	2
#define FLEXSPI_INTEN_AHBCMDGE_MASK	(1 << FLEXSPI_INTEN_AHBCMDGE_SHIFT)
#define FLEXSPI_INTEN_IPCMDGE_SHIFT	1
#define FLEXSPI_INTEN_IPCMDGE_MASK	(1 << FLEXSPI_INTEN_IPCMDGE_SHIFT)
#define FLEXSPI_INTEN_IPCMDDONE_SHIFT	0
#define FLEXSPI_INTEN_IPCMDDONE_MASK	(1 << FLEXSPI_INTEN_IPCMDDONE_SHIFT)

#define FLEXSPI_INTR			0x14
#define FLEXSPI_INTR_SCLKSBWR_SHIFT	9
#define FLEXSPI_INTR_SCLKSBWR_MASK	(1 << FLEXSPI_INTR_SCLKSBWR_SHIFT)
#define FLEXSPI_INTR_SCLKSBRD_SHIFT	8
#define FLEXSPI_INTR_SCLKSBRD_MASK	(1 << FLEXSPI_INTR_SCLKSBRD_SHIFT)
#define FLEXSPI_INTR_DATALRNFL_SHIFT	7
#define FLEXSPI_INTR_DATALRNFL_MASK	(1 << FLEXSPI_INTR_DATALRNFL_SHIFT)
#define FLEXSPI_INTR_IPTXWE_SHIFT	6
#define FLEXSPI_INTR_IPTXWE_MASK	(1 << FLEXSPI_INTR_IPTXWE_SHIFT)
#define FLEXSPI_INTR_IPRXWA_SHIFT	5
#define FLEXSPI_INTR_IPRXWA_MASK	(1 << FLEXSPI_INTR_IPRXWA_SHIFT)
#define FLEXSPI_INTR_AHBCMDERR_SHIFT	4
#define FLEXSPI_INTR_AHBCMDERR_MASK	(1 << FLEXSPI_INTR_AHBCMDERR_SHIFT)
#define FLEXSPI_INTR_IPCMDERR_SHIFT	3
#define FLEXSPI_INTR_IPCMDERR_MASK	(1 << FLEXSPI_INTR_IPCMDERR_SHIFT)
#define FLEXSPI_INTR_AHBCMDGE_SHIFT	2
#define FLEXSPI_INTR_AHBCMDGE_MASK	(1 << FLEXSPI_INTR_AHBCMDGE_SHIFT)
#define FLEXSPI_INTR_IPCMDGE_SHIFT	1
#define FLEXSPI_INTR_IPCMDGE_MASK	(1 << FLEXSPI_INTR_IPCMDGE_SHIFT)
#define FLEXSPI_INTR_IPCMDDONE_SHIFT	0
#define FLEXSPI_INTR_IPCMDDONE_MASK	(1 << FLEXSPI_INTR_IPCMDDONE_SHIFT)

#define FLEXSPI_LUTKEY			0x18
#define FLEXSPI_LUTKEY_VALUE		0x5AF05AF0

#define FLEXSPI_LCKCR			0x1C
#define FLEXSPI_LCKER_LOCK		0x1
#define FLEXSPI_LCKER_UNLOCK		0x2

#define FLEXSPI_BUFXCR_INVALID_MSTRID	0xe
#define FLEXSPI_AHBRX_BUF0CR0		0x20
#define FLEXSPI_AHBRX_BUF1CR0		0x24
#define FLEXSPI_AHBRX_BUF2CR0		0x28
#define FLEXSPI_AHBRX_BUF3CR0		0x2C
#define FLEXSPI_AHBRX_BUF4CR0		0x30
#define FLEXSPI_AHBRX_BUF5CR0		0x34
#define FLEXSPI_AHBRX_BUF6CR0		0x38
#define FLEXSPI_AHBRX_BUF7CR0		0x3C
#define FLEXSPI_AHBRXBUF0CR7_PREF_SHIFT	31
#define FLEXSPI_AHBRXBUF0CR7_PREF_MASK	(1 << FLEXSPI_AHBRXBUF0CR7_PREF_SHIFT)

#define FLEXSPI_AHBRX_BUF0CR1		0x40
#define FLEXSPI_AHBRX_BUF1CR1		0x44
#define FLEXSPI_AHBRX_BUF2CR1		0x48
#define FLEXSPI_AHBRX_BUF3CR1		0x4C
#define FLEXSPI_AHBRX_BUF4CR1		0x50
#define FLEXSPI_AHBRX_BUF5CR1		0x54
#define FLEXSPI_AHBRX_BUF6CR1		0x58
#define FLEXSPI_AHBRX_BUF7CR1		0x5C
#define FLEXSPI_BUFXCR1_MSID_SHIFT	0
#define FLEXSPI_BUFXCR1_MSID_MASK	(0xF << FLEXSPI_BUFXCR1_MSID_SHIFT)
#define FLEXSPI_BUFXCR1_PRIO_SHIFT	8
#define FLEXSPI_BUFXCR1_PRIO_MASK	(0x7 << FLEXSPI_BUFXCR1_PRIO_SHIFT)

#define FLEXSPI_FLSHA1CR0		0x60
#define FLEXSPI_FLSHA2CR0		0x64
#define FLEXSPI_FLSHB1CR0		0x68
#define FLEXSPI_FLSHB2CR0		0x6C
#define FLEXSPI_FLSHXCR0_SZ_SHIFT	10
#define FLEXSPI_FLSHXCR0_SZ_MASK	(0x3FFFFF << FLEXSPI_FLSHXCR0_SZ_SHIFT)

#define FLEXSPI_FLSHA1CR1		0x70
#define FLEXSPI_FLSHA2CR1		0x74
#define FLEXSPI_FLSHB1CR1		0x78
#define FLEXSPI_FLSHB2CR1		0x7C
#define FLEXSPI_FLSHXCR1_CSINTR_SHIFT	16
#define FLEXSPI_FLSHXCR1_CSINTR_MASK	\
	(0xFFFF << FLEXSPI_FLSHXCR1_CSINTR_SHIFT)
#define FLEXSPI_FLSHXCR1_CAS_SHIFT	11
#define FLEXSPI_FLSHXCR1_CAS_MASK	(0xF << FLEXSPI_FLSHXCR1_CAS_SHIFT)
#define FLEXSPI_FLSHXCR1_WA_SHIFT	10
#define FLEXSPI_FLSHXCR1_WA_MASK	(1 << FLEXSPI_FLSHXCR1_WA_SHIFT)
#define FLEXSPI_FLSHXCR1_TCSH_SHIFT	5
#define FLEXSPI_FLSHXCR1_TCSH_MASK	(0x1F << FLEXSPI_FLSHXCR1_TCSH_SHIFT)
#define FLEXSPI_FLSHXCR1_TCSS_SHIFT	0
#define FLEXSPI_FLSHXCR1_TCSS_MASK	(0x1F << FLEXSPI_FLSHXCR1_TCSS_SHIFT)

#define FLEXSPI_FLSHA1CR2		0x80
#define FLEXSPI_FLSHA2CR2		0x84
#define FLEXSPI_FLSHB1CR2		0x88
#define FLEXSPI_FLSHB2CR2		0x8C
#define FLEXSPI_FLSHXCR2_CLRINSP_SHIFT	24
#define FLEXSPI_FLSHXCR2_CLRINSP_MASK	(1 << FLEXSPI_FLSHXCR2_CLRINSP_SHIFT)
#define FLEXSPI_FLSHXCR2_AWRWAIT_SHIFT	16
#define FLEXSPI_FLSHXCR2_AWRWAIT_MASK	(0xFF << FLEXSPI_FLSHXCR2_AWRWAIT_SHIFT)
#define FLEXSPI_FLSHXCR2_AWRSEQN_SHIFT	13
#define FLEXSPI_FLSHXCR2_AWRSEQN_MASK	(0x7 << FLEXSPI_FLSHXCR2_AWRSEQN_SHIFT)
#define FLEXSPI_FLSHXCR2_AWRSEQI_SHIFT	8
#define FLEXSPI_FLSHXCR2_AWRSEQI_MASK	(0xF << FLEXSPI_FLSHXCR2_AWRSEQI_SHIFT)
#define FLEXSPI_FLSHXCR2_ARDSEQN_SHIFT	5
#define FLEXSPI_FLSHXCR2_ARDSEQN_MASK	(0x7 << FLEXSPI_FLSHXCR2_ARDSEQN_SHIFT)
#define FLEXSPI_FLSHXCR2_ARDSEQI_SHIFT	0
#define FLEXSPI_FLSHXCR2_ARDSEQI_MASK	(0xF << FLEXSPI_FLSHXCR2_ARDSEQI_SHIFT)

#define FLEXSPI_IPCR0			0xA0

#define FLEXSPI_IPCR1			0xA4
#define FLEXSPI_IPCR1_IPAREN_SHIFT	31
#define FLEXSPI_IPCR1_IPAREN_MASK	(1 << FLEXSPI_IPCR1_IPAREN_SHIFT)
#define FLEXSPI_IPCR1_SEQNUM_SHIFT	24
#define FLEXSPI_IPCR1_SEQNUM_MASK	(0xF << FLEXSPI_IPCR1_SEQNUM_SHIFT)
#define FLEXSPI_IPCR1_SEQID_SHIFT	16
#define FLEXSPI_IPCR1_SEQID_MASK	(0xF << FLEXSPI_IPCR1_SEQID_SHIFT)
#define FLEXSPI_IPCR1_IDATSZ_SHIFT	0
#define FLEXSPI_IPCR1_IDATSZ_MASK	(0xFFFF << FLEXSPI_IPCR1_IDATSZ_SHIFT)

#define FLEXSPI_IPCMD			0xB0
#define FLEXSPI_IPCMD_TRG_SHIFT		0
#define FLEXSPI_IPCMD_TRG_MASK		(1 << FLEXSPI_IPCMD_TRG_SHIFT)

#define FLEXSPI_DLPR			0xB4

#define FLEXSPI_IPRXFCR			0xB8
#define FLEXSPI_IPRXFCR_CLR_SHIFT	0
#define FLEXSPI_IPRXFCR_CLR_MASK	(1 << FLEXSPI_IPRXFCR_CLR_SHIFT)
#define FLEXSPI_IPRXFCR_DMA_EN_SHIFT	1
#define FLEXSPI_IPRXFCR_DMA_EN_MASK	(1 << FLEXSPI_IPRXFCR_DMA_EN_SHIFT)
#define FLEXSPI_IPRXFCR_WMRK_SHIFT	2
#define FLEXSPI_IPRXFCR_WMRK_MASK	(0x1F << FLEXSPI_IPRXFCR_WMRK_SHIFT)

#define FLEXSPI_IPTXFCR			0xBC
#define FLEXSPI_IPTXFCR_CLR_SHIFT	0
#define FLEXSPI_IPTXFCR_CLR_MASK	(1 << FLEXSPI_IPTXFCR_CLR_SHIFT)
#define FLEXSPI_IPTXFCR_DMA_EN_SHIFT	1
#define FLEXSPI_IPTXFCR_DMA_EN_MASK	(1 << FLEXSPI_IPTXFCR_DMA_EN_SHIFT)
#define FLEXSPI_IPTXFCR_WMRK_SHIFT	2
#define FLEXSPI_IPTXFCR_WMRK_MASK	(0x1F << FLEXSPI_IPTXFCR_WMRK_SHIFT)

#define FLEXSPI_DLLACR			0xC0
#define FLEXSPI_DLLACR_REFUPDINT_SHIFT	28
#define FLEXSPI_DLLACR_REFUPDINT_MASK	(0xF << FLEXSPI_DLLACR_REFUPDINT_SHIFT)
#define FLEXSPI_DLLACR_OVRDVAL_SHIFT	9
#define FLEXSPI_DLLACR_OVRDVAL_MASK	(0x3F << FLEXSPI_DLLACR_OVRDVAL_SHIFT)
#define FLEXSPI_DLLACR_OVRDEN_SHIFT	8
#define FLEXSPI_DLLACR_OVRDEN_MASK	(1 << FLEXSPI_DLLACR_OVRDEN_SHIFT)
#define FLEXSPI_DLLACR_SLVDLYTGT_SHIFT	3
#define FLEXSPI_DLLACR_SLVDLYTGT_MASK	(0xF << FLEXSPI_DLLACR_SLVDLYTGT_SHIFT)
#define FLEXSPI_DLLACR_DLLRST_SHIFT	1
#define FLEXSPI_DLLACR_DLLRST_MASK	(1 << FLEXSPI_DLLACR_DLLRST_SHIFT)
#define FLEXSPI_DLLACR_DLLEN_SHIFT	0
#define FLEXSPI_DLLACR_DLLEN_MASK	(1 << FLEXSPI_DLLACR_DLLEN_SHIFT)

#define FLEXSPI_DLLBCR			0xC4
#define FLEXSPI_DLLBCR_REFUPDINT_SHIFT	28
#define FLEXSPI_DLLBCR_REFUPDINT_MASK	(0xF << FLEXSPI_DLLBCR_REFUPDINT_SHIFT)
#define FLEXSPI_DLLBCR_OVRDVAL_SHIFT	9
#define FLEXSPI_DLLBCR_OVRDVAL_MASK	(0x3F << FLEXSPI_DLLBCR_OVRDVAL_SHIFT)
#define FLEXSPI_DLLBCR_OVRDEN_SHIFT	8
#define FLEXSPI_DLLBCR_OVRDEN_MASK	(1 << FLEXSPI_DLLBCR_OVRDEN_SHIFT)
#define FLEXSPI_DLLBCR_SLVDLYTGT_SHIFT	3
#define FLEXSPI_DLLBCR_SLVDLYTGT_MASK	(0xF << FLEXSPI_DLLBCR_SLVDLYTGT_SHIFT)
#define FLEXSPI_DLLBCR_DLLRST_SHIFT	1
#define FLEXSPI_DLLBCR_DLLRST_MASK	(1 << FLEXSPI_DLLBCR_DLLRST_SHIFT)
#define FLEXSPI_DLLBCR_DLLEN_SHIFT	0
#define FLEXSPI_DLLBCR_DLLEN_MASK	(1 << FLEXSPI_DLLBCR_DLLEN_SHIFT)

#define FLEXSPI_STS0			0xE0
#define FLEXSPI_STS0_DLPHA_SHIFT	9
#define FLEXSPI_STS0_DLPHA_MASK		(0x1F << FLEXSPI_STS0_DLPHA_SHIFT)
#define FLEXSPI_STS0_DLPHB_SHIFT	4
#define FLEXSPI_STS0_DLPHB_MASK		(0x1F << FLEXSPI_STS0_DLPHB_SHIFT)
#define FLEXSPI_STS0_CMD_SRC_SHIFT	2
#define FLEXSPI_STS0_CMD_SRC_MASK	(3 << FLEXSPI_STS0_CMD_SRC_SHIFT)
#define FLEXSPI_STS0_ARB_IDLE_SHIFT	1
#define FLEXSPI_STS0_ARB_IDLE_MASK	(1 << FLEXSPI_STS0_ARB_IDLE_SHIFT)
#define FLEXSPI_STS0_SEQ_IDLE_SHIFT	0
#define FLEXSPI_STS0_SEQ_IDLE_MASK	(1 << FLEXSPI_STS0_SEQ_IDLE_SHIFT)

#define FLEXSPI_STS1			0xE4
#define FLEXSPI_STS1_IP_ERRCD_SHIFT	24
#define FLEXSPI_STS1_IP_ERRCD_MASK	(0xF << FLEXSPI_STS1_IP_ERRCD_SHIFT)
#define FLEXSPI_STS1_IP_ERRID_SHIFT	16
#define FLEXSPI_STS1_IP_ERRID_MASK	(0xF << FLEXSPI_STS1_IP_ERRID_SHIFT)
#define FLEXSPI_STS1_AHB_ERRCD_SHIFT	8
#define FLEXSPI_STS1_AHB_ERRCD_MASK	(0xF << FLEXSPI_STS1_AHB_ERRCD_SHIFT)
#define FLEXSPI_STS1_AHB_ERRID_SHIFT	0
#define FLEXSPI_STS1_AHB_ERRID_MASK	(0xF << FLEXSPI_STS1_AHB_ERRID_SHIFT)

#define FLEXSPI_AHBSPNST		0xEC
#define FLEXSPI_AHBSPNST_DATLFT_SHIFT	16
#define FLEXSPI_AHBSPNST_DATLFT_MASK	\
	(0xFFFF << FLEXSPI_AHBSPNST_DATLFT_SHIFT)
#define FLEXSPI_AHBSPNST_BUFID_SHIFT	1
#define FLEXSPI_AHBSPNST_BUFID_MASK	(7 << FLEXSPI_AHBSPNST_BUFID_SHIFT)
#define FLEXSPI_AHBSPNST_ACTIVE_SHIFT	0
#define FLEXSPI_AHBSPNST_ACTIVE_MASK	(1 << FLEXSPI_AHBSPNST_ACTIVE_SHIFT)

#define FLEXSPI_IPRXFSTS		0xF0
#define FLEXSPI_IPRXFSTS_RDCNTR_SHIFT	16
#define FLEXSPI_IPRXFSTS_RDCNTR_MASK	\
	(0xFFFF << FLEXSPI_IPRXFSTS_RDCNTR_SHIFT)
#define FLEXSPI_IPRXFSTS_FILL_SHIFT	0
#define FLEXSPI_IPRXFSTS_FILL_MASK	(0xFF << FLEXSPI_IPRXFSTS_FILL_SHIFT)

#define FLEXSPI_IPTXFSTS		0xF4
#define FLEXSPI_IPTXFSTS_WRCNTR_SHIFT	16
#define FLEXSPI_IPTXFSTS_WRCNTR_MASK	\
	(0xFFFF << FLEXSPI_IPTXFSTS_WRCNTR_SHIFT)
#define FLEXSPI_IPTXFSTS_FILL_SHIFT	0
#define FLEXSPI_IPTXFSTS_FILL_MASK	(0xFF << FLEXSPI_IPTXFSTS_FILL_SHIFT)

#define FLEXSPI_RFDR			0x100
#define FLEXSPI_TFDR			0x180

#define FLEXSPI_LUT_BASE		0x200

/* register map end */

/*
 * The definition of the LUT register shows below:
 *
 *  ---------------------------------------------------
 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
 *  ---------------------------------------------------
 */
#define OPRND0_SHIFT		0
#define PAD0_SHIFT		8
#define INSTR0_SHIFT		10
#define OPRND1_SHIFT		16

/* Instruction set for the LUT register. */

#define LUT_STOP		0x00
#define LUT_CMD		0x01
#define LUT_ADDR		0x02
#define LUT_CADDR_SDR		0x03
#define LUT_MODE		0x04
#define LUT_MODE2		0x05
#define LUT_MODE4		0x06
#define LUT_MODE8		0x07
#define LUT_FSL_WRITE		0x08
#define LUT_FSL_READ		0x09
#define LUT_LEARN_SDR		0x0A
#define LUT_DATSZ_SDR		0x0B
#define LUT_DUMMY		0x0C
#define LUT_DUMMY_RWDS_SDR	0x0D
#define LUT_JMP_ON_CS		0x1F
#define LUT_CMD_DDR		0x21
#define LUT_ADDR_DDR		0x22
#define LUT_CADDR_DDR		0x23
#define LUT_MODE_DDR		0x24
#define LUT_MODE2_DDR		0x25
#define LUT_MODE4_DDR		0x26
#define LUT_MODE8_DDR		0x27
#define LUT_WRITE_DDR		0x28
#define LUT_READ_DDR		0x29
#define LUT_LEARN_DDR		0x2A
#define LUT_DATSZ_DDR		0x2B
#define LUT_DUMMY_DDR		0x2C
#define LUT_DUMMY_RWDS_DDR	0x2D


/*
 * The PAD definitions for LUT register.
 *
 * The pad stands for the lines number of IO[0:3].
 * For example, the Quad read need four IO lines, so you should
 * set LUT_PAD4 which means we use four IO lines.
 */
#define LUT_PAD1		0
#define LUT_PAD2		1
#define LUT_PAD4		2
#define LUT_PAD8		3

/* Oprands for the LUT register. */
#define ADDR24BIT		0x18
#define ADDR32BIT		0x20

/* Macros for constructing the LUT register. */
#define LUT0(ins, pad, opr)						\
		(((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
		((LUT_##ins) << INSTR0_SHIFT))

#define LUT1(ins, pad, opr)	(LUT0(ins, pad, opr) << OPRND1_SHIFT)

/* other macros for LUT register. */
#define FLEXSPI_LUT(x)          (FLEXSPI_LUT_BASE + (x) * 4)
#define FLEXSPI_LUT_NUM		64

/* SEQID -- we can have 16 seqids at most. */
#define SEQID_QUAD_READ		0
#define SEQID_WREN		1
#define SEQID_WRDI		2
#define SEQID_RDSR		3
#define SEQID_SE		4
#define SEQID_CHIP_ERASE	5
#define SEQID_PP		6
#define SEQID_RDID		7
#define SEQID_WRSR		8
#define SEQID_RDCR		9
#define SEQID_EN4B		10
#define SEQID_BRWR		11
#define SEQID_RD_EVCR		12
#define SEQID_WD_EVCR		13
#define SEQID_RD_SFDP		14

#define FLEXSPI_MIN_IOMAP	SZ_4M

enum fsl_flexspi_devtype {
	FSL_FLEXSPI_IMX8QM,
	FSL_FLEXSPI_IMX8QXP,
	FSL_FLEXSPI_IMX8MM,
};

struct fsl_flexspi_devtype_data {
	enum fsl_flexspi_devtype devtype;
	int rxfifo;
	int txfifo;
	int ahb_buf_size;
	int driver_data;
	int dllvalue;
};

static struct fsl_flexspi_devtype_data imx8qm_data = {
	.devtype = FSL_FLEXSPI_IMX8QM,
	.rxfifo = 1024,
	.txfifo = 1024,
	.ahb_buf_size = 2048,
	.driver_data = FLEXSPI_QUIRK_CONFIG_DLL,
	.dllvalue = 80, /* unit is 0.1 ns, this is 8ns */
};

static struct fsl_flexspi_devtype_data imx8qxp_data = {
	.devtype = FSL_FLEXSPI_IMX8QXP,
	.rxfifo = 1024,
	.txfifo = 1024,
	.ahb_buf_size = 2048,
	.driver_data = FLEXSPI_QUIRK_CONFIG_DLL,
	.dllvalue = 80, /* unit is 0.1 ns, this is 8ns */
};

static struct fsl_flexspi_devtype_data imx8mm_data = {
	.devtype = FSL_FLEXSPI_IMX8MM,
	.rxfifo = 1024,
	.txfifo = 1024,
	.ahb_buf_size = 2048,
	.driver_data = FLEXSPI_QUIRK_QUAD_ONLY | FLEXSPI_QUIRK_FREQ_LIMIT,
	.dllvalue = 0,
};

#define FSL_FLEXSPI_MAX_CHIP	4
struct fsl_flexspi {
	struct mtd_info mtd[FSL_FLEXSPI_MAX_CHIP];
	struct spi_nor nor[FSL_FLEXSPI_MAX_CHIP];
	void __iomem *iobase;
	void __iomem *ahb_addr;
	u32 memmap_phy;
	u32 memmap_offs;
	u32 memmap_len;
	struct clk *clk;
	struct device *dev;
	struct completion c;
	struct fsl_flexspi_devtype_data *devtype_data;
	u32 nor_size;
	u32 nor_num;
	u32 clk_rate;
	unsigned int chip_base_addr; /* We may support two chips. */
	bool has_second_chip;
	u32 ddr_smp;
	struct mutex lock;
	struct pm_qos_request pm_qos_req;

#define FLEXSPI_INITILIZED	(1 << 0)
	int flags;
};

static inline int fsl_flexspi_need_config_dll(struct fsl_flexspi *flex)
{
	return flex->devtype_data->driver_data & FLEXSPI_QUIRK_CONFIG_DLL;
}

static inline int fsl_flexspi_freq_limit(struct fsl_flexspi *flex)
{
	return flex->devtype_data->driver_data & FLEXSPI_QUIRK_FREQ_LIMIT;
}

static inline int fsl_flexspi_quad_only(struct fsl_flexspi *flex)
{
	return flex->devtype_data->driver_data & FLEXSPI_QUIRK_QUAD_ONLY;
}

static inline void fsl_flexspi_unlock_lut(struct fsl_flexspi *flex)
{
	writel(FLEXSPI_LUTKEY_VALUE, flex->iobase + FLEXSPI_LUTKEY);
	writel(FLEXSPI_LCKER_UNLOCK, flex->iobase + FLEXSPI_LCKCR);
}

static inline void fsl_flexspi_lock_lut(struct fsl_flexspi *flex)
{
	writel(FLEXSPI_LUTKEY_VALUE, flex->iobase + FLEXSPI_LUTKEY);
	writel(FLEXSPI_LCKER_LOCK, flex->iobase + FLEXSPI_LCKCR);
}

static irqreturn_t fsl_flexspi_irq_handler(int irq, void *dev_id)
{
	struct fsl_flexspi *flex = dev_id;
	u32 reg;

	reg = readl(flex->iobase + FLEXSPI_INTR);
	writel(FLEXSPI_INTR_IPCMDDONE_MASK, flex->iobase + FLEXSPI_INTR);
	if (reg & FLEXSPI_INTR_IPCMDDONE_MASK)
		complete(&flex->c);

	return IRQ_HANDLED;
}

static void fsl_flexspi_init_lut(struct fsl_flexspi *flex)
{
	void __iomem *base = flex->iobase;
	struct spi_nor *nor = &flex->nor[0];
	u8 addrlen = (nor->addr_width == 3) ? ADDR24BIT : ADDR32BIT;
	u32 lut_base;
	u8 op, dm;
	int i;

	fsl_flexspi_unlock_lut(flex);

	/* Clear all the LUT table */
	for (i = 0; i < FLEXSPI_LUT_NUM; i++)
		writel(0, base + FLEXSPI_LUT_BASE + i * 4);

	/* Quad Read and DDR Quad Read*/
	lut_base = SEQID_QUAD_READ * 4;
	op = nor->read_opcode;
	dm = nor->read_dummy;

	/* Normal Read as the default read setting*/
	if (op == SPINOR_OP_READ || op == 0) {
		writel(LUT0(CMD, PAD1, SPINOR_OP_READ) |
		       LUT1(ADDR, PAD1, addrlen),
		       base + FLEXSPI_LUT(lut_base));

		writel(LUT0(FSL_READ, PAD1, 0),
		       base + FLEXSPI_LUT(lut_base + 1));
	/* Octal DDR Read */
	} else if (op == SPINOR_OP_READ_1_8_8_DTR_4B) {
		writel(LUT0(CMD, PAD1, op) |
		       LUT1(ADDR_DDR, PAD1, addrlen),
		       base + FLEXSPI_LUT(lut_base));

		writel(LUT0(DUMMY_DDR, PAD8, dm * 2)
			| LUT1(READ_DDR, PAD8, 0),
			base + FLEXSPI_LUT(lut_base + 1));
	/* QUAD Fast Read */
	} else if (op == SPINOR_OP_READ_1_1_4 || op == SPINOR_OP_READ_1_1_4_4B) {
		/* read mode : 1-1-4 */
		writel(LUT0(CMD, PAD1, op) | LUT1(ADDR, PAD1, addrlen),
		       base + FLEXSPI_LUT(lut_base));

		writel(LUT0(DUMMY, PAD4, dm) |
		       LUT1(FSL_READ, PAD4, 0),
		       base + FLEXSPI_LUT(lut_base + 1));
	/* DDR Quad I/O Read 	 */
	} else if (op == SPINOR_OP_READ_1_4_4_DTR || op == SPINOR_OP_READ_1_4_4_DTR_4B) {
		/* read mode : 1-4-4, such as Spansion s25fl128s. */
		writel(LUT0(CMD, PAD1, op) |
		       LUT1(ADDR_DDR, PAD4, addrlen),
		       base + FLEXSPI_LUT(lut_base));

		writel(LUT0(DUMMY_DDR, PAD4, dm * 2) |
		       LUT1(READ_DDR, PAD4, 0),
		       base + FLEXSPI_LUT(lut_base + 1));

		writel(LUT0(JMP_ON_CS, PAD1, 0),
		       base + FLEXSPI_LUT(lut_base + 2));
	/* DDR Quad Fast Read 	 */
	} else if (op == SPINOR_OP_READ_1_1_4_DTR) {
		/* read mode : 1-1-4, such as Micron N25Q256A. */
		writel(LUT0(CMD, PAD1, op) |
		       LUT1(ADDR_DDR, PAD1, addrlen),
		       base + FLEXSPI_LUT(lut_base));

		writel(LUT0(DUMMY_DDR, PAD4, dm * 2) |
		       LUT1(READ_DDR, PAD4, 0),
		       base + FLEXSPI_LUT(lut_base + 1));

		writel(LUT0(JMP_ON_CS, PAD1, 0),
		       base + FLEXSPI_LUT(lut_base + 2));
	}

	/* Write enable */
	lut_base = SEQID_WREN * 4;
	writel(LUT0(CMD, PAD1, SPINOR_OP_WREN), base + FLEXSPI_LUT(lut_base));

	/* Page Program */
	lut_base = SEQID_PP * 4;
	writel(LUT0(CMD, PAD1, nor->program_opcode) | LUT1(ADDR, PAD1, addrlen),
			base + FLEXSPI_LUT(lut_base));
	writel(LUT0(FSL_WRITE, PAD1, 0), base + FLEXSPI_LUT(lut_base + 1));

	/* Read Status */
	lut_base = SEQID_RDSR * 4;
	writel(LUT0(CMD, PAD1, SPINOR_OP_RDSR) | LUT1(FSL_READ, PAD1, 0x1),
			base + FLEXSPI_LUT(lut_base));

	/* Erase a sector */
	lut_base = SEQID_SE * 4;
	writel(LUT0(CMD, PAD1, nor->erase_opcode) | LUT1(ADDR, PAD1, addrlen),
			base + FLEXSPI_LUT(lut_base));

	/* Erase the whole chip */
	lut_base = SEQID_CHIP_ERASE * 4;
	writel(LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
			base + FLEXSPI_LUT(lut_base));

	/* READ ID */
	lut_base = SEQID_RDID * 4;
	writel(LUT0(CMD, PAD1, SPINOR_OP_RDID) | LUT1(FSL_READ, PAD1, 0x8),
			base + FLEXSPI_LUT(lut_base));

	/* Write Register */
	lut_base = SEQID_WRSR * 4;
	writel(LUT0(CMD, PAD1, SPINOR_OP_WRSR) | LUT1(FSL_WRITE, PAD1, 0x2),
			base + FLEXSPI_LUT(lut_base));

	/* Read Configuration Register */
	lut_base = SEQID_RDCR * 4;
	writel(LUT0(CMD, PAD1, SPINOR_OP_RDCR) | LUT1(FSL_READ, PAD1, 0x1),
			base + FLEXSPI_LUT(lut_base));

	/* Write disable */
	lut_base = SEQID_WRDI * 4;
	writel(LUT0(CMD, PAD1, SPINOR_OP_WRDI), base + FLEXSPI_LUT(lut_base));

	/* Enter 4 Byte Mode (Micron) */
	lut_base = SEQID_EN4B * 4;
	writel(LUT0(CMD, PAD1, SPINOR_OP_EN4B), base + FLEXSPI_LUT(lut_base));

	/* Enter 4 Byte Mode (Spansion) */
	lut_base = SEQID_BRWR * 4;
	writel(LUT0(CMD, PAD1, SPINOR_OP_BRWR), base + FLEXSPI_LUT(lut_base));

	/* Read EVCR register */
	lut_base = SEQID_RD_EVCR * 4;
	writel(LUT0(CMD, PAD1, SPINOR_OP_RD_EVCR),
	       base + FLEXSPI_LUT(lut_base));

	/* Write EVCR register */
	lut_base = SEQID_WD_EVCR * 4;
	writel(LUT0(CMD, PAD1, SPINOR_OP_WD_EVCR),
	       base + FLEXSPI_LUT(lut_base));

	/* Read SFDP*/
	lut_base = SEQID_RD_SFDP * 4;
	writel(LUT0(CMD, PAD1, SPINOR_OP_RDSFDP) | LUT1(ADDR, PAD1, ADDR24BIT),
	       base + FLEXSPI_LUT(lut_base));
	writel(LUT0(DUMMY, PAD1, 8) | LUT1(FSL_READ, PAD1, 16),
	       base + FLEXSPI_LUT(lut_base + 1));
	fsl_flexspi_lock_lut(flex);
}

/* Get the SEQID for the command */
static int fsl_flexspi_get_seqid(struct fsl_flexspi *flex, u8 cmd)
{

	switch (cmd) {
	case SPINOR_OP_READ_1_1_4_DTR:
	case SPINOR_OP_READ_1_8_8_DTR_4B:
	case SPINOR_OP_READ_1_4_4_DTR:
	case SPINOR_OP_READ_1_4_4_DTR_4B:
	case SPINOR_OP_READ_1_1_4_4B:
	case SPINOR_OP_READ_1_1_4:
	case SPINOR_OP_READ_4B:
	case SPINOR_OP_READ:
		return SEQID_QUAD_READ;
	case SPINOR_OP_WREN:
		return SEQID_WREN;
	case SPINOR_OP_WRDI:
		return SEQID_WRDI;
	case SPINOR_OP_RDSR:
		return SEQID_RDSR;
	case SPINOR_OP_BE_4K:
	case SPINOR_OP_SE:
		return SEQID_SE;
	case SPINOR_OP_CHIP_ERASE:
		return SEQID_CHIP_ERASE;
	case SPINOR_OP_PP:
		return SEQID_PP;
	case SPINOR_OP_RDID:
		return SEQID_RDID;
	case SPINOR_OP_WRSR:
		return SEQID_WRSR;
	case SPINOR_OP_RDCR:
		return SEQID_RDCR;
	case SPINOR_OP_EN4B:
		return SEQID_EN4B;
	case SPINOR_OP_BRWR:
		return SEQID_BRWR;
	case SPINOR_OP_RD_EVCR:
		return SEQID_RD_EVCR;
	case SPINOR_OP_WD_EVCR:
		return SEQID_WD_EVCR;
	case SPINOR_OP_RDSFDP:
		return SEQID_RD_SFDP;
	default:
		dev_err(flex->dev, "Unsupported cmd 0x%.2x\n", cmd);
		break;
	}
	return -EINVAL;
}

static int
fsl_flexspi_runcmd(struct fsl_flexspi *flex, u8 cmd, unsigned int addr, int len)
{
	void __iomem *base = flex->iobase;
	int seqid;
	int seqnum = 0;
	u32 reg;
	int err;

	init_completion(&flex->c);
	dev_dbg(flex->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
			flex->chip_base_addr, addr, len, cmd);

	/* write address */
	writel(flex->chip_base_addr + addr, base + FLEXSPI_IPCR0);

	seqid = fsl_flexspi_get_seqid(flex, cmd);

	writel((seqnum << FLEXSPI_IPCR1_SEQNUM_SHIFT) |
			(seqid << FLEXSPI_IPCR1_SEQID_SHIFT) | len,
			base + FLEXSPI_IPCR1);

	/* wait till controller is idle */
	do {
		reg = readl(base + FLEXSPI_STS0);
		if ((reg & FLEXSPI_STS0_ARB_IDLE_MASK) &&
		    (reg & FLEXSPI_STS0_SEQ_IDLE_MASK))
			break;
		udelay(1);
	} while (1);

	/* trigger the LUT now */
	writel(1, base + FLEXSPI_IPCMD);

	/* Wait for the interrupt. */
	if (!wait_for_completion_timeout(&flex->c, msecs_to_jiffies(1000))) {
		dev_dbg(flex->dev,
			"cmd 0x%.2x timeout, addr@%.8x, Status0:0x%.8x, Status1:0x%.8x\n",
			cmd, addr, readl(base + FLEXSPI_STS0),
			readl(base + FLEXSPI_STS1));
		err = -ETIMEDOUT;
	} else {
		err = 0;
	}

	return err;
}

/* Read out the data from the FLEXSPI_RBDR buffer registers. */
static void fsl_flexspi_read_data(struct fsl_flexspi *flex, int len, u8 *rxbuf)
{
	/* u64 tmp; */
	int i = 0;
	int size;

	/* invalid RXFIFO first */
	writel(FLEXSPI_IPRXFCR_CLR_MASK, flex->iobase + FLEXSPI_IPRXFCR);
	while (len > 0) {

		size = len / 8;

		for (i = 0; i < size; ++i) {
			/* Wait for RXFIFO available*/
			while (!(readl(flex->iobase + FLEXSPI_INTR)
				 & FLEXSPI_INTR_IPRXWA_MASK))
				;

			/* read 64 bit data once */
			memcpy(rxbuf, flex->iobase + FLEXSPI_RFDR, 8);
			rxbuf += 8;

			/* move the FIFO pointer */
			writel(FLEXSPI_INTR_IPRXWA_MASK,
			       flex->iobase + FLEXSPI_INTR);
			len -= 8;
		}

		size = len % 8;

		if (size) {
			/* Wait for RXFIFO available*/
			while (!(readl(flex->iobase + FLEXSPI_INTR)
				 & FLEXSPI_INTR_IPRXWA_MASK))
				;

			memcpy(rxbuf, flex->iobase + FLEXSPI_RFDR, size);
			len -= size;
		}

		writel(FLEXSPI_INTR_IPRXWA_MASK,
		       flex->iobase + FLEXSPI_INTR);

		/* invalid the RXFIFO */
		writel(FLEXSPI_IPRXFCR_CLR_MASK,
		       flex->iobase + FLEXSPI_IPRXFCR);
	}
}

/*
 * If we have changed the content of the flash by writing or erasing,
 * we need to invalidate the AHB buffer. If we do not do so, we may read out
 * the wrong data. The spec tells us reset the AHB domain and Serial Flash
 * domain at the same time.
 */
static inline void fsl_flexspi_invalid(struct fsl_flexspi *flex)
{
	u32 reg;

	reg = readl(flex->iobase + FLEXSPI_MCR0);
	writel(reg | FLEXSPI_MCR0_SWRST_MASK, flex->iobase + FLEXSPI_MCR0);

	/*
	 * The minimum delay : 1 AHB + 2 SFCK clocks.
	 * Delay 1 us is enough.
	 */
	while (readl(flex->iobase + FLEXSPI_MCR0) & FLEXSPI_MCR0_SWRST_MASK)
		;

}

static ssize_t fsl_flexspi_nor_write(struct fsl_flexspi *flex,
				     struct spi_nor *nor, u8 opcode,
				     unsigned int to, u32 *txbuf,
				     unsigned int count)
{
	int ret, i;
	int size;

	dev_dbg(flex->dev, "nor write to 0x%.8x:0x%.8x, len : %d\n",
		flex->chip_base_addr, to, count);

	/* clear the TX FIFO. */
	writel(FLEXSPI_IPTXFCR_CLR_MASK, flex->iobase + FLEXSPI_IPTXFCR);

	size = count / 8;
	for (i = 0; i < size; i++) {
		/* Wait for TXFIFO empty*/
		while (!(readl(flex->iobase + FLEXSPI_INTR)
			 & FLEXSPI_INTR_IPTXWE_MASK))
			;

		memcpy(flex->iobase + FLEXSPI_TFDR, txbuf, 8);
		txbuf += 2;
		writel(FLEXSPI_INTR_IPTXWE_MASK, flex->iobase + FLEXSPI_INTR);
	}

	size = count % 8;
	if (size) {
		/* Wait for TXFIFO empty*/
		while (!(readl(flex->iobase + FLEXSPI_INTR)
			 & FLEXSPI_INTR_IPTXWE_MASK))
			;

		memcpy(flex->iobase + FLEXSPI_TFDR, txbuf, size);
		writel(FLEXSPI_INTR_IPTXWE_MASK, flex->iobase + FLEXSPI_INTR);
	}

	/* Trigger it */
	ret = fsl_flexspi_runcmd(flex, opcode, to, count);

	if (ret == 0)
		return count;

	return ret;
}

static void fsl_flexspi_set_map_addr(struct fsl_flexspi *flex)
{
	int nor_size = flex->nor_size >> 10;
	void __iomem *base = flex->iobase;

	writel(nor_size, base + FLEXSPI_FLSHA1CR0);
	writel(nor_size * 2, base + FLEXSPI_FLSHA2CR0);
	writel(nor_size * 3, base + FLEXSPI_FLSHB1CR0);
	writel(nor_size * 4, base + FLEXSPI_FLSHB2CR0);
}

/*
 * There are two different ways to read out the data from the flash:
 *  the "IP Command Read" and the "AHB Command Read".
 *
 * The IC guy suggests we use the "AHB Command Read" which is faster
 * then the "IP Command Read". (What's more is that there is a bug in
 * the "IP Command Read" in the Vybrid.)
 *
 * After we set up the registers for the "AHB Command Read", we can use
 * the memcpy to read the data directly. A "missed" access to the buffer
 * causes the controller to clear the buffer, and use the sequence pointed
 * by the FLEXSPI_BFGENCR[SEQID] to initiate a read from the flash.
 */
static void fsl_flexspi_init_ahb_read(struct fsl_flexspi *flex)
{
	void __iomem *base = flex->iobase;
	struct spi_nor *nor = &flex->nor[0];
	int seqid;
	int i;

	/* AHB configuration for access buffer 0/1/2 .*/
	for (i = 0; i < 7; i++)
		writel(0, base + FLEXSPI_AHBRX_BUF0CR0 + 4 * i);
	/*
	 * Set ADATSZ with the maximum AHB buffer size to improve the
	 * read performance.
	 */
	writel((flex->devtype_data->ahb_buf_size / 8 |
		FLEXSPI_AHBRXBUF0CR7_PREF_MASK),
	       base + FLEXSPI_AHBRX_BUF7CR0);

	/* no start address alignment limitation */
	writel(FLEXSPI_AHBCR_RDADDROPT_MASK, base + FLEXSPI_AHBCR);

	/* Set the default lut sequence for AHB Read. */
	seqid = fsl_flexspi_get_seqid(flex, nor->read_opcode);

	writel(seqid, flex->iobase + FLEXSPI_FLSHA1CR2);
}

static void fsl_flexspi_ahb_pref_en(struct fsl_flexspi *flex)
{
	void __iomem *base = flex->iobase;
	u32 reg;

	reg = readl(base + FLEXSPI_AHBCR);
	writel(FLEXSPI_AHBCR_PREF_EN_MASK | reg, base + FLEXSPI_AHBCR);
}

/* This function was used to prepare and enable QSPI clock */
static int fsl_flexspi_clk_prep_enable(struct fsl_flexspi *flex)
{
	int ret;

	ret = clk_prepare_enable(flex->clk);
	if (ret) {
		dev_err(flex->dev, "failed to enable the clock\n");
		return ret;
	}

	return 0;
}

/* This function was used to disable and unprepare QSPI clock */
static void fsl_flexspi_clk_disable_unprep(struct fsl_flexspi *flex)
{
	clk_disable_unprepare(flex->clk);
}

static int fsl_flexspi_init_rpm(struct fsl_flexspi *flex)
{
	struct device *dev = flex->dev;

	pm_runtime_enable(dev);
	pm_runtime_set_autosuspend_delay(dev, FSL_FLEXSPI_RPM_TIMEOUT);
	pm_runtime_use_autosuspend(dev);

	return 0;
}

static void fsl_flexspi_config_dll(struct fsl_flexspi *flex, int rate)
{
	int tmp, dll;
	u32 reg;

	if (!fsl_flexspi_need_config_dll(flex))
		return;

	if (rate >= 100 * FREQ_1MHz) {
		writel(FLEXSPI_DLLACR_DLLEN_MASK | FLEXSPI_DLLACR_SLVDLYTGT_MASK,
			flex->iobase + FLEXSPI_DLLACR);
		writel(FLEXSPI_DLLBCR_DLLEN_MASK | FLEXSPI_DLLBCR_SLVDLYTGT_MASK,
			flex->iobase + FLEXSPI_DLLBCR);
	} else {
	/*
	 * If Serial root closk is lower than 100MHz, DLL is unable to lock on
	 * half cycle of serial root clock because the dealy cell number is limited
	 * in delay chain, Then DLL should be configured as following instead:
	 * OVRDEN = 0x01
	 * OVRDVAL=N; each dealy cell in DLL is about 75ps - 225ps.
	 * The delay of DLL delay chain ( N * delay_cell_delay) should be larger
	 * than device output data valid time (from SCK edge to data valid).
	 */

		/* 0.1 ns to ps */
		tmp = flex->devtype_data->dllvalue * 100;
		dll = tmp / FLEXSPI_DLL_MIN;

		if (dll >= FLEXSPI_DLLACR_OVRDVAL_MASK)
			dll = FLEXSPI_DLLACR_OVRDVAL_MASK;
		else if (dll * FLEXSPI_DLL_MIN < tmp)
			dll++;

	writel(FLEXSPI_DLLACR_OVRDEN_MASK | (dll << FLEXSPI_DLLACR_OVRDVAL_SHIFT) |
		FLEXSPI_DLLACR_DLLRST_MASK, flex->iobase + FLEXSPI_DLLACR);
	udelay(1);
	reg = readl(flex->iobase + FLEXSPI_DLLACR);
	writel(reg & ~FLEXSPI_DLLACR_DLLRST_MASK, flex->iobase + FLEXSPI_DLLACR);

	writel(FLEXSPI_DLLBCR_OVRDEN_MASK | (dll << FLEXSPI_DLLBCR_OVRDVAL_SHIFT) |
		FLEXSPI_DLLBCR_DLLRST_MASK, flex->iobase + FLEXSPI_DLLBCR);
	udelay(1);
	reg = readl(flex->iobase + FLEXSPI_DLLBCR);
	writel(reg & ~FLEXSPI_DLLBCR_DLLRST_MASK, flex->iobase + FLEXSPI_DLLBCR);
	}
}

/* We use this function to do some basic init for spi_nor_scan(). */
static int fsl_flexspi_nor_setup(struct fsl_flexspi *flex)
{
	void __iomem *base = flex->iobase;
	int ret;

	/* disable and unprepare clock to avoid glitch pass to controller */
	fsl_flexspi_clk_disable_unprep(flex);

	/* set rate to 24Mhz as safe clock rate to probe */
	ret = clk_set_rate(flex->clk, 24 * FREQ_1MHz);
	if (ret)
		return ret;

	ret = fsl_flexspi_clk_prep_enable(flex);
	if (ret)
		return ret;

	/* Reset the module */
	writel(FLEXSPI_MCR0_SWRST_MASK, base + FLEXSPI_MCR0);
	do {
		udelay(1);
	} while (0x1 & readl(base + FLEXSPI_MCR0));

	/* Disable the module */
	writel(FLEXSPI_MCR0_MDIS_MASK, base + FLEXSPI_MCR0);

	/* enable module */
	writel(FLEXSPI_MCR0_AHB_TIMEOUT_MASK | FLEXSPI_MCR0_IP_TIMEOUT_MASK |
	       FLEXSPI_MCR0_OCTCOMB_EN_MASK, base + FLEXSPI_MCR0);

	/* Reset the FLASHxCR2 */
	writel(0, base + FLEXSPI_FLSHA1CR2);
	writel(0, base + FLEXSPI_FLSHA2CR2);
	writel(0, base + FLEXSPI_FLSHB1CR2);
	writel(0, base + FLEXSPI_FLSHB2CR2);

	/* Init the LUT table. */
	fsl_flexspi_init_lut(flex);

	/* enable the interrupt */
	writel(FLEXSPI_INTEN_IPCMDDONE_MASK, flex->iobase + FLEXSPI_INTEN);

	return 0;
}

static int fsl_flexspi_nor_setup_last(struct fsl_flexspi *flex)
{
	unsigned long rate = flex->clk_rate;
	int ret;

	/* set to the assigned clock rate */
	fsl_flexspi_clk_disable_unprep(flex);

	/* clock limitation for i.MX8MM, no more than 160Mhz */
	if (fsl_flexspi_freq_limit(flex))
		rate = rate > 160 * FREQ_1MHz ? 160 * FREQ_1MHz : rate;

	ret = clk_set_rate(flex->clk, rate);
	if (ret)
		return ret;

	ret = fsl_flexspi_clk_prep_enable(flex);
	if (ret)
		return ret;

	/* setup the DLL value */
	fsl_flexspi_config_dll(flex, rate);

	/* Init the LUT table again. */
	fsl_flexspi_init_lut(flex);

	/* Init for AHB read */
	fsl_flexspi_init_ahb_read(flex);

	/* enable AHB prefetch */
	fsl_flexspi_ahb_pref_en(flex);

	return 0;
}

static void fsl_flexspi_set_base_addr(struct fsl_flexspi *flex,
				      struct spi_nor *nor)
{
	flex->chip_base_addr = flex->nor_size * (nor - flex->nor);
}

static int fsl_flexspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
				int len)
{
	int ret;
	struct fsl_flexspi *flex = nor->priv;

	ret = fsl_flexspi_runcmd(flex, opcode, 0, len);
	if (ret)
		return ret;

	fsl_flexspi_read_data(flex, len, buf);
	return 0;
}

static int fsl_flexspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
				 int len)
{
	struct fsl_flexspi *flex = nor->priv;
	int ret;

	if (!buf) {
		ret = fsl_flexspi_runcmd(flex, opcode, 0, 1);
		if (ret)
			return ret;

		if (opcode == SPINOR_OP_CHIP_ERASE)
			fsl_flexspi_invalid(flex);

	} else if (len > 0) {
		ret = fsl_flexspi_nor_write(flex, nor, opcode, 0,
					(u32 *)buf, len);
	} else {
		dev_err(flex->dev, "invalid cmd %d\n", opcode);
		ret = -EINVAL;
	}

	return ret;
}

static ssize_t fsl_flexspi_write(struct spi_nor *nor, loff_t to,
		size_t len, const u_char *buf)
{
	struct fsl_flexspi *flex = nor->priv;

	ssize_t ret = fsl_flexspi_nor_write(flex, nor, nor->program_opcode, to,
				(u32 *)buf, len);

	/* invalid the data in the AHB buffer. */
	fsl_flexspi_invalid(flex);
	return ret;
}

static ssize_t fsl_flexspi_read(struct spi_nor *nor, loff_t from,
		size_t len, u_char *buf)
{
	struct fsl_flexspi *flex = nor->priv;

	/* for read sfdp only */
	if (nor->read_opcode == SPINOR_OP_RDSFDP)
		fsl_flexspi_init_ahb_read(flex);

	/* if necessary,ioremap buffer before AHB read, */
	if (!flex->ahb_addr) {
		flex->memmap_offs = flex->chip_base_addr + from;
		flex->memmap_len = len > FLEXSPI_MIN_IOMAP ?
			len : FLEXSPI_MIN_IOMAP;

		flex->ahb_addr = ioremap_wc(
				flex->memmap_phy + flex->memmap_offs,
				flex->memmap_len);
		if (!flex->ahb_addr) {
			dev_err(flex->dev, "ioremap failed\n");
			return -ENOMEM;
		}
	/* ioremap if the data requested is out of range */
	} else if (flex->chip_base_addr + from < flex->memmap_offs
			|| flex->chip_base_addr + from + len >
			flex->memmap_offs + flex->memmap_len) {
		iounmap(flex->ahb_addr);

		flex->memmap_offs = flex->chip_base_addr + from;
		flex->memmap_len = len > FLEXSPI_MIN_IOMAP ?
			len : FLEXSPI_MIN_IOMAP;
		flex->ahb_addr = ioremap_wc(
				flex->memmap_phy + flex->memmap_offs,
				flex->memmap_len);
		if (!flex->ahb_addr) {
			dev_err(flex->dev, "ioremap failed\n");
			return -ENOMEM;
		}
	}

	memcpy(buf, flex->ahb_addr + flex->chip_base_addr + from
	       - flex->memmap_offs, len);

	return len;
}

static int fsl_flexspi_erase(struct spi_nor *nor, loff_t offs)
{
	struct fsl_flexspi *flex = nor->priv;
	int ret;

	dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
		nor->mtd.erasesize / 1024, flex->chip_base_addr, (u32)offs);

	ret = fsl_flexspi_runcmd(flex, nor->erase_opcode, offs, 0);
	if (ret)
		return ret;

	fsl_flexspi_invalid(flex);
	return 0;
}

static int fsl_flexspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	struct fsl_flexspi *flex = nor->priv;
	int ret;

	mutex_lock(&flex->lock);

	ret = pm_runtime_get_sync(flex->dev);
	if (ret < 0) {
		dev_err(flex->dev, "Failed to enable clock %d\n", __LINE__);
		goto err_mutex;
	}

	fsl_flexspi_set_base_addr(flex, nor);
	return 0;

err_mutex:
	mutex_unlock(&flex->lock);
	return ret;
}

static void fsl_flexspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	struct fsl_flexspi *flex = nor->priv;

	pm_runtime_mark_last_busy(flex->dev);
	pm_runtime_put_autosuspend(flex->dev);
	mutex_unlock(&flex->lock);
}

static const struct of_device_id fsl_flexspi_dt_ids[] = {
	{ .compatible = "fsl,imx8qm-flexspi", .data = (void *)&imx8qm_data, },
	{ .compatible = "fsl,imx8qxp-flexspi", .data = (void *)&imx8qxp_data, },
	{ .compatible = "fsl,imx8mm-flexspi", .data = (void *)&imx8mm_data, },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_flexspi_dt_ids);

static int fsl_flexspi_probe(struct platform_device *pdev)
{
	struct spi_nor_hwcaps hwcaps = {
		.mask = SNOR_HWCAPS_PP,
	};
	struct device_node *np = pdev->dev.of_node;
	struct device *dev = &pdev->dev;
	struct fsl_flexspi *flex;
	struct resource *res;
	struct spi_nor *nor;
	struct mtd_info *mtd;
	int ret, i = 0;

	const struct of_device_id *of_id =
			of_match_device(fsl_flexspi_dt_ids, &pdev->dev);

	flex = devm_kzalloc(dev, sizeof(*flex), GFP_KERNEL);
	if (!flex)
		return -ENOMEM;

	flex->nor_num = of_get_child_count(dev->of_node);
	if (!flex->nor_num || flex->nor_num > 4)
		return -ENODEV;

	flex->dev = dev;
	flex->devtype_data = (struct fsl_flexspi_devtype_data *)of_id->data;
	platform_set_drvdata(pdev, flex);
	dev_set_drvdata(dev, flex);

	/* find the resources */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "FlexSPI");
	if (!res) {
		dev_err(dev, "FlexSPI get resource IORESOURCE_MEM failed\n");
		return -ENODEV;
	}

	flex->iobase = devm_ioremap_resource(dev, res);
	if (IS_ERR(flex->iobase))
		return PTR_ERR(flex->iobase);

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
					"FlexSPI-memory");
	if (!res) {
		dev_err(dev,
			"FlexSPI-memory get resource IORESOURCE_MEM failed\n");
		return -ENODEV;
	}

	if (!devm_request_mem_region(dev, res->start, resource_size(res),
				     res->name)) {
		dev_err(dev, "can't request region for resource %pR\n", res);
		return -EBUSY;
	}

	flex->memmap_phy = res->start;

	/* find the clocks */
	flex->clk = devm_clk_get(dev, "fspi");
	if (IS_ERR(flex->clk))
		return PTR_ERR(flex->clk);

	/* find ddrsmp value */
	ret = of_property_read_u32(dev->of_node, "ddrsmp",
				&flex->ddr_smp);
	if (ret)
		flex->ddr_smp = 0;

	/* enable the rpm*/
	ret = fsl_flexspi_init_rpm(flex);
	if (ret) {
		dev_err(dev, "can not enable the clock\n");
		goto clk_failed;
	}

	/* find the irq */
	ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
		dev_err(dev, "failed to get the irq: %d\n", ret);
		goto rpm_failed;
	}

	ret = devm_request_irq(dev, ret,
			fsl_flexspi_irq_handler, 0, pdev->name, flex);
	if (ret) {
		dev_err(dev, "failed to request irq: %d\n", ret);
		goto rpm_failed;
	}

	/* enable the clock*/
	ret = pm_runtime_get_sync(flex->dev);
	if (ret < 0) {
		dev_err(flex->dev, "Failed to enable clock %d\n", __LINE__);
		goto rpm_failed;
	}


	ret = fsl_flexspi_nor_setup(flex);
	if (ret)
		goto rpm_failed;

	if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
		flex->has_second_chip = true;

	mutex_init(&flex->lock);

	/* iterate the subnodes. */
	for_each_available_child_of_node(dev->of_node, np) {
		u32 dummy = 0;

		/* skip the holes */
		if (!flex->has_second_chip)
			i *= 2;

		nor = &flex->nor[i];
		mtd = &nor->mtd;

		nor->dev = dev;
		spi_nor_set_flash_node(nor, np);
		nor->priv = flex;

		/* fill the hooks */
		nor->read_reg = fsl_flexspi_read_reg;
		nor->write_reg = fsl_flexspi_write_reg;
		nor->read = fsl_flexspi_read;
		nor->write = fsl_flexspi_write;
		nor->erase = fsl_flexspi_erase;

		nor->prepare = fsl_flexspi_prep;
		nor->unprepare = fsl_flexspi_unprep;

		ret = of_property_read_u32(np, "spi-max-frequency",
				&flex->clk_rate);
		if (ret < 0)
			goto mutex_failed;

		/* Can we enable the DDR Quad Read? */
		ret = of_property_read_u32(np, "spi-nor,ddr-quad-read-dummy",
					&dummy);
		if (!ret && dummy > 0)
			hwcaps.mask |= fsl_flexspi_quad_only(flex) ?
				    SNOR_HWCAPS_READ_1_4_4_DTR : SNOR_HWCAPS_READ_1_8_8_DTR;
		else
			hwcaps.mask |= SNOR_HWCAPS_READ;

		/* set the chip address for READID */
		fsl_flexspi_set_base_addr(flex, nor);


		ret = spi_nor_scan(nor, NULL, &hwcaps);
		if (ret)
			goto mutex_failed;

		ret = mtd_device_register(mtd, NULL, 0);
		if (ret)
			goto mutex_failed;

		/* Set the correct NOR size now. */
		if (flex->nor_size == 0) {
			flex->nor_size = mtd->size;

			/* Map the SPI NOR to accessiable address */
			fsl_flexspi_set_map_addr(flex);
		}

		/*
		 * The TX FIFO is 64 bytes in the Vybrid, but the Page Program
		 * may writes 265 bytes per time. The write is working in the
		 * unit of the TX FIFO, not in the unit of the SPI NOR's page
		 * size.
		 *
		 * So shrink the spi_nor->page_size if it is larger then the
		 * TX FIFO.
		 */
		if (nor->page_size > flex->devtype_data->txfifo)
			nor->page_size = flex->devtype_data->txfifo;

		i++;
	}

	/* finish the rest init. */
	ret = fsl_flexspi_nor_setup_last(flex);
	if (ret)
		goto last_init_failed;

	pm_runtime_mark_last_busy(flex->dev);
	pm_runtime_put_autosuspend(flex->dev);

	/* indicate the controller has been initialized */
	flex->flags |= FLEXSPI_INITILIZED;

	return 0;

last_init_failed:
	for (i = 0; i < flex->nor_num; i++) {
		/* skip the holes */
		if (!flex->has_second_chip)
			i *= 2;
		mtd_device_unregister(&flex->mtd[i]);
	}
mutex_failed:
	mutex_destroy(&flex->lock);
rpm_failed:
	pm_runtime_dont_use_autosuspend(flex->dev);
	pm_runtime_disable(flex->dev);
clk_failed:
	dev_err(dev, "Freescale FlexSPI probe failed\n");
	return ret;
}

static int fsl_flexspi_remove(struct platform_device *pdev)
{
	struct fsl_flexspi *flex = platform_get_drvdata(pdev);
	int i;

	for (i = 0; i < flex->nor_num; i++) {
		/* skip the holes */
		if (!flex->has_second_chip)
			i *= 2;
		mtd_device_unregister(&flex->nor[i].mtd);
	}

	/* disable the hardware */
	writel(FLEXSPI_MCR0_MDIS_MASK, flex->iobase + FLEXSPI_MCR0);

	pm_runtime_disable(flex->dev);

	mutex_destroy(&flex->lock);

	if (flex->ahb_addr)
		iounmap(flex->ahb_addr);

	return 0;
}

static int fsl_flexspi_initialized(struct fsl_flexspi *flex)
{
	return flex->flags & FLEXSPI_INITILIZED;
}

static int fsl_flexspi_need_reinit(struct fsl_flexspi *flex)
{
	/* we always use the controller in combination mode, so we check this */
	/* register bit to determine if the controller once lost power, such as */
	/* suspend/resume, and need to be re-init */

	return !(readl(flex->iobase + FLEXSPI_MCR0) & FLEXSPI_MCR0_OCTCOMB_EN_MASK);
}

int fsl_flexspi_runtime_suspend(struct device *dev)
{
	struct fsl_flexspi *flex = dev_get_drvdata(dev);

	fsl_flexspi_clk_disable_unprep(flex);

	return 0;
}

int fsl_flexspi_runtime_resume(struct device *dev)
{
	struct fsl_flexspi *flex = dev_get_drvdata(dev);

	fsl_flexspi_clk_prep_enable(flex);

	if (fsl_flexspi_initialized(flex) &&
			fsl_flexspi_need_reinit(flex)) {
		fsl_flexspi_nor_setup(flex);
		fsl_flexspi_set_map_addr(flex);
		fsl_flexspi_nor_setup_last(flex);
	}

	return 0;
}

static const struct dev_pm_ops fsl_flexspi_pm_ops = {
	SET_RUNTIME_PM_OPS(fsl_flexspi_runtime_suspend, fsl_flexspi_runtime_resume, NULL)
	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume)
};

static struct platform_driver fsl_flexspi_driver = {
	.driver = {
		.name	= "fsl-flexspi",
		.bus	= &platform_bus_type,
		.pm	= &fsl_flexspi_pm_ops,
		.of_match_table = fsl_flexspi_dt_ids,
	},
	.probe          = fsl_flexspi_probe,
	.remove		= fsl_flexspi_remove,
};
module_platform_driver(fsl_flexspi_driver);


MODULE_DESCRIPTION("Freescale FlexSPI Controller Driver");
MODULE_AUTHOR("Freescale Semiconductor Inc.");
MODULE_LICENSE("GPL v2");