1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
|
/*
* Copyright (C) 2011-2012 Freescale Semiconductor, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <linux/cpufreq.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/io.h>
#include <linux/thermal.h>
#include <linux/syscalls.h>
#include <mach/hardware.h>
#define CPUx "/sys/devices/system/cpu/cpu"
#define MAX_GOVERNOR_NAME_LEN 12
#define MAX_CPU_FREQ_LEN 7
#define MAX_CPU_ONLINE_LEN 1
/* Save the last hot point trigger temperature */
extern unsigned long temperature_cooling;
/* cooling device selection */
extern bool cooling_cpuhotplug;
extern struct cpu_op *(*get_cpu_op)(int *op);
/* Save the string we will read/write to the sys file */
static unsigned char cpu_sys_file[80];
static unsigned int cpu_mask;
static unsigned int anatop_thermal_cpufreq_is_init;
/* Save cpu operation table and current work point */
static struct cpu_op *cpu_op_tbl;
static int cpu_op_nr, cpu_op_cur;
/* Save the cpu freq necessray setting before thermal driver change it */
static unsigned int saved_cpu_freq[5];
static char saved_max_cpufreq_str[4][10];
/* New cpufreq to be set */
static unsigned int cpufreq_new;
static char cpufreq_new_str[10];
/* This variable record the cpufreq change, when we lower the
cpufreq, it minor 1, and when we promote cpufreq, it add 1, so
if it is 0, mean we didn't change the cpufreq */
static int cpufreq_change_count;
extern int thermal_hot;
int anatop_thermal_get_cpufreq_cur(void)
{
int ret = -EINVAL;
#ifdef CONFIG_CPU_FREQ
unsigned int i, freq;
freq = cpufreq_quick_get(0);
saved_cpu_freq[abs(cpufreq_change_count)] = freq;
printk(KERN_WARNING "cooling: cpu cur freq is %d\n", freq * 1000);
freq *= 1000;
for (i = 0; i < cpu_op_nr; i++) {
if (freq == cpu_op_tbl[i].cpu_rate)
break;
}
if (i >= cpu_op_nr) {
printk(KERN_WARNING "cooling: can't get cpufreq\
current operating point!\n");
return ret;
}
cpu_op_cur = i;
#endif
return 0;
}
int anatop_thermal_cpufreq_up(void)
{
int ret = -EINVAL;
#ifdef CONFIG_CPU_FREQ
int fd;
anatop_thermal_get_cpufreq_cur();
if (cpu_op_cur == 0 || cpu_op_cur >= cpu_op_nr) {
printk(KERN_ERR "cooling: Bad cpu_op_cur!\n");
return ret;
}
cpufreq_new = cpu_op_tbl[cpu_op_cur - 1].cpu_rate;
printk(KERN_INFO "cooling: cpu max freq set to %s\n",
saved_max_cpufreq_str[abs(cpufreq_change_count) - 1]);
strcpy(cpu_sys_file, CPUx);
strcat(cpu_sys_file, "0/cpufreq/scaling_max_freq");
fd = sys_open((const char __user __force *)cpu_sys_file,
O_RDWR, 0700);
if (fd >= 0) {
sys_write(fd, saved_max_cpufreq_str[abs(cpufreq_change_count) - 1],
strlen(saved_max_cpufreq_str[abs(cpufreq_change_count) - 1]));
cpufreq_update_policy(0);
sys_close(fd);
ret = 0;
}
cpufreq_change_count++;
#endif
return ret;
}
int anatop_thermal_cpufreq_down(void)
{
int ret = -EINVAL;
#ifdef CONFIG_CPU_FREQ
int fd;
anatop_thermal_get_cpufreq_cur();
if (cpu_op_cur == (cpu_op_nr - 1) || cpu_op_cur >= cpu_op_nr) {
printk(KERN_ERR "cooling: Bad cpu_op_cur!\n");
return ret;
}
cpufreq_new = cpu_op_tbl[cpu_op_cur + 1].cpu_rate;
printk(KERN_INFO "cooling: cpu max freq set to %d\n", cpufreq_new);
cpufreq_new /= 1000;
strcpy(cpu_sys_file, CPUx);
sprintf(cpufreq_new_str, "%d", cpufreq_new);
strcat(cpu_sys_file, "0/cpufreq/scaling_max_freq");
fd = sys_open((const char __user __force *)cpu_sys_file,
O_RDWR, 0700);
if (fd >= 0) {
sys_read(fd, saved_max_cpufreq_str[abs(cpufreq_change_count)],
MAX_CPU_FREQ_LEN);
sys_write(fd, cpufreq_new_str, strlen(cpufreq_new_str));
sys_close(fd);
ret = 0;
}
cpufreq_change_count--;
cpufreq_update_policy(0);
#endif
return ret;
}
int anatop_thermal_cpu_hotplug(bool cpu_on)
{
int ret = -EINVAL;
#ifdef CONFIG_HOTPLUG
unsigned int cpu;
char online;
char cpu_number[9];
int fd;
if (cpu_on) {
for (cpu = 1; cpu < num_possible_cpus(); cpu++) {
strcpy(cpu_sys_file, CPUx);
sprintf(cpu_number, "%d%s", cpu, "/online");
strcat(cpu_sys_file, cpu_number);
fd = sys_open((const char __user __force *)cpu_sys_file,
O_RDWR, 0700);
if (fd >= 0) {
sys_read(fd, &online, MAX_CPU_ONLINE_LEN);
if (online == '0') {
sys_write(fd, (char *)"1", MAX_CPU_ONLINE_LEN);
cpu_mask &= ~(0x1 << cpu);
ret = 0;
sys_close(fd);
break;
}
sys_close(fd);
}
}
} else {
if (num_online_cpus() < 2)
return ret;
for (cpu = num_possible_cpus() - 1; cpu > 0; cpu--) {
strcpy(cpu_sys_file, CPUx);
sprintf(cpu_number, "%d%s", cpu, "/online");
strcat(cpu_sys_file, cpu_number);
fd = sys_open((const char __user __force *)cpu_sys_file,
O_RDWR, 0700);
if (fd >= 0) {
sys_read(fd, &online, 1);
if (online == '1') {
sys_write(fd, (char *)"0", MAX_CPU_ONLINE_LEN);
cpu_mask |= 0x1 << cpu;
ret = 0;
sys_close(fd);
break;
}
sys_close(fd);
}
}
}
#endif
return ret;
}
static int
imx_processor_get_max_state(struct thermal_cooling_device *cdev,
unsigned long *state)
{
*state = cpu_mask | (0x1 << 1) | (0x1 << 2) | (0x1 << 3);
return 0;
}
static int
imx_processor_get_cur_state(struct thermal_cooling_device *cdev,
unsigned long *cur_state)
{
*cur_state = cpu_mask;
return 0;
}
static int
imx_processor_set_cur_state(struct thermal_cooling_device *cdev,
unsigned long state)
{
int result = 0;
int i;
/* state =0 means we are at a low temp, we should try to attach the
secondary CPUs that detached by thermal driver */
if (cooling_cpuhotplug) {
if (!state) {
thermal_hot = 0;
for (i = 1; i < 4; i++) {
if (cpu_mask && (0x1 << i)) {
anatop_thermal_cpu_hotplug(true);
temperature_cooling = 0;
break;
}
}
}
} else {
if (!state) {
thermal_hot = 0;
if (cpufreq_change_count < 0)
anatop_thermal_cpufreq_up();
else if (cpufreq_change_count > 0)
anatop_thermal_cpufreq_down();
temperature_cooling = 0;
}
}
return result;
}
void anatop_thermal_cpufreq_init(void)
{
cpu_op_tbl = get_cpu_op(&cpu_op_nr);
anatop_thermal_cpufreq_is_init = 1;
}
void anatop_thermal_cpufreq_exit(void)
{
anatop_thermal_cpufreq_is_init = 0;
}
struct thermal_cooling_device_ops imx_processor_cooling_ops = {
.get_max_state = imx_processor_get_max_state,
.get_cur_state = imx_processor_get_cur_state,
.set_cur_state = imx_processor_set_cur_state,
};
|