1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
|
/*
* Copyright (C) 2004-2010 Freescale Semiconductor, Inc. All Rights Reserved.
*/
/*
* The code contained herein is licensed under the GNU General Public
* License. You may obtain a copy of the GNU General Public License
* Version 2 or later at the following locations:
*
* http://www.opensource.org/licenses/gpl-license.html
* http://www.gnu.org/copyleft/gpl.html
*/
/*! @file scc2_driver.c
*
* This is the driver code for the Security Controller version 2 (SCC2). It's
* interaction with the Linux kernel is from calls to #scc_init() when the
* driver is loaded, and #scc_cleanup() should the driver be unloaded. The
* driver uses locking and (task-sleep/task-wakeup) functions from the kernel.
* It also registers itself to handle the interrupt line(s) from the SCC. New
* to this version of the driver is an interface providing access to the secure
* partitions. This is in turn exposed to the API user through the
* fsl_shw_smalloc() series of functions. Other drivers in the kernel may use
* the remaining API functions to get at the services of the SCC. The main
* service provided is the Secure Memory, which allows encoding and decoding of
* secrets with a per-chip secret key.
*
* The SCC is single-threaded, and so is this module. When the scc_crypt()
* routine is called, it will lock out other accesses to the function. If
* another task is already in the module, the subsequent caller will spin on a
* lock waiting for the other access to finish.
*
* Note that long crypto operations could cause a task to spin for a while,
* preventing other kernel work (other than interrupt processing) to get done.
*
* The external (kernel module) interface is through the following functions:
* @li scc_get_configuration() @li scc_crypt() @li scc_zeroize_memories() @li
* scc_monitor_security_failure() @li scc_stop_monitoring_security_failure()
* @li scc_set_sw_alarm() @li scc_read_register() @li scc_write_register() @li
* scc_allocate_partition() @li scc_initialize_partition @li
* scc_release_partition() @li scc_diminish_permissions @li
* scc_encrypt_region() @li scc_decrypt_region() @li scc_virt_to_phys
*
* All other functions are internal to the driver.
*/
#include "sahara2/include/portable_os.h"
#include "scc2_internals.h"
#include <linux/delay.h>
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,18))
#include <linux/device.h>
#include <mach/clock.h>
#include <linux/device.h>
#else
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/err.h>
#endif
#include <linux/dmapool.h>
/**
* This is the set of errors which signal that access to the SCM RAM has
* failed or will fail.
*/
#define SCM_ACCESS_ERRORS \
(SCM_ERRSTAT_ILM | SCM_ERRSTAT_SUP | SCM_ERRSTAT_ERC_MASK)
/******************************************************************************
*
* Global / Static Variables
*
*****************************************************************************/
#ifdef SCC_REGISTER_DEBUG
#define REG_PRINT_BUFFER_SIZE 200
static char reg_print_buffer[REG_PRINT_BUFFER_SIZE];
typedef char *(*reg_print_routine_t) (uint32_t value, char *print_buffer,
int buf_size);
#endif
/**
* This is type void* so that a) it cannot directly be dereferenced,
* and b) pointer arithmetic on it will function in a 'normal way' for
* the offsets in scc_defines.h
*
* scc_base is the location in the iomap where the SCC's registers
* (and memory) start.
*
* The referenced data is declared volatile so that the compiler will
* not make any assumptions about the value of registers in the SCC,
* and thus will always reload the register into CPU memory before
* using it (i.e. wherever it is referenced in the driver).
*
* This value should only be referenced by the #SCC_READ_REGISTER and
* #SCC_WRITE_REGISTER macros and their ilk. All dereferences must be
* 32 bits wide.
*/
static volatile void *scc_base;
uint32_t scc_phys_base;
/** Array to hold function pointers registered by
#scc_monitor_security_failure() and processed by
#scc_perform_callbacks() */
static void (*scc_callbacks[SCC_CALLBACK_SIZE]) (void);
/*SCC need IRAM's base address but use only the partitions allocated for it.*/
uint32_t scm_ram_phys_base;
void *scm_ram_base = NULL;
/** Calculated once for quick reference to size of the unreserved space in
* RAM in SCM.
*/
uint32_t scm_memory_size_bytes;
/** Structure returned by #scc_get_configuration() */
static scc_config_t scc_configuration = {
.driver_major_version = SCC_DRIVER_MAJOR_VERSION,
.driver_minor_version = SCC_DRIVER_MINOR_VERSION_2,
.scm_version = -1,
.smn_version = -1,
.block_size_bytes = -1,
.partition_size_bytes = -1,
.partition_count = -1,
};
/** Internal flag to know whether SCC is in Failed state (and thus many
* registers are unavailable). Once it goes failed, it never leaves it. */
static volatile enum scc_status scc_availability = SCC_STATUS_INITIAL;
/** Flag to say whether interrupt handler has been registered for
* SMN interrupt */
static int smn_irq_set = 0;
/** Flag to say whether interrupt handler has been registered for
* SCM interrupt */
static int scm_irq_set = 0;
/** This lock protects the #scc_callbacks list as well as the @c
* callbacks_performed flag in #scc_perform_callbacks. Since the data this
* protects may be read or written from either interrupt or base level, all
* operations should use the irqsave/irqrestore or similar to make sure that
* interrupts are inhibited when locking from base level.
*/
static os_lock_t scc_callbacks_lock = NULL;
/**
* Ownership of this lock prevents conflicts on the crypto operation in the
* SCC.
*/
static os_lock_t scc_crypto_lock = NULL;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,18))
/** Pointer to SCC's clock information. Initialized during scc_init(). */
static struct clk *scc_clk = NULL;
#endif
/** The lookup table for an 8-bit value. Calculated once
* by #scc_init_ccitt_crc().
*/
static uint16_t scc_crc_lookup_table[256];
/******************************************************************************
*
* Function Implementations - Externally Accessible
*
*****************************************************************************/
/**
* Allocate a partition of secure memory
*
* @param smid_value Value to use for the SMID register. Must be 0 for
* kernel mode access.
* @param[out] part_no (If successful) Assigned partition number.
* @param[out] part_base Kernel virtual address of the partition.
* @param[out] part_phys Physical address of the partition.
*
* @return
*/
scc_return_t scc_allocate_partition(uint32_t smid_value,
int *part_no,
void **part_base, uint32_t *part_phys)
{
uint32_t i;
os_lock_context_t irq_flags = 0; /* for IRQ save/restore */
int local_part;
scc_return_t retval = SCC_RET_FAIL;
void *base_addr = NULL;
uint32_t reg_value;
local_part = -1;
if (scc_availability == SCC_STATUS_INITIAL) {
scc_init();
}
if (scc_availability == SCC_STATUS_UNIMPLEMENTED) {
goto out;
}
/* ACQUIRE LOCK to prevent others from using crypto or acquiring a
* partition. Note that crypto operations could take a long time, so the
* calling process could potentially spin for some time.
*/
os_lock_save_context(scc_crypto_lock, irq_flags);
do {
/* Find current state of partition ownership */
reg_value = SCC_READ_REGISTER(SCM_PART_OWNERS_REG);
/* Search for a free one */
for (i = 0; i < scc_configuration.partition_count; i++) {
if (((reg_value >> (SCM_POWN_SHIFT * i))
& SCM_POWN_MASK) == SCM_POWN_PART_FREE) {
break; /* found a free one */
}
}
if (i == local_part) {
/* found this one last time, and failed to allocated it */
pr_debug(KERN_ERR "Partition %d cannot be allocated\n",
i);
goto out;
}
if (i >= scc_configuration.partition_count) {
retval = SCC_RET_INSUFFICIENT_SPACE; /* all used up */
goto out;
}
pr_debug
("SCC2: Attempting to allocate partition %i, owners:%08x\n",
i, SCC_READ_REGISTER(SCM_PART_OWNERS_REG));
local_part = i;
/* Store SMID to grab a partition */
SCC_WRITE_REGISTER(SCM_SMID0_REG +
SCM_SMID_WIDTH * (local_part), smid_value);
mdelay(2);
/* Now make sure it is ours... ? */
reg_value = SCC_READ_REGISTER(SCM_PART_OWNERS_REG);
if (((reg_value >> (SCM_POWN_SHIFT * (local_part)))
& SCM_POWN_MASK) != SCM_POWN_PART_OWNED) {
continue; /* try for another */
}
base_addr = scm_ram_base +
(local_part * scc_configuration.partition_size_bytes);
break;
} while (1);
out:
/* Free the lock */
os_unlock_restore_context(scc_callbacks_lock, irq_flags);
/* If the base address was assigned, then a partition was successfully
* acquired.
*/
if (base_addr != NULL) {
pr_debug("SCC2 Part owners: %08x, engaged: %08x\n",
reg_value, SCC_READ_REGISTER(SCM_PART_ENGAGED_REG));
pr_debug("SCC2 MAP for part %d: %08x\n",
local_part,
SCC_READ_REGISTER(SCM_ACC0_REG + 8 * local_part));
/* Copy the partition information to the data structures passed by the
* user.
*/
*part_no = local_part;
*part_base = base_addr;
*part_phys = (uint32_t) scm_ram_phys_base
+ (local_part * scc_configuration.partition_size_bytes);
retval = SCC_RET_OK;
pr_debug
("SCC2 partition engaged. Kernel address: %p. Physical "
"address: %p, pfn: %08x\n", *part_base, (void *)*part_phys,
__phys_to_pfn(*part_phys));
}
return retval;
} /* allocate_partition() */
/**
* Release a partition of secure memory
*
* @param part_base Kernel virtual address of the partition to be released.
*
* @return SCC_RET_OK if successful.
*/
scc_return_t scc_release_partition(void *part_base)
{
uint32_t partition_no;
if (part_base == NULL) {
return SCC_RET_FAIL;
}
/* Ensure that this is a proper partition location */
partition_no = SCM_PART_NUMBER((uint32_t) part_base);
pr_debug("SCC2: Attempting to release partition %i, owners:%08x\n",
partition_no, SCC_READ_REGISTER(SCM_PART_OWNERS_REG));
/* check that the partition is ours to de-establish */
if (!host_owns_partition(partition_no)) {
return SCC_RET_FAIL;
}
/* TODO: The state of the zeroize engine (SRS field in the Command Status
* Register) should be examined before issuing the zeroize command here.
* To make the driver thread-safe, a lock should be taken out before
* issuing the check and released after the zeroize command has been
* issued.
*/
/* Zero the partition to release it */
scc_write_register(SCM_ZCMD_REG,
(partition_no << SCM_ZCMD_PART_SHIFT) |
(ZCMD_DEALLOC_PART << SCM_ZCMD_CCMD_SHIFT));
mdelay(2);
pr_debug("SCC2: done releasing partition %i, owners:%08x\n",
partition_no, SCC_READ_REGISTER(SCM_PART_OWNERS_REG));
/* Check that the de-assignment went correctly */
if (host_owns_partition(partition_no)) {
return SCC_RET_FAIL;
}
return SCC_RET_OK;
}
/**
* Diminish the permissions on a partition of secure memory
*
* @param part_base Kernel virtual address of the partition.
* @param permissions ORed values of the type SCM_PERM_* which will be used as
* initial partition permissions. SHW API users should use
* the FSL_PERM_* definitions instead.
*
* @return SCC_RET_OK if successful.
*/
scc_return_t scc_diminish_permissions(void *part_base, uint32_t permissions)
{
uint32_t partition_no;
uint32_t permissions_requested;
permissions_requested = permissions;
/* ensure that this is a proper partition location */
partition_no = SCM_PART_NUMBER((uint32_t) part_base);
/* invert the permissions, masking out unused bits */
permissions = (~permissions) & SCM_PERM_MASK;
/* attempt to diminish the permissions */
scc_write_register(SCM_ACC0_REG + 8 * partition_no, permissions);
mdelay(2);
/* Reading it back puts it into the original form */
permissions = SCC_READ_REGISTER(SCM_ACC0_REG + 8 * partition_no);
if (permissions == permissions_requested) {
pr_debug("scc_partition_diminish_perms: successful\n");
pr_debug("scc_partition_diminish_perms: successful\n");
return SCC_RET_OK;
}
pr_debug("scc_partition_diminish_perms: not successful\n");
return SCC_RET_FAIL;
}
extern scc_partition_status_t scc_partition_status(void *part_base)
{
uint32_t part_no;
uint32_t part_owner;
/* Determine the partition number from the address */
part_no = SCM_PART_NUMBER((uint32_t) part_base);
/* Check if the partition is implemented */
if (part_no >= scc_configuration.partition_count) {
return SCC_PART_S_UNUSABLE;
}
/* Determine the value of the partition owners register */
part_owner = (SCC_READ_REGISTER(SCM_PART_OWNERS_REG)
>> (part_no * SCM_POWN_SHIFT)) & SCM_POWN_MASK;
switch (part_owner) {
case SCM_POWN_PART_OTHER:
return SCC_PART_S_UNAVAILABLE;
break;
case SCM_POWN_PART_FREE:
return SCC_PART_S_AVAILABLE;
break;
case SCM_POWN_PART_OWNED:
/* could be allocated or engaged*/
if (partition_engaged(part_no)) {
return SCC_PART_S_ENGAGED;
} else {
return SCC_PART_S_ALLOCATED;
}
break;
case SCM_POWN_PART_UNUSABLE:
default:
return SCC_PART_S_UNUSABLE;
break;
}
}
EXPORT_SYMBOL(scc_partition_status);
/**
* Calculate the physical address from the kernel virtual address.
*
* @param address Kernel virtual address of data in an Secure Partition.
* @return Physical address of said data.
*/
uint32_t scc_virt_to_phys(void *address)
{
return (uint32_t) address - (uint32_t) scm_ram_base
+ (uint32_t) scm_ram_phys_base;
}
EXPORT_SYMBOL(scc_virt_to_phys);
/**
* Engage partition of secure memory
*
* @param part_base (kernel) Virtual
* @param UMID NULL, or 16-byte UMID for partition security
* @param permissions ORed values from fsl_shw_permission_t which
* will be used as initial partiition permissions.
*
* @return SCC_RET_OK if successful.
*/
scc_return_t
scc_engage_partition(void *part_base,
const uint8_t *UMID, uint32_t permissions)
{
uint32_t partition_no;
uint8_t *UMID_base = part_base + 0x10;
uint32_t *MAP_base = part_base;
uint8_t i;
partition_no = SCM_PART_NUMBER((uint32_t) part_base);
if (!host_owns_partition(partition_no) ||
partition_engaged(partition_no) ||
!(SCC_READ_REGISTER(SCM_SMID0_REG + (partition_no * 8)) == 0)) {
return SCC_RET_FAIL;
}
if (UMID != NULL) {
for (i = 0; i < 16; i++) {
UMID_base[i] = UMID[i];
}
}
MAP_base[0] = permissions;
udelay(20);
/* Check that the partition was engaged correctly, and that it has the
* proper permissions.
*/
if ((!partition_engaged(partition_no)) ||
(permissions !=
SCC_READ_REGISTER(SCM_ACC0_REG + 8 * partition_no))) {
return SCC_RET_FAIL;
}
return SCC_RET_OK;
}
/*****************************************************************************/
/* fn scc_init() */
/*****************************************************************************/
/**
* Initialize the driver at boot time or module load time.
*
* Register with the kernel as the interrupt handler for the SCC interrupt
* line(s).
*
* Map the SCC's register space into the driver's memory space.
*
* Query the SCC for its configuration and status. Save the configuration in
* #scc_configuration and save the status in #scc_availability. Called by the
* kernel.
*
* Do any locking/wait queue initialization which may be necessary.
*
* The availability fuse may be checked, depending on platform.
*/
static int scc_init(void)
{
uint32_t smn_status;
int i;
int return_value = -EIO; /* assume error */
if (scc_availability == SCC_STATUS_INITIAL) {
/* Set this until we get an initial reading */
scc_availability = SCC_STATUS_CHECKING;
/* Initialize the constant for the CRC function */
scc_init_ccitt_crc();
/* initialize the callback table */
for (i = 0; i < SCC_CALLBACK_SIZE; i++) {
scc_callbacks[i] = 0;
}
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,18))
mxc_clks_enable(SCC_CLK);
#else
scc_clk = clk_get(NULL, "scc_clk");
if (scc_clk != ERR_PTR(ENOENT)) {
clk_enable(scc_clk);
}
#endif
/* Set up the hardware access locks */
scc_callbacks_lock = os_lock_alloc_init();
scc_crypto_lock = os_lock_alloc_init();
if (scc_callbacks_lock == NULL || scc_crypto_lock == NULL) {
os_printk(KERN_ERR
"SCC2: Failed to allocate context locks. Exiting.\n");
goto out;
}
/* See whether there is an SCC available */
if (0 && !SCC_ENABLED()) {
os_printk(KERN_ERR
"SCC2: Fuse for SCC is set to disabled. Exiting.\n");
goto out;
}
/* Map the SCC (SCM and SMN) memory on the internal bus into
kernel address space */
scc_base = (void *)ioremap(scc_phys_base, SZ_4K);
if (scc_base == NULL) {
os_printk(KERN_ERR
"SCC2: Register mapping failed. Exiting.\n");
goto out;
}
/* If that worked, we can try to use the SCC */
/* Get SCM into 'clean' condition w/interrupts cleared &
disabled */
SCC_WRITE_REGISTER(SCM_INT_CTL_REG, 0);
/* Clear error status register */
(void)SCC_READ_REGISTER(SCM_ERR_STATUS_REG);
/*
* There is an SCC. Determine its current state. Side effect
* is to populate scc_config and scc_availability
*/
smn_status = scc_grab_config_values();
/* Try to set up interrupt handler(s) */
if (scc_availability != SCC_STATUS_OK) {
goto out;
}
if (cpu_is_mx51_rev(CHIP_REV_2_0) < 0)
scm_ram_phys_base += 0x8000;
scm_ram_base = (void *)ioremap_nocache(scm_ram_phys_base,
scc_configuration.
partition_count *
scc_configuration.
partition_size_bytes);
if (scm_ram_base == NULL) {
os_printk(KERN_ERR
"SCC2: RAM failed to remap: %p for %d bytes\n",
(void *)scm_ram_phys_base,
scc_configuration.partition_count *
scc_configuration.partition_size_bytes);
goto out;
}
pr_debug("SCC2: RAM at Physical %p / Virtual %p\n",
(void *)scm_ram_phys_base, scm_ram_base);
pr_debug("Secure Partition Table: Found %i partitions\n",
scc_configuration.partition_count);
if (setup_interrupt_handling() != 0) {
unsigned err_cond;
/**
* The error could be only that the SCM interrupt was
* not set up. This interrupt is always masked, so
* that is not an issue.
* The SMN's interrupt may be shared on that line, it
* may be separate, or it may not be wired. Do what
* is necessary to check its status.
* Although the driver is coded for possibility of not
* having SMN interrupt, the fact that there is one
* means it should be available and used.
*/
#ifdef USE_SMN_INTERRUPT
err_cond = !smn_irq_set; /* Separate. Check SMN binding */
#elif !defined(NO_SMN_INTERRUPT)
err_cond = !scm_irq_set; /* Shared. Check SCM binding */
#else
err_cond = FALSE; /* SMN not wired at all. Ignore. */
#endif
if (err_cond) {
/* setup was not able to set up SMN interrupt */
scc_availability = SCC_STATUS_UNIMPLEMENTED;
goto out;
}
}
/* interrupt handling returned non-zero */
/* Get SMN into 'clean' condition w/interrupts cleared &
enabled */
SCC_WRITE_REGISTER(SMN_COMMAND_REG,
SMN_COMMAND_CLEAR_INTERRUPT
| SMN_COMMAND_ENABLE_INTERRUPT);
out:
/*
* If status is SCC_STATUS_UNIMPLEMENTED or is still
* SCC_STATUS_CHECKING, could be leaving here with the driver partially
* initialized. In either case, cleanup (which will mark the SCC as
* UNIMPLEMENTED).
*/
if (scc_availability == SCC_STATUS_CHECKING ||
scc_availability == SCC_STATUS_UNIMPLEMENTED) {
scc_cleanup();
} else {
return_value = 0; /* All is well */
}
}
/* ! STATUS_INITIAL */
os_printk(KERN_ALERT "SCC2: Driver Status is %s\n",
(scc_availability == SCC_STATUS_INITIAL) ? "INITIAL" :
(scc_availability == SCC_STATUS_CHECKING) ? "CHECKING" :
(scc_availability ==
SCC_STATUS_UNIMPLEMENTED) ? "UNIMPLEMENTED"
: (scc_availability ==
SCC_STATUS_OK) ? "OK" : (scc_availability ==
SCC_STATUS_FAILED) ? "FAILED" :
"UNKNOWN");
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 18))
mxc_clks_disable(SCC_CLK);
#else
if (scc_clk != ERR_PTR(ENOENT))
clk_disable(scc_clk);
#endif
return return_value;
} /* scc_init */
/*****************************************************************************/
/* fn scc_cleanup() */
/*****************************************************************************/
/**
* Perform cleanup before driver/module is unloaded by setting the machine
* state close to what it was when the driver was loaded. This function is
* called when the kernel is shutting down or when this driver is being
* unloaded.
*
* A driver like this should probably never be unloaded, especially if there
* are other module relying upon the callback feature for monitoring the SCC
* status.
*
* In any case, cleanup the callback table (by clearing out all of the
* pointers). Deregister the interrupt handler(s). Unmap SCC registers.
*
* Note that this will not release any partitions that have been allocated.
*
*/
static void scc_cleanup(void)
{
int i;
/******************************************************/
/* Mark the driver / SCC as unusable. */
scc_availability = SCC_STATUS_UNIMPLEMENTED;
/* Clear out callback table */
for (i = 0; i < SCC_CALLBACK_SIZE; i++) {
scc_callbacks[i] = 0;
}
/* If SCC has been mapped in, clean it up and unmap it */
if (scc_base) {
/* For the SCM, disable interrupts. */
SCC_WRITE_REGISTER(SCM_INT_CTL_REG, 0);
/* For the SMN, clear and disable interrupts */
SCC_WRITE_REGISTER(SMN_COMMAND_REG,
SMN_COMMAND_CLEAR_INTERRUPT);
}
/* Now that interrupts cannot occur, disassociate driver from the interrupt
* lines.
*/
/* Deregister SCM interrupt handler */
if (scm_irq_set) {
os_deregister_interrupt(INT_SCC_SCM);
}
/* Deregister SMN interrupt handler */
if (smn_irq_set) {
#ifdef USE_SMN_INTERRUPT
os_deregister_interrupt(INT_SCC_SMN);
#endif
}
/* Finally, release the mapped memory */
iounmap(scm_ram_base);
if (scc_callbacks_lock != NULL)
os_lock_deallocate(scc_callbacks_lock);
if (scc_crypto_lock != NULL)
os_lock_deallocate(scc_crypto_lock);
/*Disabling SCC Clock*/
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 18))
mxc_clks_disable(SCC_CLK);
#else
if (scc_clk != ERR_PTR(ENOENT))
clk_disable(scc_clk);
clk_put(scc_clk);
#endif
pr_debug("SCC2 driver cleaned up.\n");
} /* scc_cleanup */
/*****************************************************************************/
/* fn scc_get_configuration() */
/*****************************************************************************/
scc_config_t *scc_get_configuration(void)
{
/*
* If some other driver calls scc before the kernel does, make sure that
* this driver's initialization is performed.
*/
if (scc_availability == SCC_STATUS_INITIAL) {
scc_init();
}
/**
* If there is no SCC, yet the driver exists, the value -1 will be in
* the #scc_config_t fields for other than the driver versions.
*/
return &scc_configuration;
} /* scc_get_configuration */
/*****************************************************************************/
/* fn scc_zeroize_memories() */
/*****************************************************************************/
scc_return_t scc_zeroize_memories(void)
{
scc_return_t return_status = SCC_RET_FAIL;
return return_status;
} /* scc_zeroize_memories */
/*****************************************************************************/
/* fn scc_set_sw_alarm() */
/*****************************************************************************/
void scc_set_sw_alarm(void)
{
if (scc_availability == SCC_STATUS_INITIAL) {
scc_init();
}
/* Update scc_availability based on current SMN status. This might
* perform callbacks.
*/
(void)scc_update_state();
/* if everything is OK, make it fail */
if (scc_availability == SCC_STATUS_OK) {
/* sound the alarm (and disable SMN interrupts */
SCC_WRITE_REGISTER(SMN_COMMAND_REG,
SMN_COMMAND_SET_SOFTWARE_ALARM);
scc_availability = SCC_STATUS_FAILED; /* Remember what we've done */
/* In case SMN interrupt is not available, tell the world */
scc_perform_callbacks();
}
return;
} /* scc_set_sw_alarm */
/*****************************************************************************/
/* fn scc_monitor_security_failure() */
/*****************************************************************************/
scc_return_t scc_monitor_security_failure(void callback_func(void))
{
int i;
os_lock_context_t irq_flags; /* for IRQ save/restore */
scc_return_t return_status = SCC_RET_TOO_MANY_FUNCTIONS;
int function_stored = FALSE;
if (scc_availability == SCC_STATUS_INITIAL) {
scc_init();
}
/* Acquire lock of callbacks table. Could be spin_lock_irq() if this
* routine were just called from base (not interrupt) level
*/
os_lock_save_context(scc_callbacks_lock, irq_flags);
/* Search through table looking for empty slot */
for (i = 0; i < SCC_CALLBACK_SIZE; i++) {
if (scc_callbacks[i] == callback_func) {
if (function_stored) {
/* Saved duplicate earlier. Clear this later one. */
scc_callbacks[i] = NULL;
}
/* Exactly one copy is now stored */
return_status = SCC_RET_OK;
break;
} else if (scc_callbacks[i] == NULL && !function_stored) {
/* Found open slot. Save it and remember */
scc_callbacks[i] = callback_func;
return_status = SCC_RET_OK;
function_stored = TRUE;
}
}
/* Free the lock */
os_unlock_restore_context(scc_callbacks_lock, irq_flags);
return return_status;
} /* scc_monitor_security_failure */
/*****************************************************************************/
/* fn scc_stop_monitoring_security_failure() */
/*****************************************************************************/
void scc_stop_monitoring_security_failure(void callback_func(void))
{
os_lock_context_t irq_flags; /* for IRQ save/restore */
int i;
if (scc_availability == SCC_STATUS_INITIAL) {
scc_init();
}
/* Acquire lock of callbacks table. Could be spin_lock_irq() if this
* routine were just called from base (not interrupt) level
*/
os_lock_save_context(scc_callbacks_lock, irq_flags);
/* Search every entry of the table for this function */
for (i = 0; i < SCC_CALLBACK_SIZE; i++) {
if (scc_callbacks[i] == callback_func) {
scc_callbacks[i] = NULL; /* found instance - clear it out */
break;
}
}
/* Free the lock */
os_unlock_restore_context(scc_callbacks_lock, irq_flags);
return;
} /* scc_stop_monitoring_security_failure */
/*****************************************************************************/
/* fn scc_read_register() */
/*****************************************************************************/
scc_return_t scc_read_register(int register_offset, uint32_t * value)
{
scc_return_t return_status = SCC_RET_FAIL;
uint32_t smn_status;
uint32_t scm_status;
if (scc_availability == SCC_STATUS_INITIAL) {
scc_init();
}
/* First layer of protection -- completely unaccessible SCC */
if (scc_availability != SCC_STATUS_UNIMPLEMENTED) {
/* Second layer -- that offset is valid */
if (register_offset != SMN_BB_DEC_REG && /* write only! */
check_register_offset(register_offset) == SCC_RET_OK) {
/* Get current status / update local state */
smn_status = scc_update_state();
scm_status = SCC_READ_REGISTER(SCM_STATUS_REG);
/*
* Third layer - verify that the register being requested is
* available in the current state of the SCC.
*/
if ((return_status =
check_register_accessible(register_offset,
smn_status,
scm_status)) ==
SCC_RET_OK) {
*value = SCC_READ_REGISTER(register_offset);
}
}
}
return return_status;
} /* scc_read_register */
/*****************************************************************************/
/* fn scc_write_register() */
/*****************************************************************************/
scc_return_t scc_write_register(int register_offset, uint32_t value)
{
scc_return_t return_status = SCC_RET_FAIL;
uint32_t smn_status;
uint32_t scm_status;
if (scc_availability == SCC_STATUS_INITIAL) {
scc_init();
}
/* First layer of protection -- completely unaccessible SCC */
if (scc_availability != SCC_STATUS_UNIMPLEMENTED) {
/* Second layer -- that offset is valid */
if (!((register_offset == SCM_STATUS_REG) || /* These registers are */
(register_offset == SCM_VERSION_REG) || /* Read Only */
(register_offset == SMN_BB_CNT_REG) ||
(register_offset == SMN_TIMER_REG)) &&
check_register_offset(register_offset) == SCC_RET_OK) {
/* Get current status / update local state */
smn_status = scc_update_state();
scm_status = SCC_READ_REGISTER(SCM_STATUS_REG);
/*
* Third layer - verify that the register being requested is
* available in the current state of the SCC.
*/
if (check_register_accessible
(register_offset, smn_status, scm_status) == 0) {
SCC_WRITE_REGISTER(register_offset, value);
return_status = SCC_RET_OK;
}
}
}
return return_status;
} /* scc_write_register() */
/******************************************************************************
*
* Function Implementations - Internal
*
*****************************************************************************/
/*****************************************************************************/
/* fn scc_irq() */
/*****************************************************************************/
/**
* This is the interrupt handler for the SCC.
*
* This function checks the SMN Status register to see whether it
* generated the interrupt, then it checks the SCM Status register to
* see whether it needs attention.
*
* If an SMN Interrupt is active, then the SCC state set to failure, and
* #scc_perform_callbacks() is invoked to notify any interested parties.
*
* The SCM Interrupt should be masked, as this driver uses polling to determine
* when the SCM has completed a crypto or zeroing operation. Therefore, if the
* interrupt is active, the driver will just clear the interrupt and (re)mask.
*/
OS_DEV_ISR(scc_irq)
{
uint32_t smn_status;
uint32_t scm_status;
int handled = 0; /* assume interrupt isn't from SMN */
#if defined(USE_SMN_INTERRUPT)
int smn_irq = INT_SCC_SMN; /* SMN interrupt is on a line by itself */
#elif defined (NO_SMN_INTERRUPT)
int smn_irq = -1; /* not wired to CPU at all */
#else
int smn_irq = INT_SCC_SCM; /* SMN interrupt shares a line with SCM */
#endif
/* Update current state... This will perform callbacks... */
smn_status = scc_update_state();
/* SMN is on its own interrupt line. Verify the IRQ was triggered
* before clearing the interrupt and marking it handled. */
if ((os_dev_get_irq() == smn_irq) &&
(smn_status & SMN_STATUS_SMN_STATUS_IRQ)) {
SCC_WRITE_REGISTER(SMN_COMMAND_REG,
SMN_COMMAND_CLEAR_INTERRUPT);
handled++; /* tell kernel that interrupt was handled */
}
/* Check on the health of the SCM */
scm_status = SCC_READ_REGISTER(SCM_STATUS_REG);
/* The driver masks interrupts, so this should never happen. */
if (os_dev_get_irq() == INT_SCC_SCM) {
/* but if it does, try to prevent it in the future */
SCC_WRITE_REGISTER(SCM_INT_CTL_REG, 0);
handled++;
}
/* Any non-zero value of handled lets kernel know we got something */
os_dev_isr_return(handled);
}
/*****************************************************************************/
/* fn scc_perform_callbacks() */
/*****************************************************************************/
/** Perform callbacks registered by #scc_monitor_security_failure().
*
* Make sure callbacks only happen once... Since there may be some reason why
* the interrupt isn't generated, this routine could be called from base(task)
* level.
*
* One at a time, go through #scc_callbacks[] and call any non-null pointers.
*/
static void scc_perform_callbacks(void)
{
static int callbacks_performed = 0;
unsigned long irq_flags; /* for IRQ save/restore */
int i;
/* Acquire lock of callbacks table and callbacks_performed flag */
os_lock_save_context(scc_callbacks_lock, irq_flags);
if (!callbacks_performed) {
callbacks_performed = 1;
/* Loop over all of the entries in the table */
for (i = 0; i < SCC_CALLBACK_SIZE; i++) {
/* If not null, ... */
if (scc_callbacks[i]) {
scc_callbacks[i] (); /* invoke the callback routine */
}
}
}
os_unlock_restore_context(scc_callbacks_lock, irq_flags);
return;
}
/*****************************************************************************/
/* fn scc_update_state() */
/*****************************************************************************/
/**
* Make certain SCC is still running.
*
* Side effect is to update #scc_availability and, if the state goes to failed,
* run #scc_perform_callbacks().
*
* (If #SCC_BRINGUP is defined, bring SCC to secure state if it is found to be
* in health check state)
*
* @return Current value of #SMN_STATUS_REG register.
*/
static uint32_t scc_update_state(void)
{
uint32_t smn_status_register = SMN_STATE_FAIL;
int smn_state;
/* if FAIL or UNIMPLEMENTED, don't bother */
if (scc_availability == SCC_STATUS_CHECKING ||
scc_availability == SCC_STATUS_OK) {
smn_status_register = SCC_READ_REGISTER(SMN_STATUS_REG);
smn_state = smn_status_register & SMN_STATUS_STATE_MASK;
#ifdef SCC_BRINGUP
/* If in Health Check while booting, try to 'bringup' to Secure mode */
if (scc_availability == SCC_STATUS_CHECKING &&
smn_state == SMN_STATE_HEALTH_CHECK) {
/* Code up a simple algorithm for the ASC */
SCC_WRITE_REGISTER(SMN_SEQ_START_REG, 0xaaaa);
SCC_WRITE_REGISTER(SMN_SEQ_END_REG, 0x5555);
SCC_WRITE_REGISTER(SMN_SEQ_CHECK_REG, 0x5555);
/* State should be SECURE now */
smn_status_register = SCC_READ_REGISTER(SMN_STATUS);
smn_state = smn_status_register & SMN_STATUS_STATE_MASK;
}
#endif
/*
* State should be SECURE or NON_SECURE for operation of the part. If
* FAIL, mark failed (i.e. limited access to registers). Any other
* state, mark unimplemented, as the SCC is unuseable.
*/
if (smn_state == SMN_STATE_SECURE
|| smn_state == SMN_STATE_NON_SECURE) {
/* Healthy */
scc_availability = SCC_STATUS_OK;
} else if (smn_state == SMN_STATE_FAIL) {
scc_availability = SCC_STATUS_FAILED; /* uh oh - unhealthy */
scc_perform_callbacks();
os_printk(KERN_ERR "SCC2: SCC went into FAILED mode\n");
} else {
/* START, ZEROIZE RAM, HEALTH CHECK, or unknown */
scc_availability = SCC_STATUS_UNIMPLEMENTED; /* unuseable */
os_printk(KERN_ERR
"SCC2: SCC declared UNIMPLEMENTED\n");
}
}
/* if availability is initial or ok */
return smn_status_register;
}
/*****************************************************************************/
/* fn scc_init_ccitt_crc() */
/*****************************************************************************/
/**
* Populate the partial CRC lookup table.
*
* @return none
*
*/
static void scc_init_ccitt_crc(void)
{
int dividend; /* index for lookup table */
uint16_t remainder; /* partial value for a given dividend */
int bit; /* index into bits of a byte */
/*
* Compute the remainder of each possible dividend.
*/
for (dividend = 0; dividend < 256; ++dividend) {
/*
* Start with the dividend followed by zeros.
*/
remainder = dividend << (8);
/*
* Perform modulo-2 division, a bit at a time.
*/
for (bit = 8; bit > 0; --bit) {
/*
* Try to divide the current data bit.
*/
if (remainder & 0x8000) {
remainder = (remainder << 1) ^ CRC_POLYNOMIAL;
} else {
remainder = (remainder << 1);
}
}
/*
* Store the result into the table.
*/
scc_crc_lookup_table[dividend] = remainder;
}
} /* scc_init_ccitt_crc() */
/*****************************************************************************/
/* fn grab_config_values() */
/*****************************************************************************/
/**
* grab_config_values() will read the SCM Configuration and SMN Status
* registers and store away version and size information for later use.
*
* @return The current value of the SMN Status register.
*/
static uint32_t scc_grab_config_values(void)
{
uint32_t scm_version_register;
uint32_t smn_status_register = SMN_STATE_FAIL;
if (scc_availability != SCC_STATUS_CHECKING) {
goto out;
}
scm_version_register = SCC_READ_REGISTER(SCM_VERSION_REG);
pr_debug("SCC2 Driver: SCM version is 0x%08x\n", scm_version_register);
/* Get SMN status and update scc_availability */
smn_status_register = scc_update_state();
pr_debug("SCC2 Driver: SMN status is 0x%08x\n", smn_status_register);
/* save sizes and versions information for later use */
scc_configuration.block_size_bytes = 16; /* BPCP ? */
scc_configuration.partition_count =
1 + ((scm_version_register & SCM_VER_NP_MASK) >> SCM_VER_NP_SHIFT);
scc_configuration.partition_size_bytes =
1 << ((scm_version_register & SCM_VER_BPP_MASK) >>
SCM_VER_BPP_SHIFT);
scc_configuration.scm_version =
(scm_version_register & SCM_VER_MAJ_MASK) >> SCM_VER_MAJ_SHIFT;
scc_configuration.smn_version =
(smn_status_register & SMN_STATUS_VERSION_ID_MASK)
>> SMN_STATUS_VERSION_ID_SHIFT;
if (scc_configuration.scm_version != SCM_MAJOR_VERSION_2) {
scc_availability = SCC_STATUS_UNIMPLEMENTED; /* Unknown version */
}
out:
return smn_status_register;
} /* grab_config_values */
/*****************************************************************************/
/* fn setup_interrupt_handling() */
/*****************************************************************************/
/**
* Register the SCM and SMN interrupt handlers.
*
* Called from #scc_init()
*
* @return 0 on success
*/
static int setup_interrupt_handling(void)
{
int smn_error_code = -1;
int scm_error_code = -1;
/* Disnable SCM interrupts */
SCC_WRITE_REGISTER(SCM_INT_CTL_REG, 0);
#ifdef USE_SMN_INTERRUPT
/* Install interrupt service routine for SMN. */
smn_error_code = os_register_interrupt(SCC_DRIVER_NAME,
INT_SCC_SMN, scc_irq);
if (smn_error_code != 0) {
os_printk(KERN_ERR
"SCC2 Driver: Error installing SMN Interrupt Handler: %d\n",
smn_error_code);
} else {
smn_irq_set = 1; /* remember this for cleanup */
/* Enable SMN interrupts */
SCC_WRITE_REGISTER(SMN_COMMAND_REG,
SMN_COMMAND_CLEAR_INTERRUPT |
SMN_COMMAND_ENABLE_INTERRUPT);
}
#else
smn_error_code = 0; /* no problems... will handle later */
#endif
/*
* Install interrupt service routine for SCM (or both together).
*/
scm_error_code = os_register_interrupt(SCC_DRIVER_NAME,
INT_SCC_SCM, scc_irq);
if (scm_error_code != 0) {
#ifndef MXC
os_printk(KERN_ERR
"SCC2 Driver: Error installing SCM Interrupt Handler: %d\n",
scm_error_code);
#else
os_printk(KERN_ERR
"SCC2 Driver: Error installing SCC Interrupt Handler: %d\n",
scm_error_code);
#endif
} else {
scm_irq_set = 1; /* remember this for cleanup */
#if defined(USE_SMN_INTERRUPT) && !defined(NO_SMN_INTERRUPT)
/* Enable SMN interrupts */
SCC_WRITE_REGISTER(SMN_COMMAND_REG,
SMN_COMMAND_CLEAR_INTERRUPT |
SMN_COMMAND_ENABLE_INTERRUPT);
#endif
}
/* Return an error if one was encountered */
return scm_error_code ? scm_error_code : smn_error_code;
} /* setup_interrupt_handling */
/*****************************************************************************/
/* fn scc_do_crypto() */
/*****************************************************************************/
/** Have the SCM perform the crypto function.
*
* Set up length register, and the store @c scm_control into control register
* to kick off the operation. Wait for completion, gather status, clear
* interrupt / status.
*
* @param byte_count number of bytes to perform in this operation
* @param scm_command Bit values to be set in @c SCM_CCMD_REG register
*
* @return 0 on success, value of #SCM_ERR_STATUS_REG on failure
*/
static uint32_t scc_do_crypto(int byte_count, uint32_t scm_command)
{
int block_count = byte_count / SCC_BLOCK_SIZE_BYTES();
uint32_t crypto_status;
scc_return_t ret;
/* This seems to be necessary in order to allow subsequent cipher
* operations to succeed when a partition is deallocated/reallocated!
*/
(void)SCC_READ_REGISTER(SCM_STATUS_REG);
/* In length register, 0 means 1, etc. */
scm_command |= (block_count - 1) << SCM_CCMD_LENGTH_SHIFT;
/* set modes and kick off the operation */
SCC_WRITE_REGISTER(SCM_CCMD_REG, scm_command);
ret = scc_wait_completion(&crypto_status);
/* Only done bit should be on */
if (crypto_status & SCM_STATUS_ERR) {
/* Replace with error status instead */
crypto_status = SCC_READ_REGISTER(SCM_ERR_STATUS_REG);
pr_debug("SCM Failure: 0x%x\n", crypto_status);
if (crypto_status == 0) {
/* That came up 0. Turn on arbitrary bit to signal error. */
crypto_status = SCM_ERRSTAT_ILM;
}
} else {
crypto_status = 0;
}
pr_debug("SCC2: Done waiting.\n");
return crypto_status;
}
/**
* Encrypt a region of secure memory.
*
* @param part_base Kernel virtual address of the partition.
* @param offset_bytes Offset from the start of the partition to the plaintext
* data.
* @param byte_count Length of the region (octets).
* @param black_data Physical location to store the encrypted data.
* @param IV Value to use for the IV.
* @param cypher_mode Cyphering mode to use, specified by type
* #scc_cypher_mode_t
*
* @return SCC_RET_OK if successful.
*/
scc_return_t
scc_encrypt_region(uint32_t part_base, uint32_t offset_bytes,
uint32_t byte_count, uint8_t *black_data,
uint32_t *IV, scc_cypher_mode_t cypher_mode)
{
os_lock_context_t irq_flags; /* for IRQ save/restore */
scc_return_t status = SCC_RET_OK;
uint32_t crypto_status;
uint32_t scm_command;
int offset_blocks = offset_bytes / SCC_BLOCK_SIZE_BYTES();
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 18))
mxc_clks_enable(SCC_CLK);
#else
if (scc_clk != ERR_PTR(ENOENT))
clk_enable(scc_clk);
#endif
scm_command = ((offset_blocks << SCM_CCMD_OFFSET_SHIFT) |
(SCM_PART_NUMBER(part_base) << SCM_CCMD_PART_SHIFT));
switch (cypher_mode) {
case SCC_CYPHER_MODE_CBC:
scm_command |= SCM_CCMD_AES_ENC_CBC;
break;
case SCC_CYPHER_MODE_ECB:
scm_command |= SCM_CCMD_AES_ENC_ECB;
break;
default:
status = SCC_RET_FAIL;
break;
}
pr_debug("Received encrypt request. SCM_C_BLACK_ST_REG: %p, "
"scm_Command: %08x, length: %i (part_base: %08x, "
"offset: %i)\n",
black_data, scm_command, byte_count, part_base, offset_blocks);
if (status != SCC_RET_OK)
goto out;
/* ACQUIRE LOCK to prevent others from using crypto or releasing slot */
os_lock_save_context(scc_crypto_lock, irq_flags);
if (status == SCC_RET_OK) {
SCC_WRITE_REGISTER(SCM_C_BLACK_ST_REG, (uint32_t) black_data);
/* Only write the IV if it will actually be used */
if (cypher_mode == SCC_CYPHER_MODE_CBC) {
/* Write the IV register */
SCC_WRITE_REGISTER(SCM_AES_CBC_IV0_REG, *(IV));
SCC_WRITE_REGISTER(SCM_AES_CBC_IV1_REG, *(IV + 1));
SCC_WRITE_REGISTER(SCM_AES_CBC_IV2_REG, *(IV + 2));
SCC_WRITE_REGISTER(SCM_AES_CBC_IV3_REG, *(IV + 3));
}
/* Set modes and kick off the encryption */
crypto_status = scc_do_crypto(byte_count, scm_command);
if (crypto_status != 0) {
pr_debug("SCM encrypt red crypto failure: 0x%x\n",
crypto_status);
} else {
status = SCC_RET_OK;
pr_debug("SCC2: Encrypted %d bytes\n", byte_count);
}
}
os_unlock_restore_context(scc_crypto_lock, irq_flags);
out:
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 18))
mxc_clks_disable(SCC_CLK);
#else
if (scc_clk != ERR_PTR(ENOENT))
clk_disable(scc_clk);
#endif
return status;
}
/* Decrypt a region into secure memory
*
* @param part_base Kernel virtual address of the partition.
* @param offset_bytes Offset from the start of the partition to store the
* plaintext data.
* @param byte_counts Length of the region (octets).
* @param black_data Physical location of the encrypted data.
* @param IV Value to use for the IV.
* @param cypher_mode Cyphering mode to use, specified by type
* #scc_cypher_mode_t
*
* @return SCC_RET_OK if successful.
*/
scc_return_t
scc_decrypt_region(uint32_t part_base, uint32_t offset_bytes,
uint32_t byte_count, uint8_t *black_data,
uint32_t *IV, scc_cypher_mode_t cypher_mode)
{
os_lock_context_t irq_flags; /* for IRQ save/restore */
scc_return_t status = SCC_RET_OK;
uint32_t crypto_status;
uint32_t scm_command;
int offset_blocks = offset_bytes / SCC_BLOCK_SIZE_BYTES();
/*Enabling SCC clock.*/
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 18))
mxc_clks_enable(SCC_CLK);
#else
if (scc_clk != ERR_PTR(ENOENT))
clk_enable(scc_clk);
#endif
scm_command = ((offset_blocks << SCM_CCMD_OFFSET_SHIFT) |
(SCM_PART_NUMBER(part_base) << SCM_CCMD_PART_SHIFT));
switch (cypher_mode) {
case SCC_CYPHER_MODE_CBC:
scm_command |= SCM_CCMD_AES_DEC_CBC;
break;
case SCC_CYPHER_MODE_ECB:
scm_command |= SCM_CCMD_AES_DEC_ECB;
break;
default:
status = SCC_RET_FAIL;
break;
}
pr_debug("Received decrypt request. SCM_C_BLACK_ST_REG: %p, "
"scm_Command: %08x, length: %i (part_base: %08x, "
"offset: %i)\n",
black_data, scm_command, byte_count, part_base, offset_blocks);
if (status != SCC_RET_OK)
goto out;
/* ACQUIRE LOCK to prevent others from using crypto or releasing slot */
os_lock_save_context(scc_crypto_lock, irq_flags);
if (status == SCC_RET_OK) {
status = SCC_RET_FAIL; /* reset expectations */
SCC_WRITE_REGISTER(SCM_C_BLACK_ST_REG, (uint32_t) black_data);
/* Write the IV register */
SCC_WRITE_REGISTER(SCM_AES_CBC_IV0_REG, *(IV));
SCC_WRITE_REGISTER(SCM_AES_CBC_IV1_REG, *(IV + 1));
SCC_WRITE_REGISTER(SCM_AES_CBC_IV2_REG, *(IV + 2));
SCC_WRITE_REGISTER(SCM_AES_CBC_IV3_REG, *(IV + 3));
/* Set modes and kick off the decryption */
crypto_status = scc_do_crypto(byte_count, scm_command);
if (crypto_status != 0) {
pr_debug("SCM decrypt black crypto failure: 0x%x\n",
crypto_status);
} else {
status = SCC_RET_OK;
pr_debug("SCC2: Decrypted %d bytes\n", byte_count);
}
}
os_unlock_restore_context(scc_crypto_lock, irq_flags);
out:
/*Disabling the Clock when the driver is not in use.*/
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 18))
mxc_clks_disable(SCC_CLK);
#else
if (scc_clk != ERR_PTR(ENOENT))
clk_disable(scc_clk);
#endif
return status;
}
/*****************************************************************************/
/* fn host_owns_partition() */
/*****************************************************************************/
/**
* Determine if the host owns a given partition.
*
* @internal
*
* @param part_no Partition number to query
*
* @return TRUE if the host owns the partition, FALSE otherwise.
*/
static uint32_t host_owns_partition(uint32_t part_no)
{
uint32_t value;
if (part_no < scc_configuration.partition_count) {
/* Check the partition owners register */
value = SCC_READ_REGISTER(SCM_PART_OWNERS_REG);
if (((value >> (part_no * SCM_POWN_SHIFT)) & SCM_POWN_MASK)
== SCM_POWN_PART_OWNED)
return TRUE;
}
return FALSE;
}
/*****************************************************************************/
/* fn partition_engaged() */
/*****************************************************************************/
/**
* Determine if the given partition is engaged.
*
* @internal
*
* @param part_no Partition number to query
*
* @return TRUE if the partition is engaged, FALSE otherwise.
*/
static uint32_t partition_engaged(uint32_t part_no)
{
uint32_t value;
if (part_no < scc_configuration.partition_count) {
/* Check the partition engaged register */
value = SCC_READ_REGISTER(SCM_PART_ENGAGED_REG);
if (((value >> (part_no * SCM_PENG_SHIFT)) & 0x1)
== SCM_PENG_ENGAGED)
return TRUE;
}
return FALSE;
}
/*****************************************************************************/
/* fn scc_wait_completion() */
/*****************************************************************************/
/**
* Poll looking for end-of-cipher indication. Only used
* if @c SCC_SCM_SLEEP is not defined.
*
* @internal
*
* On a Tahiti, crypto under 230 or so bytes is done after the first loop, all
* the way up to five sets of spins for 1024 bytes. (8- and 16-byte functions
* are done when we first look. Zeroizing takes one pass around.
*
* @param scm_status Address of the SCM_STATUS register
*
* @return A return code of type #scc_return_t
*/
static scc_return_t scc_wait_completion(uint32_t * scm_status)
{
scc_return_t ret;
int done;
int i = 0;
/* check for completion by polling */
do {
done = is_cipher_done(scm_status);
if (done)
break;
/* TODO: shorten this delay */
udelay(1000);
} while (i++ < SCC_CIPHER_MAX_POLL_COUNT);
pr_debug("SCC2: Polled DONE %d times\n", i);
if (!done) {
ret = SCC_RET_FAIL;
}
return ret;
} /* scc_wait_completion() */
/*****************************************************************************/
/* fn is_cipher_done() */
/*****************************************************************************/
/**
* This function returns non-zero if SCM Status register indicates
* that a cipher has terminated or some other interrupt-generating
* condition has occurred.
*
* @param scm_status Address of the SCM STATUS register
*
* @return 0 if cipher operations are finished
*/
static int is_cipher_done(uint32_t * scm_status)
{
register unsigned status;
register int cipher_done;
*scm_status = SCC_READ_REGISTER(SCM_STATUS_REG);
status = (*scm_status & SCM_STATUS_SRS_MASK) >> SCM_STATUS_SRS_SHIFT;
/*
* Done when SCM is not in 'currently performing a function' states.
*/
cipher_done = ((status != SCM_STATUS_SRS_ZBUSY)
&& (status != SCM_STATUS_SRS_CBUSY)
&& (status != SCM_STATUS_SRS_ABUSY));
return cipher_done;
} /* is_cipher_done() */
/*****************************************************************************/
/* fn offset_within_smn() */
/*****************************************************************************/
/*!
* Check that the offset is with the bounds of the SMN register set.
*
* @param[in] register_offset register offset of SMN.
*
* @return 1 if true, 0 if false (not within SMN)
*/
static inline int offset_within_smn(uint32_t register_offset)
{
return ((register_offset >= SMN_STATUS_REG)
&& (register_offset <= SMN_HAC_REG));
}
/*****************************************************************************/
/* fn offset_within_scm() */
/*****************************************************************************/
/*!
* Check that the offset is with the bounds of the SCM register set.
*
* @param[in] register_offset Register offset of SCM
*
* @return 1 if true, 0 if false (not within SCM)
*/
static inline int offset_within_scm(uint32_t register_offset)
{
return 1; /* (register_offset >= SCM_RED_START)
&& (register_offset < scm_highest_memory_address); */
/* Although this would cause trouble for zeroize testing, this change would
* close a security hole which currently allows any kernel program to access
* any location in RED RAM. Perhaps enforce in non-SCC_DEBUG compiles?
&& (register_offset <= SCM_INIT_VECTOR_1); */
}
/*****************************************************************************/
/* fn check_register_accessible() */
/*****************************************************************************/
/**
* Given the current SCM and SMN status, verify that access to the requested
* register should be OK.
*
* @param[in] register_offset register offset within SCC
* @param[in] smn_status recent value from #SMN_STATUS_REG
* @param[in] scm_status recent value from #SCM_STATUS_REG
*
* @return #SCC_RET_OK if ok, #SCC_RET_FAIL if not
*/
static scc_return_t
check_register_accessible(uint32_t register_offset, uint32_t smn_status,
uint32_t scm_status)
{
int error_code = SCC_RET_FAIL;
/* Verify that the register offset passed in is not among the verboten set
* if the SMN is in Fail mode.
*/
if (offset_within_smn(register_offset)) {
if ((smn_status & SMN_STATUS_STATE_MASK) == SMN_STATE_FAIL) {
if (!((register_offset == SMN_STATUS_REG) ||
(register_offset == SMN_COMMAND_REG) ||
(register_offset == SMN_SEC_VIO_REG))) {
pr_debug
("SCC2 Driver: Note: Security State is in FAIL state.\n");
} /* register not a safe one */
else {
/* SMN is in FAIL, but register is a safe one */
error_code = SCC_RET_OK;
}
} /* State is FAIL */
else {
/* State is not fail. All registers accessible. */
error_code = SCC_RET_OK;
}
}
/* offset within SMN */
/* Not SCM register. Check for SCM busy. */
else if (offset_within_scm(register_offset)) {
/* This is the 'cannot access' condition in the SCM */
if (0 /* (scm_status & SCM_STATUS_BUSY) */
/* these are always available - rest fail on busy */
&& !((register_offset == SCM_STATUS_REG) ||
(register_offset == SCM_ERR_STATUS_REG) ||
(register_offset == SCM_INT_CTL_REG) ||
(register_offset == SCM_VERSION_REG))) {
pr_debug
("SCC2 Driver: Note: Secure Memory is in BUSY state.\n");
} /* status is busy & register inaccessible */
else {
error_code = SCC_RET_OK;
}
}
/* offset within SCM */
return error_code;
} /* check_register_accessible() */
/*****************************************************************************/
/* fn check_register_offset() */
/*****************************************************************************/
/**
* Check that the offset is with the bounds of the SCC register set.
*
* @param[in] register_offset register offset of SMN.
*
* #SCC_RET_OK if ok, #SCC_RET_FAIL if not
*/
static scc_return_t check_register_offset(uint32_t register_offset)
{
int return_value = SCC_RET_FAIL;
/* Is it valid word offset ? */
if (SCC_BYTE_OFFSET(register_offset) == 0) {
/* Yes. Is register within SCM? */
if (offset_within_scm(register_offset)) {
return_value = SCC_RET_OK; /* yes, all ok */
}
/* Not in SCM. Now look within the SMN */
else if (offset_within_smn(register_offset)) {
return_value = SCC_RET_OK; /* yes, all ok */
}
}
return return_value;
}
#ifdef SCC_REGISTER_DEBUG
/**
* Names of the SCC Registers, indexed by register number
*/
static char *scc_regnames[] = {
"SCM_VERSION_REG",
"0x04",
"SCM_INT_CTL_REG",
"SCM_STATUS_REG",
"SCM_ERR_STATUS_REG",
"SCM_FAULT_ADR_REG",
"SCM_PART_OWNERS_REG",
"SCM_PART_ENGAGED_REG",
"SCM_UNIQUE_ID0_REG",
"SCM_UNIQUE_ID1_REG",
"SCM_UNIQUE_ID2_REG",
"SCM_UNIQUE_ID3_REG",
"0x30",
"0x34",
"0x38",
"0x3C",
"0x40",
"0x44",
"0x48",
"0x4C",
"SCM_ZCMD_REG",
"SCM_CCMD_REG",
"SCM_C_BLACK_ST_REG",
"SCM_DBG_STATUS_REG",
"SCM_AES_CBC_IV0_REG",
"SCM_AES_CBC_IV1_REG",
"SCM_AES_CBC_IV2_REG",
"SCM_AES_CBC_IV3_REG",
"0x70",
"0x74",
"0x78",
"0x7C",
"SCM_SMID0_REG",
"SCM_ACC0_REG",
"SCM_SMID1_REG",
"SCM_ACC1_REG",
"SCM_SMID2_REG",
"SCM_ACC2_REG",
"SCM_SMID3_REG",
"SCM_ACC3_REG",
"SCM_SMID4_REG",
"SCM_ACC4_REG",
"SCM_SMID5_REG",
"SCM_ACC5_REG",
"SCM_SMID6_REG",
"SCM_ACC6_REG",
"SCM_SMID7_REG",
"SCM_ACC7_REG",
"SCM_SMID8_REG",
"SCM_ACC8_REG",
"SCM_SMID9_REG",
"SCM_ACC9_REG",
"SCM_SMID10_REG",
"SCM_ACC10_REG",
"SCM_SMID11_REG",
"SCM_ACC11_REG",
"SCM_SMID12_REG",
"SCM_ACC12_REG",
"SCM_SMID13_REG",
"SCM_ACC13_REG",
"SCM_SMID14_REG",
"SCM_ACC14_REG",
"SCM_SMID15_REG",
"SCM_ACC15_REG",
"SMN_STATUS_REG",
"SMN_COMMAND_REG",
"SMN_SEQ_START_REG",
"SMN_SEQ_END_REG",
"SMN_SEQ_CHECK_REG",
"SMN_BB_CNT_REG",
"SMN_BB_INC_REG",
"SMN_BB_DEC_REG",
"SMN_COMPARE_REG",
"SMN_PT_CHK_REG",
"SMN_CT_CHK_REG",
"SMN_TIMER_IV_REG",
"SMN_TIMER_CTL_REG",
"SMN_SEC_VIO_REG",
"SMN_TIMER_REG",
"SMN_HAC_REG"
};
/**
* Names of the Secure RAM States
*/
static char *srs_names[] = {
"SRS_Reset",
"SRS_All_Ready",
"SRS_ZeroizeBusy",
"SRS_CipherBusy",
"SRS_AllBusy",
"SRS_ZeroizeDoneCipherReady",
"SRS_CipherDoneZeroizeReady",
"SRS_ZeroizeDoneCipherBusy",
"SRS_CipherDoneZeroizeBusy",
"SRS_UNKNOWN_STATE_9",
"SRS_TransitionalA",
"SRS_TransitionalB",
"SRS_TransitionalC",
"SRS_TransitionalD",
"SRS_AllDone",
"SRS_UNKNOWN_STATE_E",
"SRS_FAIL"
};
/**
* Create a text interpretation of the SCM Version Register
*
* @param value The value of the register
* @param[out] print_buffer Place to store the interpretation
* @param buf_size Number of bytes available at print_buffer
*
* @return The print_buffer
*/
static
char *scm_print_version_reg(uint32_t value, char *print_buffer, int buf_size)
{
snprintf(print_buffer, buf_size,
"Bpp: %u, Bpcb: %u, np: %u, maj: %u, min: %u",
(value & SCM_VER_BPP_MASK) >> SCM_VER_BPP_SHIFT,
((value & SCM_VER_BPCB_MASK) >> SCM_VER_BPCB_SHIFT) + 1,
((value & SCM_VER_NP_MASK) >> SCM_VER_NP_SHIFT) + 1,
(value & SCM_VER_MAJ_MASK) >> SCM_VER_MAJ_SHIFT,
(value & SCM_VER_MIN_MASK) >> SCM_VER_MIN_SHIFT);
return print_buffer;
}
/**
* Create a text interpretation of the SCM Status Register
*
* @param value The value of the register
* @param[out] print_buffer Place to store the interpretation
* @param buf_size Number of bytes available at print_buffer
*
* @return The print_buffer
*/
static
char *scm_print_status_reg(uint32_t value, char *print_buffer, int buf_size)
{
snprintf(print_buffer, buf_size, "%s%s%s%s%s%s%s%s%s%s%s%s%s",
(value & SCM_STATUS_KST_DEFAULT_KEY) ? "KST_DefaultKey " : "",
/* reserved */
(value & SCM_STATUS_KST_WRONG_KEY) ? "KST_WrongKey " : "",
(value & SCM_STATUS_KST_BAD_KEY) ? "KST_BadKey " : "",
(value & SCM_STATUS_ERR) ? "Error " : "",
(value & SCM_STATUS_MSS_FAIL) ? "MSS_FailState " : "",
(value & SCM_STATUS_MSS_SEC) ? "MSS_SecureState " : "",
(value & SCM_STATUS_RSS_FAIL) ? "RSS_FailState " : "",
(value & SCM_STATUS_RSS_SEC) ? "RSS_SecureState " : "",
(value & SCM_STATUS_RSS_INIT) ? "RSS_Initializing " : "",
(value & SCM_STATUS_UNV) ? "UID_Invalid " : "",
(value & SCM_STATUS_BIG) ? "BigEndian " : "",
(value & SCM_STATUS_USK) ? "SecretKey " : "",
srs_names[(value & SCM_STATUS_SRS_MASK) >>
SCM_STATUS_SRS_SHIFT]);
return print_buffer;
}
/**
* Names of the SCM Error Codes
*/
static
char *scm_err_code[] = {
"Unknown_0",
"UnknownAddress",
"UnknownCommand",
"ReadPermErr",
"WritePermErr",
"DMAErr",
"EncBlockLenOvfl",
"KeyNotEngaged",
"ZeroizeCmdQOvfl",
"CipherCmdQOvfl",
"ProcessIntr",
"WrongKey",
"DeviceBusy",
"DMAUnalignedAddr",
"Unknown_E",
"Unknown_F",
};
/**
* Names of the SMN States
*/
static char *smn_state_name[] = {
"Start",
"Invalid_01",
"Invalid_02",
"Invalid_03",
"Zeroizing_04",
"Zeroizing",
"HealthCheck",
"HealthCheck_07",
"Invalid_08",
"Fail",
"Secure",
"Invalid_0B",
"NonSecure",
"Invalid_0D",
"Invalid_0E",
"Invalid_0F",
"Invalid_10",
"Invalid_11",
"Invalid_12",
"Invalid_13",
"Invalid_14",
"Invalid_15",
"Invalid_16",
"Invalid_17",
"Invalid_18",
"FailHard",
"Invalid_1A",
"Invalid_1B",
"Invalid_1C",
"Invalid_1D",
"Invalid_1E",
"Invalid_1F"
};
/**
* Create a text interpretation of the SCM Error Status Register
*
* @param value The value of the register
* @param[out] print_buffer Place to store the interpretation
* @param buf_size Number of bytes available at print_buffer
*
* @return The print_buffer
*/
static
char *scm_print_err_status_reg(uint32_t value, char *print_buffer, int buf_size)
{
snprintf(print_buffer, buf_size,
"MID: 0x%x, %s%s ErrorCode: %s, SMSState: %s, SCMState: %s",
(value & SCM_ERRSTAT_MID_MASK) >> SCM_ERRSTAT_MID_SHIFT,
(value & SCM_ERRSTAT_ILM) ? "ILM, " : "",
(value & SCM_ERRSTAT_SUP) ? "SUP, " : "",
scm_err_code[(value & SCM_ERRSTAT_ERC_MASK) >>
SCM_ERRSTAT_ERC_SHIFT],
smn_state_name[(value & SCM_ERRSTAT_SMS_MASK) >>
SCM_ERRSTAT_SMS_SHIFT],
srs_names[(value & SCM_ERRSTAT_SRS_MASK) >>
SCM_ERRSTAT_SRS_SHIFT]);
return print_buffer;
}
/**
* Create a text interpretation of the SCM Zeroize Command Register
*
* @param value The value of the register
* @param[out] print_buffer Place to store the interpretation
* @param buf_size Number of bytes available at print_buffer
*
* @return The print_buffer
*/
static
char *scm_print_zcmd_reg(uint32_t value, char *print_buffer, int buf_size)
{
unsigned cmd = (value & SCM_ZCMD_CCMD_MASK) >> SCM_CCMD_CCMD_SHIFT;
snprintf(print_buffer, buf_size, "%s %u",
(cmd ==
ZCMD_DEALLOC_PART) ? "DeallocPartition" :
"(unknown function)",
(value & SCM_ZCMD_PART_MASK) >> SCM_ZCMD_PART_SHIFT);
return print_buffer;
}
/**
* Create a text interpretation of the SCM Cipher Command Register
*
* @param value The value of the register
* @param[out] print_buffer Place to store the interpretation
* @param buf_size Number of bytes available at print_buffer
*
* @return The print_buffer
*/
static
char *scm_print_ccmd_reg(uint32_t value, char *print_buffer, int buf_size)
{
unsigned cmd = (value & SCM_CCMD_CCMD_MASK) >> SCM_CCMD_CCMD_SHIFT;
snprintf(print_buffer, buf_size,
"%s %u bytes, %s offset 0x%x, in partition %u",
(cmd == SCM_CCMD_AES_DEC_ECB) ? "ECB Decrypt" : (cmd ==
SCM_CCMD_AES_ENC_ECB)
? "ECB Encrypt" : (cmd ==
SCM_CCMD_AES_DEC_CBC) ? "CBC Decrypt" : (cmd
==
SCM_CCMD_AES_ENC_CBC)
? "CBC Encrypt" : "(unknown function)",
16 +
16 * ((value & SCM_CCMD_LENGTH_MASK) >> SCM_CCMD_LENGTH_SHIFT),
((cmd == SCM_CCMD_AES_ENC_CBC)
|| (cmd == SCM_CCMD_AES_ENC_ECB)) ? "at" : "to",
16 * ((value & SCM_CCMD_OFFSET_MASK) >> SCM_CCMD_OFFSET_SHIFT),
(value & SCM_CCMD_PART_MASK) >> SCM_CCMD_PART_SHIFT);
return print_buffer;
}
/**
* Create a text interpretation of an SCM Access Permissions Register
*
* @param value The value of the register
* @param[out] print_buffer Place to store the interpretation
* @param buf_size Number of bytes available at print_buffer
*
* @return The print_buffer
*/
static
char *scm_print_acc_reg(uint32_t value, char *print_buffer, int buf_size)
{
snprintf(print_buffer, buf_size, "%s%s%s%s%s%s%s%s%s%s",
(value & SCM_PERM_NO_ZEROIZE) ? "NO_ZERO " : "",
(value & SCM_PERM_HD_SUP_DISABLE) ? "SUP_DIS " : "",
(value & SCM_PERM_HD_READ) ? "HD_RD " : "",
(value & SCM_PERM_HD_WRITE) ? "HD_WR " : "",
(value & SCM_PERM_HD_EXECUTE) ? "HD_EX " : "",
(value & SCM_PERM_TH_READ) ? "TH_RD " : "",
(value & SCM_PERM_TH_WRITE) ? "TH_WR " : "",
(value & SCM_PERM_OT_READ) ? "OT_RD " : "",
(value & SCM_PERM_OT_WRITE) ? "OT_WR " : "",
(value & SCM_PERM_OT_EXECUTE) ? "OT_EX" : "");
return print_buffer;
}
/**
* Create a text interpretation of the SCM Partitions Engaged Register
*
* @param value The value of the register
* @param[out] print_buffer Place to store the interpretation
* @param buf_size Number of bytes available at print_buffer
*
* @return The print_buffer
*/
static
char *scm_print_part_eng_reg(uint32_t value, char *print_buffer, int buf_size)
{
snprintf(print_buffer, buf_size, "%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
(value & 0x8000) ? "15 " : "",
(value & 0x4000) ? "14 " : "",
(value & 0x2000) ? "13 " : "",
(value & 0x1000) ? "12 " : "",
(value & 0x0800) ? "11 " : "",
(value & 0x0400) ? "10 " : "",
(value & 0x0200) ? "9 " : "",
(value & 0x0100) ? "8 " : "",
(value & 0x0080) ? "7 " : "",
(value & 0x0040) ? "6 " : "",
(value & 0x0020) ? "5 " : "",
(value & 0x0010) ? "4 " : "",
(value & 0x0008) ? "3 " : "",
(value & 0x0004) ? "2 " : "",
(value & 0x0002) ? "1 " : "", (value & 0x0001) ? "0" : "");
return print_buffer;
}
/**
* Create a text interpretation of the SMN Status Register
*
* @param value The value of the register
* @param[out] print_buffer Place to store the interpretation
* @param buf_size Number of bytes available at print_buffer
*
* @return The print_buffer
*/
static
char *smn_print_status_reg(uint32_t value, char *print_buffer, int buf_size)
{
snprintf(print_buffer, buf_size,
"Version %d %s%s%s%s%s%s%s%s%s%s%s%s%s",
(value & SMN_STATUS_VERSION_ID_MASK) >>
SMN_STATUS_VERSION_ID_SHIFT,
(value & SMN_STATUS_ILLEGAL_MASTER) ? "IllMaster " : "",
(value & SMN_STATUS_SCAN_EXIT) ? "ScanExit " : "",
(value & SMN_STATUS_PERIP_INIT) ? "PeripInit " : "",
(value & SMN_STATUS_SMN_ERROR) ? "SMNError " : "",
(value & SMN_STATUS_SOFTWARE_ALARM) ? "SWAlarm " : "",
(value & SMN_STATUS_TIMER_ERROR) ? "TimerErr " : "",
(value & SMN_STATUS_PC_ERROR) ? "PTCTErr " : "",
(value & SMN_STATUS_BITBANK_ERROR) ? "BitbankErr " : "",
(value & SMN_STATUS_ASC_ERROR) ? "ASCErr " : "",
(value & SMN_STATUS_SECURITY_POLICY_ERROR) ? "SecPlcyErr " :
"",
(value & SMN_STATUS_SEC_VIO_ACTIVE_ERROR) ? "SecVioAct " : "",
(value & SMN_STATUS_INTERNAL_BOOT) ? "IntBoot " : "",
smn_state_name[(value & SMN_STATUS_STATE_MASK) >>
SMN_STATUS_STATE_SHIFT]);
return print_buffer;
}
/**
* The array, indexed by register number (byte-offset / 4), of print routines
* for the SCC (SCM and SMN) registers.
*/
static reg_print_routine_t reg_printers[] = {
scm_print_version_reg,
NULL, /* 0x04 */
NULL, /* SCM_INT_CTL_REG */
scm_print_status_reg,
scm_print_err_status_reg,
NULL, /* SCM_FAULT_ADR_REG */
NULL, /* SCM_PART_OWNERS_REG */
scm_print_part_eng_reg,
NULL, /* SCM_UNIQUE_ID0_REG */
NULL, /* SCM_UNIQUE_ID1_REG */
NULL, /* SCM_UNIQUE_ID2_REG */
NULL, /* SCM_UNIQUE_ID3_REG */
NULL, /* 0x30 */
NULL, /* 0x34 */
NULL, /* 0x38 */
NULL, /* 0x3C */
NULL, /* 0x40 */
NULL, /* 0x44 */
NULL, /* 0x48 */
NULL, /* 0x4C */
scm_print_zcmd_reg,
scm_print_ccmd_reg,
NULL, /* SCM_C_BLACK_ST_REG */
NULL, /* SCM_DBG_STATUS_REG */
NULL, /* SCM_AES_CBC_IV0_REG */
NULL, /* SCM_AES_CBC_IV1_REG */
NULL, /* SCM_AES_CBC_IV2_REG */
NULL, /* SCM_AES_CBC_IV3_REG */
NULL, /* 0x70 */
NULL, /* 0x74 */
NULL, /* 0x78 */
NULL, /* 0x7C */
NULL, /* SCM_SMID0_REG */
scm_print_acc_reg, /* ACC0 */
NULL, /* SCM_SMID1_REG */
scm_print_acc_reg, /* ACC1 */
NULL, /* SCM_SMID2_REG */
scm_print_acc_reg, /* ACC2 */
NULL, /* SCM_SMID3_REG */
scm_print_acc_reg, /* ACC3 */
NULL, /* SCM_SMID4_REG */
scm_print_acc_reg, /* ACC4 */
NULL, /* SCM_SMID5_REG */
scm_print_acc_reg, /* ACC5 */
NULL, /* SCM_SMID6_REG */
scm_print_acc_reg, /* ACC6 */
NULL, /* SCM_SMID7_REG */
scm_print_acc_reg, /* ACC7 */
NULL, /* SCM_SMID8_REG */
scm_print_acc_reg, /* ACC8 */
NULL, /* SCM_SMID9_REG */
scm_print_acc_reg, /* ACC9 */
NULL, /* SCM_SMID10_REG */
scm_print_acc_reg, /* ACC10 */
NULL, /* SCM_SMID11_REG */
scm_print_acc_reg, /* ACC11 */
NULL, /* SCM_SMID12_REG */
scm_print_acc_reg, /* ACC12 */
NULL, /* SCM_SMID13_REG */
scm_print_acc_reg, /* ACC13 */
NULL, /* SCM_SMID14_REG */
scm_print_acc_reg, /* ACC14 */
NULL, /* SCM_SMID15_REG */
scm_print_acc_reg, /* ACC15 */
smn_print_status_reg,
NULL, /* SMN_COMMAND_REG */
NULL, /* SMN_SEQ_START_REG */
NULL, /* SMN_SEQ_END_REG */
NULL, /* SMN_SEQ_CHECK_REG */
NULL, /* SMN_BB_CNT_REG */
NULL, /* SMN_BB_INC_REG */
NULL, /* SMN_BB_DEC_REG */
NULL, /* SMN_COMPARE_REG */
NULL, /* SMN_PT_CHK_REG */
NULL, /* SMN_CT_CHK_REG */
NULL, /* SMN_TIMER_IV_REG */
NULL, /* SMN_TIMER_CTL_REG */
NULL, /* SMN_SEC_VIO_REG */
NULL, /* SMN_TIMER_REG */
NULL, /* SMN_HAC_REG */
};
/*****************************************************************************/
/* fn dbg_scc_read_register() */
/*****************************************************************************/
/**
* Noisily read a 32-bit value to an SCC register.
* @param offset The address of the register to read.
*
* @return The register value
* */
uint32_t dbg_scc_read_register(uint32_t offset)
{
uint32_t value;
char *regname = scc_regnames[offset / 4];
value = __raw_readl(scc_base + offset);
pr_debug("SCC2 RD: 0x%03x : 0x%08x (%s) %s\n", offset, value, regname,
reg_printers[offset / 4]
? reg_printers[offset / 4] (value, reg_print_buffer,
REG_PRINT_BUFFER_SIZE)
: "");
return value;
}
/*****************************************************************************/
/* fn dbg_scc_write_register() */
/*****************************************************************************/
/*
* Noisily read a 32-bit value to an SCC register.
* @param offset The address of the register to written.
*
* @param value The new register value
*/
void dbg_scc_write_register(uint32_t offset, uint32_t value)
{
char *regname = scc_regnames[offset / 4];
pr_debug("SCC2 WR: 0x%03x : 0x%08x (%s) %s\n", offset, value, regname,
reg_printers[offset / 4]
? reg_printers[offset / 4] (value, reg_print_buffer,
REG_PRINT_BUFFER_SIZE)
: "");
(void)__raw_writel(value, scc_base + offset);
}
#endif /* SCC_REGISTER_DEBUG */
static int scc_dev_probe(struct platform_device *pdev)
{
struct resource *r;
int ret = 0;
/* get the scc registers base address */
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!r) {
dev_err(&pdev->dev, "can't get IORESOURCE_MEM (0)\n");
ret = -ENXIO;
goto exit;
}
scc_phys_base = r->start;
/* get the scc ram base address */
r = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!r) {
dev_err(&pdev->dev, "can't get IORESOURCE_MEM (1)\n");
ret = -ENXIO;
goto exit;
}
scm_ram_phys_base = r->start;
/* now initialize the SCC */
ret = scc_init();
exit:
return ret;
}
static int scc_dev_remove(struct platform_device *pdev)
{
scc_cleanup();
return 0;
}
#ifdef CONFIG_PM
static int scc_suspend(struct platform_device *pdev,
pm_message_t state)
{
return 0;
}
static int scc_resume(struct platform_device *pdev)
{
return 0;
}
#else
#define scc_suspend NULL
#define scc_resume NULL
#endif
/*! Linux Driver definition
*
*/
static struct platform_driver mxcscc_driver = {
.driver = {
.name = SCC_DRIVER_NAME,
},
.probe = scc_dev_probe,
.remove = scc_dev_remove,
.suspend = scc_suspend,
.resume = scc_resume,
};
static int __init scc_driver_init(void)
{
return platform_driver_register(&mxcscc_driver);
}
module_init(scc_driver_init);
static void __exit scc_driver_exit(void)
{
platform_driver_unregister(&mxcscc_driver);
}
module_exit(scc_driver_exit);
|