1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
|
/*
* Freescale QuadSPI driver.
*
* Copyright (C) 2013 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/timer.h>
#include <linux/jiffies.h>
#include <linux/completion.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/spi-nor.h>
/* The registers */
#define QUADSPI_MCR 0x00
#define QUADSPI_MCR_RESERVED_SHIFT 16
#define QUADSPI_MCR_RESERVED_MASK (0xF << QUADSPI_MCR_RESERVED_SHIFT)
#define QUADSPI_MCR_MDIS_SHIFT 14
#define QUADSPI_MCR_MDIS_MASK (1 << QUADSPI_MCR_MDIS_SHIFT)
#define QUADSPI_MCR_CLR_TXF_SHIFT 11
#define QUADSPI_MCR_CLR_TXF_MASK (1 << QUADSPI_MCR_CLR_TXF_SHIFT)
#define QUADSPI_MCR_CLR_RXF_SHIFT 10
#define QUADSPI_MCR_CLR_RXF_MASK (1 << QUADSPI_MCR_CLR_RXF_SHIFT)
#define QUADSPI_MCR_DDR_EN_SHIFT 7
#define QUADSPI_MCR_DDR_EN_MASK (1 << QUADSPI_MCR_DDR_EN_SHIFT)
#define QUADSPI_MCR_END_CFG_SHIFT 2
#define QUADSPI_MCR_END_CFG_MASK (3 << QUADSPI_MCR_END_CFG_SHIFT)
#define QUADSPI_MCR_SWRSTHD_SHIFT 1
#define QUADSPI_MCR_SWRSTHD_MASK (1 << QUADSPI_MCR_SWRSTHD_SHIFT)
#define QUADSPI_MCR_SWRSTSD_SHIFT 0
#define QUADSPI_MCR_SWRSTSD_MASK (1 << QUADSPI_MCR_SWRSTSD_SHIFT)
#define QUADSPI_IPCR 0x08
#define QUADSPI_IPCR_SEQID_SHIFT 24
#define QUADSPI_IPCR_SEQID_MASK (0xF << QUADSPI_IPCR_SEQID_SHIFT)
#define QUADSPI_BUF0CR 0x10
#define QUADSPI_BUF1CR 0x14
#define QUADSPI_BUF2CR 0x18
#define QUADSPI_BUFXCR_INVALID_MSTRID 0xe
#define QUADSPI_BUF3CR 0x1c
#define QUADSPI_BUF3CR_ALLMST_SHIFT 31
#define QUADSPI_BUF3CR_ALLMST (1 << QUADSPI_BUF3CR_ALLMST_SHIFT)
#define QUADSPI_BFGENCR 0x20
#define QUADSPI_BFGENCR_PAR_EN_SHIFT 16
#define QUADSPI_BFGENCR_PAR_EN_MASK (1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
#define QUADSPI_BFGENCR_SEQID_SHIFT 12
#define QUADSPI_BFGENCR_SEQID_MASK (0xF << QUADSPI_BFGENCR_SEQID_SHIFT)
#define QUADSPI_BUF0IND 0x30
#define QUADSPI_BUF1IND 0x34
#define QUADSPI_BUF2IND 0x38
#define QUADSPI_SFAR 0x100
#define QUADSPI_SMPR 0x108
#define QUADSPI_SMPR_DDRSMP_SHIFT 16
#define QUADSPI_SMPR_DDRSMP_MASK (7 << QUADSPI_SMPR_DDRSMP_SHIFT)
#define QUADSPI_SMPR_FSDLY_SHIFT 6
#define QUADSPI_SMPR_FSDLY_MASK (1 << QUADSPI_SMPR_FSDLY_SHIFT)
#define QUADSPI_SMPR_FSPHS_SHIFT 5
#define QUADSPI_SMPR_FSPHS_MASK (1 << QUADSPI_SMPR_FSPHS_SHIFT)
#define QUADSPI_SMPR_HSENA_SHIFT 0
#define QUADSPI_SMPR_HSENA_MASK (1 << QUADSPI_SMPR_HSENA_SHIFT)
#define QUADSPI_RBSR 0x10c
#define QUADSPI_RBSR_RDBFL_SHIFT 8
#define QUADSPI_RBSR_RDBFL_MASK (0x3F << QUADSPI_RBSR_RDBFL_SHIFT)
#define QUADSPI_RBCT 0x110
#define QUADSPI_RBCT_WMRK_MASK 0x1F
#define QUADSPI_RBCT_RXBRD_SHIFT 8
#define QUADSPI_RBCT_RXBRD_USEIPS (0x1 << QUADSPI_RBCT_RXBRD_SHIFT)
#define QUADSPI_TBSR 0x150
#define QUADSPI_TBDR 0x154
#define QUADSPI_SR 0x15c
#define QUADSPI_SR_IP_ACC_SHIFT 1
#define QUADSPI_SR_IP_ACC_MASK (0x1 << QUADSPI_SR_IP_ACC_SHIFT)
#define QUADSPI_SR_AHB_ACC_SHIFT 2
#define QUADSPI_SR_AHB_ACC_MASK (0x1 << QUADSPI_SR_AHB_ACC_SHIFT)
#define QUADSPI_FR 0x160
#define QUADSPI_FR_TFF_MASK 0x1
#define QUADSPI_SFA1AD 0x180
#define QUADSPI_SFA2AD 0x184
#define QUADSPI_SFB1AD 0x188
#define QUADSPI_SFB2AD 0x18c
#define QUADSPI_RBDR 0x200
#define QUADSPI_LUTKEY 0x300
#define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
#define QUADSPI_LCKCR 0x304
#define QUADSPI_LCKER_LOCK 0x1
#define QUADSPI_LCKER_UNLOCK 0x2
#define QUADSPI_RSER 0x164
#define QUADSPI_RSER_TFIE (0x1 << 0)
#define QUADSPI_LUT_BASE 0x310
/*
* The definition of the LUT register shows below:
*
* ---------------------------------------------------
* | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
* ---------------------------------------------------
*/
#define OPRND0_SHIFT 0
#define PAD0_SHIFT 8
#define INSTR0_SHIFT 10
#define OPRND1_SHIFT 16
/* Instruction set for the LUT register. */
#define LUT_STOP 0
#define LUT_CMD 1
#define LUT_ADDR 2
#define LUT_DUMMY 3
#define LUT_MODE 4
#define LUT_MODE2 5
#define LUT_MODE4 6
#define LUT_READ 7
#define LUT_WRITE 8
#define LUT_JMP_ON_CS 9
#define LUT_ADDR_DDR 10
#define LUT_MODE_DDR 11
#define LUT_MODE2_DDR 12
#define LUT_MODE4_DDR 13
#define LUT_READ_DDR 14
#define LUT_WRITE_DDR 15
#define LUT_DATA_LEARN 16
/*
* The PAD definitions for LUT register.
*
* The pad stands for the lines number of IO[0:3].
* For example, the Quad read need four IO lines, so you should
* set LUT_PAD4 which means we use four IO lines.
*/
#define LUT_PAD1 0
#define LUT_PAD2 1
#define LUT_PAD4 2
/* Oprands for the LUT register. */
#define ADDR24BIT 0x18
#define ADDR32BIT 0x20
/* Macros for constructing the LUT register. */
#define LUT0(ins, pad, opr) \
(((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
((LUT_##ins) << INSTR0_SHIFT))
#define LUT1(ins, pad, opr) (LUT0(ins, pad, opr) << OPRND1_SHIFT)
/* other macros for LUT register. */
#define QUADSPI_LUT(x) (QUADSPI_LUT_BASE + (x) * 4)
#define QUADSPI_LUT_NUM 64
/* SEQID -- we can have 16 seqids at most. */
#define SEQID_QUAD_READ 0
#define SEQID_WREN 1
#define SEQID_WRDI 2
#define SEQID_RDSR 3
#define SEQID_SE 4
#define SEQID_CHIP_ERASE 5
#define SEQID_PP 6
#define SEQID_RDID 7
#define SEQID_WRSR 8
#define SEQID_RDCR 9
#define SEQID_EN4B 10
#define SEQID_BRWR 11
enum fsl_qspi_devtype {
FSL_QUADSPI_VYBRID,
FSL_QUADSPI_IMX6SX,
};
struct fsl_qspi_devtype_data {
enum fsl_qspi_devtype devtype;
int rxfifo;
int txfifo;
};
static struct fsl_qspi_devtype_data vybrid_data = {
.devtype = FSL_QUADSPI_VYBRID,
.rxfifo = 128,
.txfifo = 64
};
static struct fsl_qspi_devtype_data imx6sx_data = {
.devtype = FSL_QUADSPI_IMX6SX,
.rxfifo = 128,
.txfifo = 512
};
#define FSL_QSPI_MAX_CHIP 4
struct fsl_qspi {
struct mtd_info mtd[FSL_QSPI_MAX_CHIP];
struct spi_nor nor[FSL_QSPI_MAX_CHIP];
void __iomem *iobase;
void __iomem *ahb_base; /* Used when read from AHB bus */
u32 memmap_phy;
struct clk *clk, *clk_en;
struct device *dev;
struct completion c;
struct fsl_qspi_devtype_data *devtype_data;
u32 nor_size;
u32 nor_num;
u32 clk_rate;
unsigned int chip_base_addr; /* We may support two chips. */
bool has_second_chip;
};
static inline int is_vybrid_qspi(struct fsl_qspi *q)
{
return q->devtype_data->devtype == FSL_QUADSPI_VYBRID;
}
static inline int is_imx6sx_qspi(struct fsl_qspi *q)
{
return q->devtype_data->devtype == FSL_QUADSPI_IMX6SX;
}
/*
* An IC bug makes us to re-arrange the 32-bit data.
* The following chips, such as IMX6SLX, have fixed this bug.
*/
static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
{
return is_vybrid_qspi(q) ? __swab32(a) : a;
}
static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q)
{
writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
writel(QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
}
static inline void fsl_qspi_lock_lut(struct fsl_qspi *q)
{
writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
writel(QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
}
static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
{
struct fsl_qspi *q = dev_id;
u32 reg;
/* clear interrupt */
reg = readl(q->iobase + QUADSPI_FR);
writel(reg, q->iobase + QUADSPI_FR);
if (reg & QUADSPI_FR_TFF_MASK)
complete(&q->c);
dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg);
return IRQ_HANDLED;
}
static void fsl_qspi_init_lut(struct fsl_qspi *q)
{
void __iomem *base = q->iobase;
int rxfifo = q->devtype_data->rxfifo;
u32 lut_base;
u8 cmd, addrlen, dummy;
int i;
fsl_qspi_unlock_lut(q);
/* Clear all the LUT table */
for (i = 0; i < QUADSPI_LUT_NUM; i++)
writel(0, base + QUADSPI_LUT_BASE + i * 4);
/* Quad Read */
lut_base = SEQID_QUAD_READ * 4;
if (q->nor_size <= SZ_16M) {
cmd = SPINOR_OP_READ_1_1_4;
addrlen = ADDR24BIT;
dummy = 8;
} else {
/* use the 4-byte address */
cmd = SPINOR_OP_READ_1_1_4;
addrlen = ADDR32BIT;
dummy = 8;
}
writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
base + QUADSPI_LUT(lut_base));
writel(LUT0(DUMMY, PAD1, dummy) | LUT1(READ, PAD4, rxfifo),
base + QUADSPI_LUT(lut_base + 1));
/* Write enable */
lut_base = SEQID_WREN * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_WREN), base + QUADSPI_LUT(lut_base));
/* Page Program */
lut_base = SEQID_PP * 4;
if (q->nor_size <= SZ_16M) {
cmd = SPINOR_OP_PP;
addrlen = ADDR24BIT;
} else {
/* use the 4-byte address */
cmd = SPINOR_OP_PP;
addrlen = ADDR32BIT;
}
writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
base + QUADSPI_LUT(lut_base));
writel(LUT0(WRITE, PAD1, 0), base + QUADSPI_LUT(lut_base + 1));
/* Read Status */
lut_base = SEQID_RDSR * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_RDSR) | LUT1(READ, PAD1, 0x1),
base + QUADSPI_LUT(lut_base));
/* Erase a sector */
lut_base = SEQID_SE * 4;
if (q->nor_size <= SZ_16M) {
cmd = SPINOR_OP_SE;
addrlen = ADDR24BIT;
} else {
/* use the 4-byte address */
cmd = SPINOR_OP_SE;
addrlen = ADDR32BIT;
}
writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
base + QUADSPI_LUT(lut_base));
/* Erase the whole chip */
lut_base = SEQID_CHIP_ERASE * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
base + QUADSPI_LUT(lut_base));
/* READ ID */
lut_base = SEQID_RDID * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_RDID) | LUT1(READ, PAD1, 0x8),
base + QUADSPI_LUT(lut_base));
/* Write Register */
lut_base = SEQID_WRSR * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_WRSR) | LUT1(WRITE, PAD1, 0x2),
base + QUADSPI_LUT(lut_base));
/* Read Configuration Register */
lut_base = SEQID_RDCR * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_RDCR) | LUT1(READ, PAD1, 0x1),
base + QUADSPI_LUT(lut_base));
/* Write disable */
lut_base = SEQID_WRDI * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_WRDI), base + QUADSPI_LUT(lut_base));
/* Enter 4 Byte Mode (Micron) */
lut_base = SEQID_EN4B * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_EN4B), base + QUADSPI_LUT(lut_base));
/* Enter 4 Byte Mode (Spansion) */
lut_base = SEQID_BRWR * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_BRWR), base + QUADSPI_LUT(lut_base));
fsl_qspi_lock_lut(q);
}
/* Get the SEQID for the command */
static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd)
{
switch (cmd) {
case SPINOR_OP_READ_1_1_4:
return SEQID_QUAD_READ;
case SPINOR_OP_WREN:
return SEQID_WREN;
case SPINOR_OP_WRDI:
return SEQID_WRDI;
case SPINOR_OP_RDSR:
return SEQID_RDSR;
case SPINOR_OP_SE:
return SEQID_SE;
case SPINOR_OP_CHIP_ERASE:
return SEQID_CHIP_ERASE;
case SPINOR_OP_PP:
return SEQID_PP;
case SPINOR_OP_RDID:
return SEQID_RDID;
case SPINOR_OP_WRSR:
return SEQID_WRSR;
case SPINOR_OP_RDCR:
return SEQID_RDCR;
case SPINOR_OP_EN4B:
return SEQID_EN4B;
case SPINOR_OP_BRWR:
return SEQID_BRWR;
default:
dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd);
break;
}
return -EINVAL;
}
static int
fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
{
void __iomem *base = q->iobase;
int seqid;
u32 reg, reg2;
int err;
init_completion(&q->c);
dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
q->chip_base_addr, addr, len, cmd);
/* save the reg */
reg = readl(base + QUADSPI_MCR);
writel(q->memmap_phy + q->chip_base_addr + addr, base + QUADSPI_SFAR);
writel(QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
base + QUADSPI_RBCT);
writel(reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);
do {
reg2 = readl(base + QUADSPI_SR);
if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) {
udelay(1);
dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2);
continue;
}
break;
} while (1);
/* trigger the LUT now */
seqid = fsl_qspi_get_seqid(q, cmd);
writel((seqid << QUADSPI_IPCR_SEQID_SHIFT) | len, base + QUADSPI_IPCR);
/* Wait for the interrupt. */
err = wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000));
if (!err) {
dev_err(q->dev,
"cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
cmd, addr, readl(base + QUADSPI_FR),
readl(base + QUADSPI_SR));
err = -ETIMEDOUT;
} else {
err = 0;
}
/* restore the MCR */
writel(reg, base + QUADSPI_MCR);
return err;
}
/* Read out the data from the QUADSPI_RBDR buffer registers. */
static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf)
{
u32 tmp;
int i = 0;
while (len > 0) {
tmp = readl(q->iobase + QUADSPI_RBDR + i * 4);
tmp = fsl_qspi_endian_xchg(q, tmp);
dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n",
q->chip_base_addr, tmp);
if (len >= 4) {
*((u32 *)rxbuf) = tmp;
rxbuf += 4;
} else {
memcpy(rxbuf, &tmp, len);
break;
}
len -= 4;
i++;
}
}
/*
* If we have changed the content of the flash by writing or erasing,
* we need to invalidate the AHB buffer. If we do not do so, we may read out
* the wrong data. The spec tells us reset the AHB domain and Serial Flash
* domain at the same time.
*/
static inline void fsl_qspi_invalid(struct fsl_qspi *q)
{
u32 reg;
reg = readl(q->iobase + QUADSPI_MCR);
reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
writel(reg, q->iobase + QUADSPI_MCR);
/*
* The minimum delay : 1 AHB + 2 SFCK clocks.
* Delay 1 us is enough.
*/
udelay(1);
reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
writel(reg, q->iobase + QUADSPI_MCR);
}
static int fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor,
u8 opcode, unsigned int to, u32 *txbuf,
unsigned count, size_t *retlen)
{
int ret, i, j;
u32 tmp;
dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n",
q->chip_base_addr, to, count);
/* clear the TX FIFO. */
tmp = readl(q->iobase + QUADSPI_MCR);
writel(tmp | QUADSPI_MCR_CLR_RXF_MASK, q->iobase + QUADSPI_MCR);
/* fill the TX data to the FIFO */
for (j = 0, i = ((count + 3) / 4); j < i; j++) {
tmp = fsl_qspi_endian_xchg(q, *txbuf);
writel(tmp, q->iobase + QUADSPI_TBDR);
txbuf++;
}
/* Trigger it */
ret = fsl_qspi_runcmd(q, opcode, to, count);
if (ret == 0 && retlen)
*retlen += count;
return ret;
}
static void fsl_qspi_set_map_addr(struct fsl_qspi *q)
{
int nor_size = q->nor_size;
void __iomem *base = q->iobase;
writel(nor_size + q->memmap_phy, base + QUADSPI_SFA1AD);
writel(nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD);
writel(nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD);
writel(nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD);
}
/*
* There are two different ways to read out the data from the flash:
* the "IP Command Read" and the "AHB Command Read".
*
* The IC guy suggests we use the "AHB Command Read" which is faster
* then the "IP Command Read". (What's more is that there is a bug in
* the "IP Command Read" in the Vybrid.)
*
* After we set up the registers for the "AHB Command Read", we can use
* the memcpy to read the data directly. A "missed" access to the buffer
* causes the controller to clear the buffer, and use the sequence pointed
* by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
*/
static void fsl_qspi_init_abh_read(struct fsl_qspi *q)
{
void __iomem *base = q->iobase;
int seqid;
/* AHB configuration for access buffer 0/1/2 .*/
writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
writel(QUADSPI_BUF3CR_ALLMST, base + QUADSPI_BUF3CR);
/* We only use the buffer3 */
writel(0, base + QUADSPI_BUF0IND);
writel(0, base + QUADSPI_BUF1IND);
writel(0, base + QUADSPI_BUF2IND);
/* Set the default lut sequence for AHB Read. */
seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode);
writel(seqid << QUADSPI_BFGENCR_SEQID_SHIFT,
q->iobase + QUADSPI_BFGENCR);
}
/* We use this function to do some basic init for spi_nor_scan(). */
static int fsl_qspi_nor_setup(struct fsl_qspi *q)
{
void __iomem *base = q->iobase;
u32 reg;
int ret;
/* the default frequency, we will change it in the future.*/
ret = clk_set_rate(q->clk, 66000000);
if (ret)
return ret;
/* Init the LUT table. */
fsl_qspi_init_lut(q);
/* Disable the module */
writel(QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
base + QUADSPI_MCR);
reg = readl(base + QUADSPI_SMPR);
writel(reg & ~(QUADSPI_SMPR_FSDLY_MASK
| QUADSPI_SMPR_FSPHS_MASK
| QUADSPI_SMPR_HSENA_MASK
| QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
/* Enable the module */
writel(QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
base + QUADSPI_MCR);
/* enable the interrupt */
writel(QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
return 0;
}
static int fsl_qspi_nor_setup_last(struct fsl_qspi *q)
{
unsigned long rate = q->clk_rate;
int ret;
if (is_imx6sx_qspi(q))
rate *= 4;
ret = clk_set_rate(q->clk, rate);
if (ret)
return ret;
/* Init the LUT table again. */
fsl_qspi_init_lut(q);
/* Init for AHB read */
fsl_qspi_init_abh_read(q);
return 0;
}
static struct of_device_id fsl_qspi_dt_ids[] = {
{ .compatible = "fsl,vf610-qspi", .data = (void *)&vybrid_data, },
{ .compatible = "fsl,imx6sx-qspi", .data = (void *)&imx6sx_data, },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor)
{
q->chip_base_addr = q->nor_size * (nor - q->nor);
}
static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
int ret;
struct fsl_qspi *q = nor->priv;
ret = fsl_qspi_runcmd(q, opcode, 0, len);
if (ret)
return ret;
fsl_qspi_read_data(q, len, buf);
return 0;
}
static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len,
int write_enable)
{
struct fsl_qspi *q = nor->priv;
int ret;
if (!buf) {
ret = fsl_qspi_runcmd(q, opcode, 0, 1);
if (ret)
return ret;
if (opcode == SPINOR_OP_CHIP_ERASE)
fsl_qspi_invalid(q);
} else if (len > 0) {
ret = fsl_qspi_nor_write(q, nor, opcode, 0,
(u32 *)buf, len, NULL);
} else {
dev_err(q->dev, "invalid cmd %d\n", opcode);
ret = -EINVAL;
}
return ret;
}
static void fsl_qspi_write(struct spi_nor *nor, loff_t to,
size_t len, size_t *retlen, const u_char *buf)
{
struct fsl_qspi *q = nor->priv;
fsl_qspi_nor_write(q, nor, nor->program_opcode, to,
(u32 *)buf, len, retlen);
/* invalid the data in the AHB buffer. */
fsl_qspi_invalid(q);
}
static int fsl_qspi_read(struct spi_nor *nor, loff_t from,
size_t len, size_t *retlen, u_char *buf)
{
struct fsl_qspi *q = nor->priv;
u8 cmd = nor->read_opcode;
dev_dbg(q->dev, "cmd [%x],read from (0x%p, 0x%.8x, 0x%.8x),len:%d\n",
cmd, q->ahb_base, q->chip_base_addr, (unsigned int)from, len);
/* Read out the data directly from the AHB buffer.*/
memcpy(buf, q->ahb_base + q->chip_base_addr + from, len);
*retlen += len;
return 0;
}
static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs)
{
struct fsl_qspi *q = nor->priv;
int ret;
dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
nor->mtd->erasesize / 1024, q->chip_base_addr, (u32)offs);
ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0);
if (ret)
return ret;
fsl_qspi_invalid(q);
return 0;
}
static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
struct fsl_qspi *q = nor->priv;
int ret;
ret = clk_enable(q->clk_en);
if (ret)
return ret;
ret = clk_enable(q->clk);
if (ret) {
clk_disable(q->clk_en);
return ret;
}
fsl_qspi_set_base_addr(q, nor);
return 0;
}
static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
struct fsl_qspi *q = nor->priv;
clk_disable(q->clk);
clk_disable(q->clk_en);
}
static int fsl_qspi_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct mtd_part_parser_data ppdata;
struct device *dev = &pdev->dev;
struct fsl_qspi *q;
struct resource *res;
struct spi_nor *nor;
struct mtd_info *mtd;
int ret, i = 0;
const struct of_device_id *of_id =
of_match_device(fsl_qspi_dt_ids, &pdev->dev);
q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL);
if (!q)
return -ENOMEM;
q->nor_num = of_get_child_count(dev->of_node);
if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP)
return -ENODEV;
/* find the resources */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
q->iobase = devm_ioremap_resource(dev, res);
if (IS_ERR(q->iobase)) {
ret = PTR_ERR(q->iobase);
goto map_failed;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"QuadSPI-memory");
q->ahb_base = devm_ioremap_resource(dev, res);
if (IS_ERR(q->ahb_base)) {
ret = PTR_ERR(q->ahb_base);
goto map_failed;
}
q->memmap_phy = res->start;
/* find the clocks */
q->clk_en = devm_clk_get(dev, "qspi_en");
if (IS_ERR(q->clk_en)) {
ret = PTR_ERR(q->clk_en);
goto map_failed;
}
q->clk = devm_clk_get(dev, "qspi");
if (IS_ERR(q->clk)) {
ret = PTR_ERR(q->clk);
goto map_failed;
}
ret = clk_prepare_enable(q->clk_en);
if (ret) {
dev_err(dev, "can not enable the qspi_en clock\n");
goto map_failed;
}
ret = clk_prepare_enable(q->clk);
if (ret) {
dev_err(dev, "can not enable the qspi clock\n");
goto clk_failed;
}
/* find the irq */
ret = platform_get_irq(pdev, 0);
if (ret < 0) {
dev_err(dev, "failed to get the irq\n");
goto irq_failed;
}
ret = devm_request_irq(dev, ret,
fsl_qspi_irq_handler, 0, pdev->name, q);
if (ret) {
dev_err(dev, "failed to request irq.\n");
goto irq_failed;
}
q->dev = dev;
q->devtype_data = (struct fsl_qspi_devtype_data *)of_id->data;
platform_set_drvdata(pdev, q);
ret = fsl_qspi_nor_setup(q);
if (ret)
goto irq_failed;
if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
q->has_second_chip = true;
/* iterate the subnodes. */
for_each_available_child_of_node(dev->of_node, np) {
char modalias[40];
/* skip the holes */
if (!q->has_second_chip)
i *= 2;
nor = &q->nor[i];
mtd = &q->mtd[i];
nor->mtd = mtd;
nor->dev = dev;
nor->priv = q;
mtd->priv = nor;
/* fill the hooks */
nor->read_reg = fsl_qspi_read_reg;
nor->write_reg = fsl_qspi_write_reg;
nor->read = fsl_qspi_read;
nor->write = fsl_qspi_write;
nor->erase = fsl_qspi_erase;
nor->prepare = fsl_qspi_prep;
nor->unprepare = fsl_qspi_unprep;
ret = of_modalias_node(np, modalias, sizeof(modalias));
if (ret < 0)
goto irq_failed;
ret = of_property_read_u32(np, "spi-max-frequency",
&q->clk_rate);
if (ret < 0)
goto irq_failed;
/* set the chip address for READID */
fsl_qspi_set_base_addr(q, nor);
ret = spi_nor_scan(nor, modalias, SPI_NOR_QUAD);
if (ret)
goto irq_failed;
ppdata.of_node = np;
ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
if (ret)
goto irq_failed;
/* Set the correct NOR size now. */
if (q->nor_size == 0) {
q->nor_size = mtd->size;
/* Map the SPI NOR to accessiable address */
fsl_qspi_set_map_addr(q);
}
/*
* The TX FIFO is 64 bytes in the Vybrid, but the Page Program
* may writes 265 bytes per time. The write is working in the
* unit of the TX FIFO, not in the unit of the SPI NOR's page
* size.
*
* So shrink the spi_nor->page_size if it is larger then the
* TX FIFO.
*/
if (nor->page_size > q->devtype_data->txfifo)
nor->page_size = q->devtype_data->txfifo;
i++;
}
/* finish the rest init. */
ret = fsl_qspi_nor_setup_last(q);
if (ret)
goto last_init_failed;
clk_disable(q->clk);
clk_disable(q->clk_en);
dev_info(dev, "QuadSPI SPI NOR flash driver\n");
return 0;
last_init_failed:
for (i = 0; i < q->nor_num; i++) {
/* skip the holes */
if (!q->has_second_chip)
i *= 2;
mtd_device_unregister(&q->mtd[i]);
}
irq_failed:
clk_disable_unprepare(q->clk);
clk_failed:
clk_disable_unprepare(q->clk_en);
map_failed:
dev_err(dev, "Freescale QuadSPI probe failed\n");
return ret;
}
static int fsl_qspi_remove(struct platform_device *pdev)
{
struct fsl_qspi *q = platform_get_drvdata(pdev);
int i;
for (i = 0; i < q->nor_num; i++) {
/* skip the holes */
if (!q->has_second_chip)
i *= 2;
mtd_device_unregister(&q->mtd[i]);
}
/* disable the hardware */
writel(QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
writel(0x0, q->iobase + QUADSPI_RSER);
clk_unprepare(q->clk);
clk_unprepare(q->clk_en);
return 0;
}
static int fsl_qspi_suspend(struct platform_device *pdev, pm_message_t state)
{
return 0;
}
static int fsl_qspi_resume(struct platform_device *pdev)
{
struct fsl_qspi *q = platform_get_drvdata(pdev);
fsl_qspi_nor_setup(q);
fsl_qspi_set_map_addr(q);
fsl_qspi_nor_setup_last(q);
return 0;
}
static struct platform_driver fsl_qspi_driver = {
.driver = {
.name = "fsl-quadspi",
.bus = &platform_bus_type,
.of_match_table = fsl_qspi_dt_ids,
},
.probe = fsl_qspi_probe,
.remove = fsl_qspi_remove,
.suspend = fsl_qspi_suspend,
.resume = fsl_qspi_resume,
};
module_platform_driver(fsl_qspi_driver);
MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
MODULE_AUTHOR("Freescale Semiconductor Inc.");
MODULE_LICENSE("GPL v2");
|